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ABSTRACT

In fields like sports science, rehabilitation, and ergonomics, hand muscle fitness is a crucial
measure of general physical health. One popular non-invasive technique for capturing muscle
activity during contraction is electromyography, or EMG. But it is hard to look at raw EMG
signals because they have noise and their signals change. To solve this problem, advanced
signal processing and machine learning methods are used to find features and group muscle
strength. This paper presents a method for classifying hand muscle strength (Low, Medium,
High) from Electromyography (EMG) signals using Convolutional Neural Networks (CNNs)
and Multi- Layer Perceptron Model (MLP). EMG signals acquired using the Muscle BioAmp
Patchy sensor, were transformed into frequency domain using Fast Fourier Transform (FFT).
Four key frequency-domain features Mean Frequency, Peak Frequency, Spectral Frequency
and Spectral Entropy were extracted. K- means clustering was initially applied to these
features to identify potential groupings. Two supervised learning models were trained using
the clustered data: a Convolutional Neural Network (CNN) and a Multi-Layer Perceptron
(MLP). The clustered data was then used as input to a CNN model. The CNN effectively
learned to classify muscle strength, achieving an overall accuracy of 100%. This approach
demonstrates the potential of combining FFT-based feature extraction, K-means clustering
and CNNs for accurate and automated muscle fitness assessment. The MLP model, while
simpler in architecture, also performed well with an accuracy of 88.46%, making it suitable
for applications with limited computational resources. This dual-model approach
demonstrates the potential of combining FFT-based feature extraction, unsupervised
clustering, and deep learning for accurate, efficient, and automated assessment of muscle
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strength.

1. INTRODUCTION

The assessment of hand muscle fitness is very important in
many fields like sports science, rehabilitation, healthcare, and
ergonomics. To measure muscle activity, we use a technique
called Electromyography (EMG). EMG records the electrical
signals produced by muscles when they contract. These
signals contain important information about the strength and
condition of the muscles. However, analyzing EMG signals
directly in the time domain can be difficult because the signals
are often very complex and noisy. To solve this problem, we
use a mathematical method called Fast Fourier Transform
(FFT). FFT changes the signals from the time domain to the
frequency domain, making it easier to study and understand
the muscle activity. After transforming the signals, we extract
important features like Mean Frequency,

© 2025 The Author(s). Published by ISVE, Ranchi, India

Peak Frequency, Spectral Energy, and Spectral Entropy.
These features help us better understand the muscle condition.

To classify muscle fitness levels, we use machine learning
techniques such as K-means clustering and Convolutional
Neural Networks (CNNs). K-means clustering helps us group
the data into different categories based on their similarities,
while CNNs are used to train a model that can automatically
classify muscle fitness into Low, Medium, or High categories.
This method provides a more accurate, faster, and efficient
way to assess muscle strength compared to traditional
methods. For this study, EMG data was collected from 45
different people to ensure a wide range of muscle strength
levels. This large and diverse dataset helps in building a more
reliable and generalized model. Overall, this approach can
greatly help in areas like sports training, injury recovery, and
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health monitoring by providing an easy and scientific way to
assess hand muscle fitness.

A EMG signals have been widely recognized for their
significant utility in understanding muscle function, strength,
and fatigue. These electrical signals, generated by muscle
contractions, offer valuable insights into muscle activity and
provide a direct measure of muscle behavior. Over time,
researchers have explored various methods of analyzing
EMG signals [1], with a growing emphasis on the frequency
domain, as this approach offers a more comprehensive
understanding of muscle performance [2]. Specifically, the
application of FFT has proven to be highly effective in
converting time-domain EMG signals into frequency-domain
data [3]. This transformation simplifies the extraction of
meaningful features and enables a clearer analysis of muscle
behavior, making it easier to identify patterns and
characteristics related to muscle function [4].

