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1. INTRODUCTION 

The assessment of hand muscle fitness is very important in 

many fields like sports science, rehabilitation, healthcare, and 

ergonomics. To measure muscle activity, we use a technique 

called Electromyography (EMG). EMG records the electrical 

signals produced by muscles when they contract. These 

signals contain important information about the strength and 

condition of the muscles. However, analyzing EMG signals 

directly in the time domain can be difficult because the signals 

are often very complex and noisy. To solve this problem, we 

use a mathematical method called Fast Fourier Transform 

(FFT). FFT changes the signals from the time domain to the 

frequency domain, making it easier to study and understand 

the muscle activity. After transforming the signals, we extract 

important features like Mean Frequency,  
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Peak Frequency, Spectral Energy, and Spectral Entropy. 

These features help us better understand the muscle condition. 

To classify muscle fitness levels, we use machine learning 

techniques such as K-means clustering and Convolutional 

Neural Networks (CNNs). K-means clustering helps us group 

the data into different categories based on their similarities, 

while CNNs are used to train a model that can automatically 

classify muscle fitness into Low, Medium, or High categories. 

This method provides a more accurate, faster, and efficient 

way to assess muscle strength compared to traditional 

methods. For this study, EMG data was collected from 45 

different people to ensure a wide range of muscle strength 

levels. This large and diverse dataset helps in building a more 

reliable and generalized model. Overall, this approach can 

greatly help in areas like sports training, injury recovery, and 
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health monitoring by providing an easy and scientific way to 

assess hand muscle fitness. 

A EMG signals have been widely recognized for their 

significant utility in understanding muscle function, strength, 

and fatigue. These electrical signals, generated by muscle 

contractions, offer valuable insights into muscle activity and 

provide a direct measure of muscle behavior. Over time, 

researchers have explored various methods of analyzing 

EMG signals [1], with a growing emphasis on the frequency 

domain, as this approach offers a more comprehensive 

understanding of muscle performance [2]. Specifically, the 

application of FFT has proven to be highly effective in 

converting time-domain EMG signals into frequency-domain 

data [3]. This transformation simplifies the extraction of 

meaningful features and enables a clearer analysis of muscle 

behavior, making it easier to identify patterns and 

characteristics related to muscle function [4]. 

Several studies have focused on key frequency-domain 

features, such as Mean Frequency, Peak Frequency, Spectral 

Energy, and Spectral Entropy, to characterize the muscle’s 

state [5],[6]. These features are particularly useful for 

detecting subtle changes in muscle strength, fatigue, and 

overall muscle health over time. This unsupervised learning 

approach can help uncover hidden patterns in the EMG data, 

which can be used for further analysis or to inform future 

research in muscle classification. 

In recent years, CNNs have gained considerable attention for 

EMG signal analysis [7],[8],[9]. CNNs are particularly 

powerful due to their ability to automatically learn relevant 

features from raw data, eliminating the need for manual 

feature selection. Furthermore, CNNs excel at handling the 

natural variability present in EMG signals collected from 

different individuals, making them robust for real-world 

applications. Their ability to learn hierarchical patterns and 

features from complex data has made CNNs one of the most 

promising techniques for EMG analysis [10]. Despite the 

promising results of CNNs in EMG signal analysis, there is 

still a need for further research that combines CNNs with 

frequency-domain features and clustering techniques. Such a 

combination could enhance the classification accuracy of 

muscle fitness levels, offering more reliable muscle strength 

assessments. Integrating these advanced techniques could 

lead to the development of more efficient and faster 

assessment methods [11], which could be valuable for 

professionals in sports science, rehabilitation, healthcare, and 

related fields [12],[13],[14]. Additionally, more research is 

required to build larger and more diverse datasets to ensure 

that the models developed are not only accurate but also 

reliable and applicable to real-world scenarios [15],[16]. This 

would help in creating robust systems for muscle fitness 

evaluation, capable of providing real-time and actionable 

insights for healthcare practitioners and fitness experts 

[17],[18]. In addition to the CNN model, this study also 

explored the use of a Multi-Layer Perceptron (MLP) model 

for muscle strength classification. The MLP model, although 

simpler in architecture [21],[22] showed competitive 

performance with a validation accuracy of 88.46%. This 

demonstrates its potential as a lightweight alternative for real- 

time or resource-constrained environments, further 

supporting the robustness and flexibility of the proposed 

framework for EMG-based muscle fitness assessment. 

II. METHODOLOGY 

In this study, we utilized the Muscle BioAmp Patchy sensor 

to record electrical signals from hand muscles. The raw data 

underwent preprocessing, including cleaning and filtering, to 

eliminate noise [19],[20]. Fast Fourier Transform (FFT) was 

then applied to convert the signals from the time domain to 

the frequency domain, enabling the extraction of key features 

such shows Muscle BioAmp Patchy sensor. 

