ISSN: 2584-0495

NIMIT

International Journal of International Journal of Microsystems and loT

Microsystems and IoT

Vol. 3, Issue 10, pp. 1773-1779

ISSN: (Online) Journal homepage: https://www.ijmit.org

Analysis of Convolutional Neural Network-Based Crack
Detection: From Traditional Approaches to Advanced Models

Ishika Deepak Sapkal, Pooja Gundewar

Cite as: Sapkal, I. D., & Gundewar, P. (2025). Analysis of Convolutional Neural Network-Based
Crack Detection: From Traditional Approaches to Advanced Models. International Journal of
Microsystems and [oT, 3(10), 1773—1779. https://doi.org/10.5281/zenodo.18244420

8 © 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

@ Published online: 15 October 2025

@ Submit your article to this journal: =

||I| Article views:

=
h
. . =
View related articles:
=, View Crossmark data: &

=
.|
oy M

Cr wrk

https://doi.org/10.5281/zenodo.18244420

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.18244420
https://doi.org/10.5281/zenodo.18244420
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1773

International Journal of Microsystems and IoT @}
Vol.3, Issue 10, pp.1773-1779; DOI: https://doi.org/10.5281/zenodo.18244420

M) Check for updates
Analysis of Convolutional Neural Network-Based

Crack Detection: From Traditional Approaches to
Advanced Models

Ishika Deepak Sapkal, Pooja Gundewar
Department of Electrical & Electronics Engineering, Dr. Vishwanath Karad MIT World Peace University
Pune, Maharashtra, India

ABSTRACT

Our civil infrastructure is incredibly important, but it’s constantly threatened by cracks. If
these aren’t dealt with, they can seriously damage structures. Historically, we’ve relied on
manual inspections, but these are often slow, subjective, and even risky, making them
impractical for today’s vast networks of roads and bridges. This paper explores how
automated crack detection, powered by software, is changing the game in structural health
monitoring. We start by looking at traditional image processing methods, like using
Histogram of Oriented Gradients (HOG) for feature extraction combined with Support Vector Learning, Structural Health
Machines (SVM) for classification. Our own experiments with an SVM model showed a Monitoring, YOLOVS, Mask
foundational accuracy of 82.54%. Then, we shift our focus to the revolutionary impact of R-CNN

Convolutional Neural Networks (CNNs). We present a custom CNN model that achieved an

impressive 100% accuracy during both training and validation on its dataset. To put these

results into perspective, we compare them with cutting-edge models like YOLOvS and Mask

R-CNN, which demonstrate high precision (94.4% and 85% respectively) and recall (95.6%

and 77% respectively) even in complex real-world situations. Through this in-depth analysis,

we highlight the exciting progress in automated crack detection, emphasizing how deep

learning models are excelling at learning features and delivering robust performance,

ultimately helping us ensure accurate, scalable, and reliable assessments of structural health.

KEYWORDS

Crack Detection,
Convolutional Neural
Networks, Image
Processing, Machine

1. INTRODUCTION

. . o The Limitations of Manual Inspection: A Call for Automation
Our modern world relies heavily on robust civil infrastructure

highways, bridges, tunnels, and airports are the very arteries
of economic development and daily life [1], [3]. Yet, these
vital structures are constantly battling environmental wear

For too long, we’ve leaned on manual inspections for
pavement crack detection. While a foundational practice, this

and tear, from relentless weather to repeated vehicle loading,
leading to various forms of damage. Among these, cracks are
the most common and, frankly, the most insidious [1], [3].
Left unchecked, these seemingly small fissures can escalate
into severe structural deterioration, accelerating concrete
aging and even causing steel corrosion, ultimately
jeopardizing safety and long-term integrity [1], [3]. This
makes timely and accurate crack detection not just important,
but critical for proactive maintenance and preventing
catastrophic failures [1], [3].