Several studies have focused on key frequency-domain
features, such as Mean Frequency, Peak Frequency, Spectral
Energy, and Spectral Entropy, to characterize the muscle’s
state [5],[6]. These features are particularly useful for
detecting subtle changes in muscle strength, fatigue, and
overall muscle health over time. This unsupervised learning
approach can help uncover hidden patterns in the EMG data,
which can be used for further analysis or to inform future
research in muscle classification.

In recent years, CNNs have gained considerable attention for
EMG signal analysis [7],[8],[]9]. CNNs are particularly
powerful due to their ability to automatically learn relevant
features from raw data, eliminating the need for manual
feature selection. Furthermore, CNNs excel at handling the
natural variability present in EMG signals collected from
different individuals, making them robust for real-world
applications. Their ability to learn hierarchical patterns and
features from complex data has made CNNs one of the most
promising techniques for EMG analysis [10]. Despite the
promising results of CNNs in EMG signal analysis, there is
still a need for further research that combines CNNs with
frequency-domain features and clustering techniques. Such a
combination could enhance the classification accuracy of
muscle fitness levels, offering more reliable muscle strength
assessments. Integrating these advanced techniques could
lead to the development of more efficient and faster
assessment methods [11], which could be valuable for
professionals in sports science, rehabilitation, healthcare, and
related fields [12],[13],[14]. Additionally, more research is
required to build larger and more diverse datasets to ensure
that the models developed are not only accurate but also
reliable and applicable to real-world scenarios [15],[16]. This
would help in creating robust systems for muscle fitness
evaluation, capable of providing real-time and actionable
insights for healthcare practitioners and fitness experts
[17],[18]. In addition to the CNN model, this study also
explored the use of a Multi-Layer Perceptron (MLP) model
for muscle strength classification. The MLP model, although
simpler in architecture [21],[22] showed competitive
performance with a validation accuracy of 88.46%. This
demonstrates its potential as a lightweight alternative for real-
time or resource-constrained environments, further
supporting the robustness and flexibility of the proposed
framework for EMG-based muscle fitness assessment.
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II. METHODOLOGY

In this study, we utilized the Muscle BioAmp Patchy sensor
to record electrical signals from hand muscles. The raw data
underwent preprocessing, including cleaning and filtering, to
eliminate noise [19],[20]. Fast Fourier Transform (FFT) was
then applied to convert the signals from the time domain to
the frequency domain, enabling the extraction of key features
such shows Muscle BioAmp Patchy sensor.

EMG signals were acquired from hand muscles using the
Muscle BioAmp Patchy sensor, a compact and reliable
wearable device designed for recording muscle activity. The
sensor was placed on hand muscles to record electrical signals
generated during muscle contractions. The collected data was
stored in CSV format for further preprocessing and analysis.

Figure 1. Muscle BioAmp Patchy Sensor
A. Data Collection

The Muscle BioAmp Patchy sensor is a small, wearable
sensor  designed for recording muscle activity
(Electromyography or EMG). It is a compact, patch-like
device that connects directly to gel electrodes, eliminating the
need for electrode cables. This makes it easy to integrate into
various Human-Computer Interface (HCI) projects. Figure 1.

A. Preprocessing and Feature Extraction

The raw EMG signals collected using the BioAmp Patchy
sensor often contain noise due to body movement,
environmental factors, and electrical interference. To ensure
accurate analysis and classification, these signals were pre-
processed using a structured Python-based pipeline. The
preprocessing steps applied are described below:

Signal cleaning (removing artifacts and standardizing the
format)

Bandpass filtering (200-250 Hz)

The pre-processed EMG signals were then transformed into
the frequency domain using FFT. Four frequency-domain
features were extracted:



(1) Mean Frequency (MNF):

MNEF is the average frequency, which is calculated as the sum
of the product of the EMG power spectrum and the frequency
divided by the total sum of the spectrum intensity shown in

Eq. (1).