EMG signals were acquired from hand muscles using the 

Muscle BioAmp Patchy sensor, a compact and reliable 

wearable device designed for recording muscle activity. The 

sensor was placed on hand muscles to record electrical signals 

generated during muscle contractions. The collected data was 

stored in CSV format for further preprocessing and analysis. 

 Figure 1. Muscle BioAmp Patchy Sensor 

A. Data Collection 

The Muscle BioAmp Patchy sensor is a small, wearable 

sensor designed for recording muscle activity 

(Electromyography or EMG). It is a compact, patch-like 

device that connects directly to gel electrodes, eliminating the 

need for electrode cables. This makes it easy to integrate into 

various Human-Computer Interface (HCI) projects. Figure 1. 

A. Preprocessing and Feature Extraction 

The raw EMG signals collected using the BioAmp Patchy 

sensor often contain noise due to body movement, 

environmental factors, and electrical interference. To ensure 

accurate analysis and classification, these signals were pre- 

processed using a structured Python-based pipeline. The 

preprocessing steps applied are described below: 

Signal cleaning (removing artifacts and standardizing the 

format) 

Bandpass filtering (200-250 Hz) 

The pre-processed EMG signals were then transformed into 

the frequency domain using FFT. Four frequency-domain 

features were extracted: 
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(1) Mean Frequency (MNF): 

MNF is the average frequency, which is calculated as the sum 

of the product of the EMG power spectrum and the frequency 

divided by the total sum of the spectrum intensity shown in 

Eq. (1). 

 𝑀𝑁𝐹 = ∑
𝑓𝑖 𝑃𝑓𝑖)

𝑃(𝑓𝑖)

𝑛

𝑖=0
                                                 (1) 

as Mean Frequency (MNF), Peak Frequency (PKF), Spectral 

Energy (SE), and Spectral Entropy (SpEn). Although the 

labeled data is not used, K-means clustering was employed to 

group the data into clusters and infer strength levels based on 

the extracted features. Lastly, a Convolutional Neural 

Network (CNN) and Multi-Layer Perceptron (MLP) was used 

to classify muscle strength levels, with the model trained 

(2) Peak Frequency (PKF): 

Peak Frequency (PKF) represents the frequency component 

with the highest magnitude or power within the EMG signal's 

frequency spectrum. It indicates the dominant frequency 

present in the muscle activity. Shown in Eq. (2) 

𝑃𝐾𝐹 = argmax 𝑃(𝑓𝑖)                                               (2) 

(3) Spectral Energy (SE): 

Spectral Energy (SE) represents the total power of the EMG 

signal across the entire frequency spectrum. It essentially 

quantifies the overall activity level of the muscle in the 

frequency domain. The Spectral Energy is calculated as the 

sum of the squared magnitudes of the frequency components 

obtained from the Fast Fourier Transform (FFT). Shown in 

Eq. (3) 

 

𝑆𝐸 = ∑𝑛𝑃(𝑓𝑖)                                                         (3) 

(4) Spectral Entropy (SEn): 

Spectral Entropy quantifies the irregularity or randomness of 

the power distribution across the frequency spectrum of the 

EMG signal. This normalized version, as shown below, 

provides a value between 0 and 1, making it easier to compare 

across different signals. A higher value indicates a more 

uniform (less predictable) power distribution, while a lower 

value suggests that the power is concentrated in a few 

dominant frequencies (more predictable). Shown in Eq. (4) 

𝑆𝐸𝑛 = ∑
𝑓𝑖 𝑃𝑓𝑖)

𝑙𝑜𝑔2
𝑃(𝑓𝑖)

𝑆𝐸

𝑛

𝑖=1

                                     (4) 

Where (fi) is the frequency component, (P(fi)) is thepower 

spectral density, and (n) is the number of frequency bins. K-

means clustering 

K-means clustering was applied to the extracted features 

(MNF, PKF, SE, SEn) to group the data into clusters. The 

algorithm aims to partition the data into k clusters, where each 

data point belongs to the cluster with the nearest mean 

(centroid). In this study, k was set to 3, corresponding to the 

three levels of muscle strength (Low, Medium, High). The K- 

means algorithm was implemented using Python. 

Figure 2. Frequency-Domain Feature Visualization for Clustered 

Muscle Strength. 