© 2025 The Author(s). Published by ISVE, Ranchi, India

traditional approach is increasingly unsustainable for our vast
and complex infrastructure networks [2], [3], [5], [6], [7]-
Imagine the sheer inefficiency: it’s slow, labour-intensive,
and often disrupts traffic, posing significant safety risks to
inspectors themselves [2], [3], [5], [6], [7]. Beyond the
practical hurdles, human assessment introduces a high degree
of subjectivity. Results can vary wildly based on an
individual’s experience or even their mood, making objective,
quantitative analysis a real challenge [2], [3], [5], [6], [7]. And
let’s not forget the invisible cracks—those hidden threats that
manual eyes simply can’t catch [5]. The cumulative effect of
these drawbacks—high costs, limited accuracy, and a general
lack of reliability—shouts for an automated, efficient, and
highly accurate detection methodology [2], [3], [5], [6], [7].

https://doi.org/10.5281/zenodo.18244420

The Dawn of Automated Solutions: From Pixels to Deep
Learning

The urgent need for better solutions has propelled us into the
era of automated crack detection. Initially, this journey began
with digital image processing techniques, which sought to
analyze images in either the spatial or frequency domain [2],
[3], [4], [5]. These methods, while a step forward, often
struggled with real-world complexities like noise, uneven
illumination, and the sheer variety of crack appearances [2],
[3], [4]. They frequently demanded tedious manual parameter
adjustments, limiting their robustness and full automation [2],

(31, [4].

Then came the game-changer: deep learning, particularly
Convolutional Neural Networks (CNNs) [1], [3], [6], [9]. This
wasn’t just an incremental improvement; it was a paradigm
shift. Instead of us painstakingly engineering features, CNNs
learned them automatically from raw image data,
dramatically improving their ability to understand real
pavement conditions [1], [3], [6]. This paper dives deep into
the world of software- centric crack detection, tracing its
evolution from traditional image processing and -early
machine learning to the cutting- edge of CNNs. We’ll explore
how these technologies are transforming structural health
monitoring, offering solutions

that are not only accurate and efficient but also scalable for
the immense task of keeping our infrastructure safe.

I1. EVOLUTION OF
CRACK DETECTION

AUTOMATED

The quest for automated crack detection has been a
fascinating journey, marked by continuous innovation to
overcome the limitations of previous approaches and achieve
greater accuracy and robustness.

A. Traditional Image Processing Techniques: A
Foundation Laid

Early efforts to automate crack detection primarily relied on
digital image processing methods. These techniques typically
analysed images by manipulating pixel characteristics
directly (spatial domain) or by transforming them into
frequency components (frequency domain) [2], [3], [4], [5]-
Spatial domain methods, for instance, used techniques like
threshold segmentation to separate cracks from backgrounds
based on grayscale differences [2], [3], [4]. Otsu’s method, a
popular adaptive thresholding technique, automatically
determines an optimal global threshold from the image
histogram, minimizing intra-class variance of the foreground
and background pixels [2]. This helps in separating crack
regions from the non-crack background more effectively.
Edge detection algorithms, such as Canny, Robert, Prewitt,
and Laplacian operators, aimed to find cracks by identifying
sharp changes in pixel intensity, characteristic of crack
boundaries [3], [4], [11], [15]. Canny is celebrated for its
multi-stage approach, which involves noise reduction,
gradient calculation, non-maximum suppression, and
hysteresis thresholding, making it robust in detecting a wide
range of edges while minimizing false positives [11]. While

1774

simple to implement, these methods often struggled with
noise and subtle crack features, requiring extensive manual
parameter tuning [2], [3], [4], [11]. Morphological operations
(like expansion and erosion) were also applied to refine crack
images and remove noise, helping to connect broken crack
segments or remove small spurious objects [2], [4].

Frequency domain methods, such as wavelet transform,
offered multi-scale local information and improved
robustness against noise [3], [4]. The wavelet transform
decomposes an image into different frequency sub-bands,
allowing for the isolation of crack features that might be
obscured by noise or varying illumination in the spatial
domain. This multi-resolution analysis can capture cracks of
different scales. However, these techniques also demanded
numerous manually set parameters, hindering full automation
and often falling short of practical accuracy requirements in
diverse real-world scenarios [3], [4]. The challenge with these
traditional methods was their limited ability to generalize
across varying crack appearances, lighting conditions, and
surface textures without significant human intervention.

B. Early Machine Learning and the Rise of Deep
Learning

The inherent limitations of traditional image processing,
particularly their sensitivity to noise and reliance on manual
parameter adjustments, paved the way for machine learning
(ML) approaches [3], [4]. Early ML applications in crack
detection often employed Support Vector Machines (SVM)
and Artificial Neural Networks (ANN) [3], [6]. These
methods aimed to classify image patches or pixels as either
crack or non- crack, offering improvements over purely
image-processing techniques [3], [6]. For instance, SVMs,
known for their strong theoretical foundation and
effectiveness in high-dimensional spaces, could learn a
decision boundary to separate crack features from non-crack
features after manual feature extraction (e.g., intensity,
texture, edge features) [12]. ANNs, with their layered
structure, could also learn complex mappings from input
features to crack presence, though early networks were often
shallow and limited in their ability to capture intricate patterns
[6]. However, they still faced challenges with complex feature
construction and sometimes struggled to differentiate cracks
from visually similar objects like shadows or sealant lines [3].

