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1. INTRODUCTION 

Reducing the workforce using robotic applications has been 

increasingly demanding in several industries. Autonomous 

Mobile Robots (AMRs) with capabilities to continuously 

perceive, process, and control a system based on the data 

collected concerning efficiency and continuous optimization 

are the driving features of industrial robots in transforming 

Industry 4.0 [1]. Mobile robots have a broad range of 

applications, not just for tracking and surveillance [2]. So, an 

AMR is a mechanism that carries a tool to perform diverse 

tasks. AMR navigation has several phases, like path planning 

and its feedback system, i.e., perception and control, which 

are essential in determining the robot’s efficiency. Further, 

all these processes culminate in motion planning and control, 

where the robot’s kinematics and actuators are operated to 

achieve the required motion and cognition. At the heart of 

this problem is Localization; Panigrahi et al. mention 

localization problems such as pose tracking (position and 

orientation), global localization, and kidnapped robots [3].  

In the pose tracking problem, the initial position and 

orientation are known at the initial time ‘t0’. Then the 

succeeding position and orientation at any time ‘tn’ are 

calculated using odometric data of the motors from the initial 

state. A time-bound sequential integration of odometric data 

for any time yields the state of the mobile robot. It is known 

as the dead reckoning (DR) technique [2], [3]. The global 

localization problem is similar to DR only when the robot 

does not know its initial state and relies on sensory 

perception and a map of the environment. This problem 

demands probabilistic approaches.  
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Finally, the kidnapped robot is a case of when it is lost, i.e., its 

environment becomes arbitrary. If information about the 

environment is available for the robot for map matching and 

that information is reliable, then the robot is in a known 

environment. For instances where there is only partial 

information about the robot’s environment available for map 

matching or that information is unreliable, the robot is in a 

partially known environment [4].   

 

In robotic perception, the measurement uncertainty depends on 

many external factors, such as thermal noise, atmospheric 

effects, dynamic motion, receiver clock precision, and many 

more, depending on the phenomenon of the sensor and its 

sensitivity to environmental factors. The odometric error can 

be probabilistic error i.e. non-systemic error and deterministic 

error i.e., systemic error [5], [6]. Systemic errors are not 

introduced by the environment but are inherited by the system 

in some form of inaccuracy. Typically, they are associated with 

the mechanical behavior of the elements in a system, such as 

slippage, fitting, tolerances, and non-uniform load distribution, 

which make one wheel turn relatively slower than the other. 

Non-systemic errors incur due to the robot’s interaction with 

the environment, such as uneven terrain, temperature effects 

on the sensory data, and noise interference with the system. 

 

Odometry is the simplest and the most widely used navigation 

method for mobile robot positioning [7]. The fundamental idea 

is integrating incremental motion information over time, which 

inevitably leads to the accumulation of errors [8]. Odometry 

calibration is achieved by measuring actual displacement with 

an anticipated displacement of the wheeled mobile robot [9]. 

This calibration helps to mitigate systemic errors and, if not 

addressed, accumulation of orientation errors will cause 

 
ABSTRACT 

A novel exploration into the practical application of the Kalman filtering technique for the control and 
observability of a differential drive mobile robot is presented in this article. The effectiveness of Kalman 
filtering in addressing the localization challenges within a partially known environment is assessed. In 
a controlled quasi-static setting, odometric error data is meticulously collected on a metric scale, and 
deviations are analyzed to establish a pseudo-random error model for a differential drive robot under 
two scenarios: a fully functional system and a system experiencing partial failure. Surprisingly, it is 
found that despite calibrated odometric readings, the controller struggles to differentiate between 
systemic and non-systemic errors, treating both as identical. This unique challenge manifests when one 
or more sensors/actuators introduce non-systemic errors perceived as systemic errors. The study extends 
to mobile robots equipped with ultrasonic sensors, precisely delineating ranges within ±2 cm along the 
heading direction, providing valuable insights into the nuanced dynamics of Kalman filtering and paving 
the way for future advancements in mobile robot control systems. 
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significant position errors, which increase proportionally with 

the distance traveled by the robot [8]. Odometric calibration 

addresses systemic errors like the difference in the relative 

motion of the wheels due to asymmetric weight distribution of 

the wheeled mobile robot, causing one wheel to take a higher 

load than the other resulting in relative motion difference. 