 

III. RESULTS AND DISCUSSIONS 

A. Result Of Feature Extraction Using K-Means 

Clustering Figure 2. illustrates the pairwise relationships and 

individual distributions of the extracted frequency-domain 

features – Mean Frequency (Mean Frequency), Peak 

Frequency (Peak Frequency), Spectral Energy (Spectral 

Energy), and Spectral Entropy (Spectral Entropy) – for 

different muscle strength levels as inferred by K-means 

clustering (Low, Medium, High). The diagonal plots display 

the kernel density estimates (KDEs) for each feature within 

each inferred strength level. The off-diagonal plots show 

scatter plots of each feature pair, with data points coloured 

according to the inferred strength level. Observations: 

-Mean Frequency: The KDE plot suggests a trend towards 

slightly higher Mean Frequency values for the High inferred 

strength level compared to the Low and Medium levels. The 

scatter plots show some separation between the High level 

and the other two when paired with Peak Frequency and 

Spectral Entropy. 

-Peak Frequency: The distributions of Peak Frequency across 

the inferred strength levels show considerable overlap in the 

KDE plot. The scatter plots indicate a wider range of Peak 

Frequency values for the High inferred strength level. 

- Spectral Energy: The KDE plots and scatter plots clearly 

demonstrate a separation in Spectral Energy across the 
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inferred strength levels. Higher inferred strength levels 

correspond to substantially higher Spectral Energy values. 

Figure 3. Classification Report of CNN Model 

-Spectral Entropy: The KDE plots for Spectral Entropy show 

a high degree of overlap across all inferred strength levels, 

suggesting limited discriminatory power of this feature alone 

for the clustered groups. 

Figure 4. CNN-Based Muscle Strength Classification: Confusion Matrix 

 

B. Result of CNN Model 

Figure 3. illustrates classification report of CNN Model. The 

CNN model demonstrated strong and effective classification 

of muscle strength levels (High, Low, Medium). It achieved 

excellent accuracy in identifying 'Low' strength and perfectly 

predicted the 'Medium' strength while successfully capturing 

all 'High' strength instances with high precision. The overall 

100 % accuracy, supported by favorable average performance 

metrics, confirms the model's robust and balanced ability to 

distinguish between different muscle strength levels, even 

with varying amounts of test data for each. 

The CNN model achieved 100% accuracy on the validation 

set. The detailed classification report further confirms its 

outstanding performance across all three classes: High, Low, 

and Medium. 

For each class, the model recorded a perfect score of 1.00 for 

all key evaluation metrics: 

• Precision: Indicates that every positive prediction made by 

the model was correct. 

• Recall: Shows that the model successfully identified all 

actual positive instances of each class. 

• F1-Score: The harmonic mean of precision and recall, a 

perfect score of 1.00 demonstrates the model's excellent 

balance between these two metrics. 

The macro average and weighted average for all metrics are 

also 1.00, indicating the model's robustness and consistent 

performance across all classes, even with a slightly 

imbalanced dataset (as suggested by the 'support' column 

values of 6, 2, and 5 for High, Low, and medium classes 

respectively).  

C.   Confusion Matrix 

The confusion matrix (Figure 3) illustrates that the proposed 

CNN model achieved perfect classification performance 

across all three muscle strength categories (Low, Medium, 

and High). Each sample was correctly classified into its 

respective class, without any misclassifications. This 

demonstrates the model’s strong ability to discriminate 

between different levels of hand muscle fitness based on 

extracted frequency-domain EMG features. The results 

indicate a 100 % classification accuracy on the validation 

dataset, showcasing the reliability and effectiveness of the 

developed method. 

D. Result of MLP Model 

Figure 4. illustrates classification report of MLP Model. 

Using the extracted frequency-domain EMG features, a MLP 

model was trained to categorize hand muscle strength into 

three groups: Low, Medium, and High. The model showed 

good generalization performance after 200 epochs of training, 

with training and validation accuracy of 88.46% and 88.46%, 

respectively. Additionally details regarding how well the 

model works is found in the classification report. The 

precision of the model was 1.00 for the High class, 0.89 for 

the Low class, and 0.78 for the medium class. The balanced 

detection across all classes was indicated by the recall values 

of 0.89 (High), 0.89 (Low), and 0.88 (Medium). With a 

classification accuracy of 88% overall, the corresponding F1-

scores were 0.94, 0.89, and 0.82, respectively. Precision, 

recall, and F1-score all had weighted and macro averages of 

roughly 0.89, showing the model's dependability and 

consistency across unequal class distributions. 

IV. CHALLENGES 

While our method performed well in classifying hand muscle 

strength, we faced some challenges during the project. These 

were mostly due to the complex nature of EMG signals, the 

absence of labeled data, and the need to build a system that 

works accurately for different individuals. Understanding 

these challenges is important for improving the approach and 

helping future research in this area. 
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Fig. 5. Classification Report of MLP Model 

-Signal Noise and Interference: EMG signals can easily pick 

up unwanted electrical noise from the environment, body 

movements, or nearby devices. This makes it harder to detect 

the actual muscle activity accurately. 

-Non-Stationary Nature of EMG: EMG signals vary over time 

due to muscle fatigue, contraction intensity, and electrode 

placement, requiring robust preprocessing techniques. 