The true revolution arrived with deep learning, especially
after the groundbreaking success of AlexNet in 2012 [14].
This marked a pivotal shift from manual feature engineering
to automatic feature learning. Deep learning models, with
their ~ multi-layered architectures, demonstrated an
unparalleled ability to automatically extract and integrate
complex features directly from raw image data [1], [3], [6].
This capability significantly improved their representation of
real pavement conditions, eliminating the need for
complicated, manually designed features that plagued earlier
approaches [1], [3].

Initially, deep learning methods often classified small image
patches, but a critical limitation was their inability to pinpoint
the exact location of cracks [1], [3]. This spurred the
development of more sophisticated object detection and
pixel-level segmentation methods, which could provide

precise localization alongside classification, offering more
actionable information for maintenance [1], [3]. This
evolution underscores a clear trend: as algorithms became
more automated and robust, their reliance on human-defined
features and parameters diminished, leading to superior
performance across diverse real-world conditions [1], [3].

III. SOFTWARE-CENTRIC
DETECTION

CRACK

Our journey into automated crack detection has seen re-
markable progress, moving from meticulously crafted
features to the powerful, self-learning capabilities of deep
neural net- works. This section details key software
implementations, from traditional machine learning to
advanced CNN architectures, including our own experimental
work.

A. Feature Extraction and Traditional Machine
Learning: Our HOG and SVM Approach

Before the widespread adoption of deep learning, feature
engineering played a crucial role in preparing images for
machine learning algorithms. One such powerful technique is
the Histogram of Oriented Gradients (HOG). HOG
descriptors capture the local appearance and shape of objects
within an or edge directions [10]. This method is particularly
robust to geometric and photometric transformations, making
it valuable for varied image conditions [10].

In our project, we first applied Canny Edge Detection to the
original crack images. Canny is a multi-stage algorithm
renowned for its ability to detect a wide range of edges while
suppressing noise and minimizing false positives [11]. The
output of the Canny filter provides a clear outline of potential
crack structures. Following this, we extracted HOG features
from the processed images. These features, representing the
gradient orientations, were then used as input for a Support
Vector Machine (SVM) classifier [12]. SVMs are supervised
learning models used for classification and regression
analysis, known for their effectiveness in high-dimensional
spaces [12].

Figure 1 illustrates this process:

~ Jupyter feature_extraction(edge, HOG) Last Checksant a few seconds ago. (autossved) A

8+ x o8 v sEn mCw

»
rint(" 8 HG Foat rape:“, hog_features.shape)

HOG Features

Fig. 1. Feature Extraction: Original Image, Canny Edge Detection, and
HOG Features. The HOG features, represented as a histogram, capture
the gradient orientations essential for crack identification.

Our SVM model was trained and evaluated, yielding a Model
Accuracy of 82.54%. The classification report provided
detailed metrics:

1775

. Precision (Class 0): 0.84
. Recall (Class 0): 0.80

. F1-score (Class 0): 0.82
. Support (Class 0): 477

. Precision (Class 1): 0.81
. Recall (Class 1): 0.85

. F1-score (Class 1): 0.83
. Support (Class 1): 474

The confusion matrix further broke down the performance:
[[381 96], [70 404]], indicating 381 True Negatives, 96 False
Positives, 70 False Negatives, and 404 True Positives. This
demonstrates a solid, interpretable performance for crack
detection using traditional machine learning techniques.
Figure 2 presents the classification report and confusion
matrix:

B. Our Custom CNN Implementation

In our project, we also developed and trained a custom CNN
model for crack detection. This model was designed to
leverage the power of deep learning for automated feature
extraction and classification. The architecture of our custom
CNN was designed to be relatively lightweight yet effective,
consisting of several convolutional layers followed by
pooling

~ Jupyter svm_algorithm Las crecipant 2hous 330 fautosaved) A

Python 3 fipykemel) C

print(classification_report(y_test, y pred))

print("\n Confusion Matrix:")
print(confusion matrix(y_test, y_pred))
Model Accuracy: 82.54%

Classification Report:
precision recall fi-score support

L] 0.8 0.8 .82 Lud
1 0.81 8.8 0.83 am

accuracy 0.83 951

nacroag 083 0.8 083 %l
wightedag 0.8 0.8 0.8 %1

Confusion Matrix:
[(381 %]
[70 ana])]

Fig. 2. SVM Classification Report and Confusion Matrix.