Even for the robot’s well-balanced center of gravity (CG), the 

load distribution can be uneven for terrain with a slope, 

resulting in relative motion differences. 

 

From a general point of view, two standard techniques for 

countering the localization problem are to resolve the 

odometric error by sensor fusion [10] or to enhance the 

controllability and observability of the mobile robot [6], [11]. 

The sensor fusion techniques complement the error of one 

sensor with another in range sensing and feature detection, 

which eventually leads to map matching of the robot’s 

environment [6], [12]. The second approach observes the state 

variables and controls or optimizes the inputs to achieve 

precise position and motion tracking [2]. Alternatively, made 

markers on the wheels to avoid the process of odemetric 

calibrations to improve localization [13]. 

 

Antonelli et al. published a statistical-based odometric 

calibration technique in 2005, which presents normalized 

position error and orientation error of the wheeled robot [6]. 

The most common technique is a Kalman filter, which uses a 

state-space control technique and linearizes the error for small 

incremental motion. Appropriate state variables shall be 

defined for the mobile robot to deploy Kalman filtering 

effectively [14], [15]. If state variables are not observable, then 

observable parameters need to be mapped to state variables. 

For a mobile robot, the observable parameters are its position 

and velocity at any point on the trajectory. However, the 

controller’s observable parameter is the position of the 

encoder, i.e., odometric reading. Odry et al. developed an 

adaptive Kalman filtering algorithm for low-cost gyroscopes, 

accelerometers, and encoders to reduce noise covariance using 

fuzzy logic [15]. Cheng et al. employed the dual Kalman 

filtering technique for stereo vision and gyroscope to reduce 

the covariance of individual sensing equipment to achieve 

higher reliability in localization [16]. 

 

Existing literature emphasizes mostly computing more precise 

gains, even for a dynamically varying system. The objective of 

this experiment is to observe the impact of systemic errors on 

the localization and controllability of a mobile robot.  
  

2. METHODOLOGY  
 

For a differential drive-wheeled mobile robot, the odometric 

error is observed on a metric scale for linear displacement for 

its state variables. The state variables essentially represent the 

position and orientation of the robot about its geometric center 

in a two-dimensional Cartesian plane (x,y), and the robot’s 

orientation with a global reference frame is represented by Θ. 

Therefore, the observable state variables are (x,y,Θ). The 

differential drive-wheeled mobile robot is equipped with 

ultrasonic sensor HC-SR04 and DC motors with encoders. The 

sensor fusion of the odometric reading from the encoder and 

the range sensing of the ultrasonic sensor is anticipated to 

complement and attenuate the AMR’s systemic and non-

systemic errors. Thus, it enhances the system’s observability 

and provides a reliable feedback mechanism in the 

computational process. Then gain values are computed for the 

motor actuation to compensate for errors observed.  

 
Fig. 1 Assembled differential drive robot 

 
Fig. 2 Arena for odometric calibration 

Table 1 AMR Specifications 

MOTOR  

 Voltage 5 V 

Current 120 mA 

RPM (no load) 280 

Noise <65 dB 

Weight 50 x 4 =200 gm 

Dimensions 70x22x18 mm3 

 Servo Motor Tower Pro SG 90 

Wheel Diameter 66 mm 

Tire width 22 mm 

 US SENSOR HC SR04 
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The differential drive robot was fabricated with commercial 

off-the-shelf components, as shown in Fig. 1. The AMR is 

assembled with Quad Store 4WD (4-wheel drive) Smart Robot 

Car chassis of dimensions 230 × 120 × 5mm Acrylic sheets 

(Qty.2), Arduino UNO R3 micro-controller, Tower Pro 

MG90S servo motor, Duracell Ultra AA Alkaline batteries 

(Qty.4), L293D motor driver shield [17]. Motor specifications 

are tabulated in Table 1. The rear wheels of the four motors 

are coupled together to work as a differential drive motion 

robot. The arena is marked with a metric ruler scale, as seen in 

Fig. 2, and AMR is programmed to move at full speed (Max. 

PWM- Pulse Width Modulated Signal) for 0.5s with a 30s 

time-step to experiment with calculating errors in actuation. 