-Individual Variability: Differences in muscle physiology, 

skin impedance, and electrode positioning between 

individuals lead to variations in signal characteristics. 

-Feature Selection and Optimization: Identifying the most 

relevant frequency-domain features that effectively 

capture muscle strength while avoiding redundant data is a 

complex task. 

-Model Generalization: Ensuring that the trained CNN and 

MLP model performs well on new, unseen data from different 

individuals remains a challenge. 

-Real-Time Implementation: Developing a system capable of 

processing EMG signals and classifying muscle strength in 

real-time requires optimized algorithms and efficient 

hardware integration. 

V. FUTUTRE SCOPE 

The current study is the first step toward creating an 

intelligent, automated system for evaluating muscle fitness, 

but there are many ways to make it better and add to it. One 

important area for future research is making a portable, real- 

time EMG-based monitoring platform that can give feedback 

right away during daily activities, athletic training, or 

rehabilitation sessions. This could be done by putting the 

method into wearable devices, which would let muscle 

strength be monitored all the time and without any pain 

outside of a lab. Using multimodal sensor fusion, like 

combining EMG data with motion capture systems, inertial 

measurement units (IMUs), force plates, or physiological 

sensors (like heart rate monitors), could give a complete 

picture of how well the neuromuscular system is working. 

This kind of integration would let the system look at both 

muscle activity and movement patterns and mechanical 

output, leading to richer insights for sports science, 

physiotherapy, and ergonomics. 

Additionally, expanding the dataset to include a larger and 

more diverse participant pool, covering different age groups, 

genders, body compositions, and health conditions, would 

help to improve the robustness and generalizability of the 

proposed model. Advanced deep learning techniques, 

including hybrid architectures that combine CNNs with 

recurrent networks like LSTMs or Transformers, could be 

explored to better capture temporal dependencies and subtle 

variations in EMG signals. Furthermore, optimization of 

computational efficiency and energy consumption will be 

essential for deploying the system on edge devices or 

embedded platforms, enabling use in wearable technology. 

From a clinical perspective, the methodology could be 

adapted for the diagnosis and progression monitoring of 

neuromuscular disorders such as muscular dystrophy, ALS, 

or peripheral neuropathy. In rehabilitation, it could facilitate 

patient-specific recovery tracking and provide therapists with 

objective metrics to adjust treatment plans in real time. In the 

domain of sports science, the system could assist coaches and 

athletes in designing personalized training programs by 

detecting muscle fatigue early and preventing overuse 

injuries. Ultimately, by combining real-time processing, 

multimodal data integration, and personalized analytics, the 

proposed system could evolve into a powerful tool that 

bridges healthcare, sports, and human–computer interaction, 

making muscle fitness monitoring accessible, efficient, and 

highly accurate across a wide range of applications. 

 VI. CONCLUSION 

This paper has demonstrated the effectiveness of combining 

advanced signal processing with deep learning for automated 

hand muscle strength classification. By using the BioAmp 

Patchy sensor, EMG signals were collected and transformed 

into the frequency domain through Fast Fourier Transform 

(FFT), enabling the extraction of key frequency- domain 

features such as Mean Frequency, Peak Frequency, Spectral 

Energy, and Spectral Entropy. In the absence of labeled data, 

K-means clustering was employed to identify natural 

groupings corresponding to low, medium, and high strength 

levels. These cluster assignments were then used to train a 

Convolutional Neural Network (CNN), which achieved an 

impressive 100 % classification accuracy. This hybrid 

approach, integrating unsupervised and supervised learning, 

showcases the potential of leveraging machine learning to 

create more objective, consistent, and efficient muscle fitness 

evaluation systems compared to traditional manual 

assessments. The findings of this study show how well deep 

learning models classify hand muscle fitness based on 

electromyographic (EMG) signals. A comparison between a 

convolutional neural network (CNN) and a multilayer 

perceptron (MLP) was carried out. 

According to our research, the CNN architecture is 

remarkably well-suited to this time-series classification task. 

On the validation dataset, the CNN model obtained a perfect 

100% accuracy, precision, recall, and f1-score. The CNN's 

capacity to automatically extract and learn intricate, 

hierarchical features from the raw EMG signals—features 

that are essential for precise classification—is responsible for 
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this exceptional performance. 

The accuracy of the MLP model was 88.46%, indicating that 

its fully connected layers were less successful in identifying 

the complex patterns in the EMG data. This is a notable 

improvement over the MLP model. 

In conclusion, the CNN model that was created offers a 

reliable and extremely accurate way to automatically track 

and categorize hand muscle fitness. The CNN's remarkable 

performance demonstrates its potential for practical uses in 

fields like sports science, rehabilitation, and clinical 

diagnostics where accurate and trustworthy muscle health 

classification is crucial. 
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