n .
MNF = Z UL D) (1
o PUD

as Mean Frequency (MNF), Peak Frequency (PKF), Spectral
Energy (SE), and Spectral Entropy (SpEn). Although the
labeled data is not used, K-means clustering was employed to
group the data into clusters and infer strength levels based on
the extracted features. Lastly, a Convolutional Neural
Network (CNN) and Multi-Layer Perceptron (MLP) was used
to classify muscle strength levels, with the model trained

(2) Peak Frequency (PKF):

Peak Frequency (PKF) represents the frequency component
with the highest magnitude or power within the EMG signal's
frequency spectrum. It indicates the dominant frequency
present in the muscle activity. Shown in Eq. (2)

PKF = argmax P(f) )
(3) Spectral Energy (SE):

Spectral Energy (SE) represents the total power of the EMG
signal across the entire frequency spectrum. It essentially
quantifies the overall activity level of the muscle in the
frequency domain. The Spectral Energy is calculated as the
sum of the squared magnitudes of the frequency components
obtained from the Fast Fourier Transform (FFT). Shown in

Eq. 3)

SE =3nP(f1) 3)
(4) Spectral Entropy (SEn):

Spectral Entropy quantifies the irregularity or randomness of
the power distribution across the frequency spectrum of the
EMG signal. This normalized version, as shown below,
provides a value between 0 and 1, making it easier to compare
across different signals. A higher value indicates a more
uniform (less predictable) power distribution, while a lower
value suggests that the power is concentrated in a few
dominant frequencies (more predictable). Shown in Eq. (4)

n
fiPfD)
Skn = E o PUD 4)
i=1 97SE

Where (fi) is the frequency component, (P(fi)) is thepower
spectral density, and (n) is the number of frequency bins. K-
means clustering
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K-means clustering was applied to the extracted features
(MNF, PKF, SE, SEn) to group the data into clusters. The
algorithm aims to partition the data into k clusters, where each
data point belongs to the cluster with the nearest mean
(centroid). In this study, k was set to 3, corresponding to the
three levels of muscle strength (Low, Medium, High). The K-
means algorithm was implemented using Python.
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Figure 2. Frequency-Domain Feature Visualization for Clustered
Muscle Strength.

III. RESULTS AND DISCUSSIONS

A. Result Of Feature Extraction Using K-Means
Clustering Figure 2. illustrates the pairwise relationships and
individual distributions of the extracted frequency-domain
features — Mean Frequency (Mean Frequency), Peak
Frequency (Peak Frequency), Spectral Energy (Spectral
Energy), and Spectral Entropy (Spectral Entropy) — for
different muscle strength levels as inferred by K-means
clustering (Low, Medium, High). The diagonal plots display
the kernel density estimates (KDEs) for each feature within
each inferred strength level. The off-diagonal plots show
scatter plots of each feature pair, with data points coloured
according to the inferred strength level. Observations:

-Mean Frequency: The KDE plot suggests a trend towards
slightly higher Mean Frequency values for the High inferred
strength level compared to the Low and Medium levels. The
scatter plots show some separation between the High level
and the other two when paired with Peak Frequency and
Spectral Entropy.

-Peak Frequency: The distributions of Peak Frequency across
the inferred strength levels show considerable overlap in the
KDE plot. The scatter plots indicate a wider range of Peak
Frequency values for the High inferred strength level.

- Spectral Energy: The KDE plots and scatter plots clearly
demonstrate a separation in Spectral Energy across the



inferred strength levels. Higher inferred strength levels
correspond to substantially higher Spectral Energy values.
6
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Figure 3. Classification Report of CNN Model

-Spectral Entropy: The KDE plots for Spectral Entropy show
a high degree of overlap across all inferred strength levels,
suggesting limited discriminatory power of this feature alone
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Figure 4. CNN-Based Muscle Strength Classification: Confusion Matrix

B. Result of CNN Model

Figure 3. illustrates classification report of CNN Model. The
CNN model demonstrated strong and effective classification
of muscle strength levels (High, Low, Medium). It achieved
excellent accuracy in identifying 'Low' strength and perfectly
predicted the 'Medium' strength while successfully capturing
all 'High' strength instances with high precision. The overall
100 % accuracy, supported by favorable average performance
metrics, confirms the model's robust and balanced ability to
distinguish between different muscle strength levels, even
with varying amounts of test data for each.