 

 
Fig. 3 Schematic diagram of experimental setup 

Algorithm  1 Sensor Fusion & Kalman Filtering 

 
As the angular directivity range of HC SR04 is ±25 deg, the 

sensor is mounted on a servo motor to increase its range and 

reduce the blind spot of the AMR. The servo is rotated from 

10 to 175 degrees while the ultrasonic measures the distance. 

Three objects are placed at 35cm∢60°, 25cm∢30°, and 

15cm∢120°. At the same time, the radar sensor is stationary, 

as shown in Fig. 3. The calibrated readings are used for 

simulations in Python as systemic errors, and the non-system 

errors are introduced in the system equations as Sudo-random 

numbers. These simulated results are then analyzed to verify 

the Kalman gain estimation’s effectiveness in identifying and 

attenuating the errors. Algorithm  1 shows the sequence of 

operations for sensor fusion and the Kalman filtering technique 

employed in this study [18]. 

 

3. RESULTS AND DISCUSSIONS 
 
Table 2 Experimental Readings 

Time  

(s) 

x  

(cm) 

xerror   

(cm) 

yerror 

(cm) 

Θerror 

(degrees) 

P K 

 Trial 1 

 30 20 1.4 0.1 1 1.5 0.884 

60 30 0.1 0.3 4 0.8 0.469 

90 40 -1.4 0.4 4 0.5 0.319 

120 50 -3 1.1 6 0.4 0.242 

150 60 -4.3 1.4 5 0.3 0.195 

180 70 -5.4 1.9 7 0.3 0.163 

210 80 -6.9 1.1 8 0.2 0.140 

240 90 -7.7 1.6 9 0.2 0.123 

270 100 -8.7 1.6 10 0.2 0.110 

300 110 -9.8 1.8 7 0.2 0.099 

 Trial 2 

 30 20 1.4 0.1 4 1.60 0.93 

60 30 -0.5 0.3 5 0.83 0.48 

90 40 -2.5 0.6 6 0.56 0.33 

120 50 -5.5 0.6 7 0.42 0.25 

150 60 -5.7 1.4 9 0.34 0.20 

180 70 -8.6 0.9 10 0.28 0.16 

210 80 -9.7 1.6 10 0.24 0.14 

240 90 -12.2 2.3 13 0.21 0.12 

270 100 -13.7 2.6 16 0.19 0.11 

300 110 -10.3 3.4 21 0.17 0.10 

 Trial 3 

 30 20 1.4 0 7 1.30 0.76 

60 30 1.4 0.5 6 0.74 0.43 

90 40 1.4 0.6 7 0.52 0.30 

120 50 1 0.9 6 0.40 0.23 

150 60 0.2 1.4 9 0.32 0.19 

180 70 -1.6 1.4 6 0.27 0.16 

210 80 -1.4 1.5 11 0.23 0.14 

240 90 -2.9 1.9 10 0.21 0.12 

270 100 -3.7 2.3 11 0.18 0.11 

300 110 -5.4 3.6 12 0.17 0.10 

 Trial 4 

 30 20 1.4 0 4 1.48 0.86 

60 30 0.4 0 6 0.80 0.46 

90 40 -0.9 0.2 5 0.54 0.32 

120 50 -0.6 0.2 7 0.41 0.24 

150 60 -2.6 0.3 8 0.33 0.19 

180 70 -3.4 0.9 12 0.28 0.16 

210 80 -4.4 1.6 7 0.24 0.14 

240 90 -6.3 1.8 9 0.21 0.12 

270 100 -7.4 2.3 8 0.19 0.11 

300 110 -8.9 3.6 7 0.17 0.10 
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Fig. 4 Estimation of error for a translatory motion 

The experiment for control error is calculated using four trials 

at about ten-time steps of the 30s, and sensor calibration is 

done using three objects at different distances and angles from 

each other. The experimental data are tabulated in Table 2. 

Table 2 contains the x,y,Θ along with Kalman gains K for four 

trials. Fig. 4(a), Fig. 4(b), and Fig. 4(c) show the error in the 

calibration with odometric data for four trials along a linear 

motion for three state variables, i.e., x,y, and Θ, respectively. 

A significant error is observed in the X-axis, i.e., in the 

direction of the heading, and the error in the direction of the 

heading is twice the error in the lateral direction (Y-axis). 

 

 
Fig. 5 Estimations for a translatory motion using Kalman filtering 

for odometric data 



441  

For over 6 minutes, quasi-static readings indicate the 

odometric error in the heading direction is nearly -10 cm, and 

for the Y-axis is nearly 4 cm. It is observed that the error in the 

direction of the heading increased steadily over time, and the 

other two state variables exhibited varying magnitudes of error 

within the range for the lateral axis (Y-axis) and orientation 

(Θ). Fig. 4 shows that the error in the heading direction is 

relatively higher, and the error in the Y-axis is negligible. The 

AMR employed in experiments is a differential drive-wheeled 

robot; it cannot have many deviations in the Y-axis without 

moving in the X-axis. The deviation in the lateral direction 

depends on the motion in the direction of the heading. 

 

Fig. 5 shows the error of the ultrasonic sensor in identifying 

the landmark position and angle. From this set of experiments, 

it is observed that the variance of state variable Θ is 5-20 

degrees, i.e., 5% maximum. The readings indicate that the 

error in calibrating the distance of the landmark/obstacle from 

a robot is between ±2 cm.  

 
Fig. 6 Estimation of error for a translatory motion 

The odometric error also induces the noisy sensor’s 

calibration. The odometric error of the system is calibrated as 

1-4 cm, and the ultrasonic sensor has an error range of ± 2 cm. 

Fig. 6, shows the trend of Kalman gains for four trials. The 

gain values converge to zero, indicating the decrease in error 

between estimation and the actual state. The orientation of 

AMR typically varies from 1-10°, but for trial two, the error 

was twice the error from other trials at long range. There is not 

much deviation of error on the lateral axis, i.e., the Y-axis, 

from other trials. For a differential drive mobile robot, the 

orientation only changes with the relative change in motion of 

wheels, and orientation (Θ) cannot be independent of heading 

and lateral directions. Thus, the error observed in trial 2 is the 

sensor’s, which appears as a systemic error. 

 

 
Fig. 7 Kalman gains for 4 iterations. 

 
Fig. 8 Kalman filtering for a straight-line trajectory for functional case 

 
Fig. 9Kalman filtering for a straight line trajectory with uneven 

actuation (partially functional case) 

The observed range of deviation values is coded as an error 

using Sudo-random number sequences. The mobile robot is 

simulated in Python for various cases and the results. Thus, 

one-dimensional Kalman filtering is applied for four cases. 



442  

Upon subjection to Kalman filtering, the AMR behavior is 

shown in Fig. 7. From Fig. 7, the error in odometry is linearly 

proportional with each iteration. The observed range of 

deviation values is coded as an error using Sudo-random 

number sequences. The mobile robot is simulated in Python 

for two cases and the results. The first case is for fully 

functional AMR, i.e., the linear motion of the AMR while all 

actuators are functional, while the second is partially 

functional AMR when one set of motors fails. The simulation 

results are illustrated in Fig. 8 and Fig. 9.  

 

This approach is linear, and the filtering technique attempts to 

approximate any errors induced in the execution process as 

linear co-efficient. The errors could be both systemic and non-

systemic. 
4. CONCLUSION 

An experimental study of the differential drive four-wheel 

mobile robot was carried out using the Kalman filtering 

technique. What distinguishes this study is the revelation that 

linear gains for the system are consistently computed by 

Kalman filtering, even when faced with unknown kinematic 

and geometric constraints. Remarkably, it was demonstrated 

that sensor data noise is treated as systemic, showcasing the 

technique's resilience against increasing odometric errors over 

time. 

 

Through experimentation with the HC SR04 ultrasonic sensor, 

a ±2 cm error range and an angular directivity blind spot at 

extended distances were uncovered. Interestingly, the heading 

direction was identified as the primary source of significant 

error in mobile robots, with errors in the other two state 

variables proving negligible in short and medium ranges. 

 

What truly sets this study apart is the discovery that Kalman 

filtering, lacking decision-making capabilities to identify 

system or sensor failures, computes gain values that can be 

physically non-realizable even for faulty components. This 

paradigm-shifting insight calls for a more in-depth 

investigation into understanding sensor noise. 

 

The next frontier of research delves into a revolutionary 

approach—simultaneously incorporating decision-making 

capabilities and Kalman filtering. This ambitious endeavor 

aims to redefine the landscape by not only understanding 

sensor behavior but also developing a phenomenological 

model. This model promises higher repeatability and 

precision, setting the stage for a new era in mobile robot 

applications, according to the researchers. 
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