The CNN model achieved 100% accuracy on the validation
set. The detailed classification report further confirms its
outstanding performance across all three classes: High, Low,
and Medium.

For each class, the model recorded a perfect score of 1.00 for
all key evaluation metrics:
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* Precision: Indicates that every positive prediction made by
the model was correct.

* Recall: Shows that the model successfully identified all
actual positive instances of each class.

* F1-Score: The harmonic mean of precision and recall, a
perfect score of 1.00 demonstrates the model's excellent
balance between these two metrics.

The macro average and weighted average for all metrics are
also 1.00, indicating the model's robustness and consistent
performance across all classes, even with a slightly
imbalanced dataset (as suggested by the 'support' column
values of 6, 2, and 5 for High, Low, and medium classes
respectively).

C. Confusion Matrix

The confusion matrix (Figure 3) illustrates that the proposed
CNN model achieved perfect classification performance
across all three muscle strength categories (Low, Medium,
and High). Each sample was correctly classified into its
respective class, without any misclassifications. This
demonstrates the model’s strong ability to discriminate
between different levels of hand muscle fitness based on
extracted frequency-domain EMG features. The results
indicate a 100 % classification accuracy on the validation
dataset, showcasing the reliability and effectiveness of the
developed method.

D. Result of MLP Model

Figure 4. illustrates classification report of MLP Model.
Using the extracted frequency-domain EMG features, a MLP
model was trained to categorize hand muscle strength into
three groups: Low, Medium, and High. The model showed
good generalization performance after 200 epochs of training,
with training and validation accuracy of 88.46% and 88.46%,
respectively. Additionally details regarding how well the
model works is found in the classification report. The
precision of the model was 1.00 for the High class, 0.89 for
the Low class, and 0.78 for the medium class. The balanced
detection across all classes was indicated by the recall values
of 0.89 (High), 0.89 (Low), and 0.88 (Medium). With a
classification accuracy of 88% overall, the corresponding F1-
scores were 0.94, 0.89, and 0.82, respectively. Precision,
recall, and F1-score all had weighted and macro averages of
roughly 0.89, showing the model's dependability and
consistency across unequal class distributions.

IV. CHALLENGES

While our method performed well in classifying hand muscle
strength, we faced some challenges during the project. These
were mostly due to the complex nature of EMG signals, the
absence of labeled data, and the need to build a system that
works accurately for different individuals. Understanding
these challenges is important for improving the approach and
helping future research in this area.
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Fig. 5. Classification Report of MLP Model

-Signal Noise and Interference: EMG signals can easily pick
up unwanted electrical noise from the environment, body
movements, or nearby devices. This makes it harder to detect
the actual muscle activity accurately.

-Non-Stationary Nature of EMG: EMG signals vary over time
due to muscle fatigue, contraction intensity, and electrode
placement, requiring robust preprocessing techniques.

-Individual Variability: Differences in muscle physiology,
skin impedance, and electrode positioning between
individuals lead to variations in signal characteristics.

-Feature Selection and Optimization: Identifying the most
relevant frequency-domain features that effectively

capture muscle strength while avoiding redundant data is a
complex task.

-Model Generalization: Ensuring that the trained CNN and
MLP model performs well on new, unseen data from different
individuals remains a challenge.

-Real-Time Implementation: Developing a system capable of
processing EMG signals and classifying muscle strength in
real-time requires optimized algorithms and efficient
hardware integration.

V. FUTUTRE SCOPE

The current study is the first step toward creating an
intelligent, automated system for evaluating muscle fitness,
but there are many ways to make it better and add to it. One
important area for future research is making a portable, real-
time EMG-based monitoring platform that can give feedback
right away during daily activities, athletic training, or
rehabilitation sessions. This could be done by putting the
method into wearable devices, which would let muscle
strength be monitored all the time and without any pain
outside of a lab. Using multimodal sensor fusion, like
combining EMG data with motion capture systems, inertial
measurement units (IMUs), force plates, or physiological
sensors (like heart rate monitors), could give a complete
picture of how well the neuromuscular system is working.
This kind of integration would let the system look at both
muscle activity and movement patterns and mechanical
output, leading to richer insights for sports science,
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physiotherapy, and ergonomics.

Additionally, expanding the dataset to include a larger and
more diverse participant pool, covering different age groups,
genders, body compositions, and health conditions, would
help to improve the robustness and generalizability of the
proposed model. Advanced deep learning techniques,
including hybrid architectures that combine CNNs with
recurrent networks like LSTMs or Transformers, could be
explored to better capture temporal dependencies and subtle
variations in EMG signals. Furthermore, optimization of
computational efficiency and energy consumption will be
essential for deploying the system on edge devices or
embedded platforms, enabling use in wearable technology.

From a clinical perspective, the methodology could be
adapted for the diagnosis and progression monitoring of
neuromuscular disorders such as muscular dystrophy, ALS,
or peripheral neuropathy. In rehabilitation, it could facilitate
patient-specific recovery tracking and provide therapists with
objective metrics to adjust treatment plans in real time. In the
domain of sports science, the system could assist coaches and
athletes in designing personalized training programs by
detecting muscle fatigue early and preventing overuse
injuries. Ultimately, by combining real-time processing,
multimodal data integration, and personalized analytics, the
proposed system could evolve into a powerful tool that
bridges healthcare, sports, and human—computer interaction,
making muscle fitness monitoring accessible, efficient, and
highly accurate across a wide range of applications.

VI. CONCLUSION

This paper has demonstrated the effectiveness of combining
advanced signal processing with deep learning for automated
hand muscle strength classification. By using the BioAmp
Patchy sensor, EMG signals were collected and transformed
into the frequency domain through Fast Fourier Transform
(FFT), enabling the extraction of key frequency- domain
features such as Mean Frequency, Peak Frequency, Spectral
Energy, and Spectral Entropy. In the absence of labeled data,
K-means clustering was employed to identify natural
groupings corresponding to low, medium, and high strength
levels. These cluster assignments were then used to train a
Convolutional Neural Network (CNN), which achieved an
impressive 100 % classification accuracy. This hybrid
approach, integrating unsupervised and supervised learning,
showcases the potential of leveraging machine learning to
create more objective, consistent, and efficient muscle fitness
evaluation systems compared to traditional manual
assessments. The findings of this study show how well deep
learning models classify hand muscle fitness based on
electromyographic (EMG) signals. A comparison between a
convolutional neural network (CNN) and a multilayer
perceptron (MLP) was carried out.

According to our research, the CNN architecture is
remarkably well-suited to this time-series classification task.
On the validation dataset, the CNN model obtained a perfect
100% accuracy, precision, recall, and fl-score. The CNN's
capacity to automatically extract and learn intricate,
hierarchical features from the raw EMG signals—features
that are essential for precise classification—is responsible for



this exceptional performance.

The accuracy of the MLP model was 88.46%, indicating that
its fully connected layers were less successful in identifying
the complex patterns in the EMG data. This is a notable
improvement over the MLP model.

In conclusion, the CNN model that was created offers a
reliable and extremely accurate way to automatically track
and categorize hand muscle fitness. The CNN's remarkable
performance demonstrates its potential for practical uses in
fields like sports science, rehabilitation, and clinical
diagnostics where accurate and trustworthy muscle health
classification is crucial.
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