This output details the precision, recall, F1-score, and support
for each class, alongside the confusion matrix, indicating the
model’s performance layers to progressively extract higher-
level features and reduce dimensionality. A typical
architecture would involve:

*Input Layer: Accepts grayscale or RGB images of a fixed
size (e.g., 256 x 256 pixels).

. Convolutional Layers: Multiple layers with small
filters (e.g., 3 x 3) to detect local features like edges and
textures. Each layer is followed by a ReLU activation
function to introduce non-linearity.

*Pooling Layers: Max pooling layers (e.g., 2 x 2) are used
after convolutional blocks to down sample the feature maps,
making the model more robust to minor shifts and reducing
computational cost.

Flatten Layer: Converts the 2D feature maps into a 1D
vector.

*Dense Layers: Fully connected layers that interpret the
extracted features for classification.

*Output Layer: A sigmoid activation function for binary
classification (crack/no crack) or softmax for multi-class
crack types.

The training process involved monitoring both loss and
accuracy over several epochs to ensure optimal model
performance and prevent overfitting. We used standard
optimization techniques like Adam and a binary cross-
entropy loss function, common for binary classification tasks.

_ Jupyter cnn_algorithm vast Creckpaint: 27 minutes ago (autosaved [

Python 3 (ipskemai) O
B+ xB0B 4% PR BCH =
119/119 = 39913 265/step - accuracy: 1.0000 - loss: 3.2744e-14 - val accuracy: 1.0000 - val_loss: 2.8866e-21

le-13 Training vs Validation Loss Training vs Validation Accuracy

l — Tnaning Loss — Training Accuracy

Validation Loss Validation Accuracy
104

Epochs Epochs

Figure 3 illustrates the training and validation curves for our CNN model
incidence of expensive and time-intensive rework [24].

As observed from Figure 3, our CNN model achieved
remarkable results during training:

*Training Loss: Decreased significantly, reaching a very low
value (e.g., le — 13) by the end of training. This indicates that
the model was effectively learning from the training data.

*Validation Loss: Also decreased, mirroring the training loss,
indicating good generalization. The validation loss staying
low alongside training loss suggests the model was not merely
memorizing the training data but learning generalizable
patterns.

*Training Accuracy: Reached 100% (1.00) and remained
stable. This means the model perfectly classified all training
examples.

1776

. Validation Accuracy: Also reached 100% (1.00) and
remained stable. This is a strong indicator that the model
performs exceptionally well on unseen data from the same
distribution, demonstrating its robustness.

This exceptional performance on our dataset highlights the
CNN’s ability to learn complex patterns and accurately
classify crack images, demonstrating the immense potential
of deep learning for this task. It underscores the power of
CNN s in automatically extracting relevant features, a task that
was arduous and often suboptimal with traditional image
processing or early machine learning methods.

IV. RESULTS AND DISCUSSION

This section presents the performance results of our
implemented models and contextualizes them by comparing
them with state-of-the-art deep learning architectures in crack
detection. A.State-of-the-Art Object Detection Models:
YOLOVS and Mask R-CNN

Beyond our custom implementation, the field has seen
significant advancements with highly optimized architectures
like YOLOVS and Mask R-CNN.

YOLOV5 (You Only Look Once, version 5) is a detection
algorithm known for its incredible speed and efficiency. It
cleverly combines the steps of finding potential objects and
recognizing them into one streamlined network [1]. Its
compact size and fast processing make it perfect for real-time
applications. A key improvement in YOLOVS is its use of
attention mechanisms, which really help it focus on the
important features. For example, a YOLOvS model enhanced
with attention showed an impressive nearly 6.7% boost in
mAP@0.5:0.95 compared to the original version without
attention [1]. This model achieved 94.4% precision and
95.6% recall, processing images at a blazing speed of 13.15
ms/pic (for a batch size of 16), easily meeting the demands of
real-time detection [1].

Mask R-CNN is a cutting-edge approach for image
segmentation. It builds on the Faster R-CNN framework by
adding a third component that predicts segmentation masks
(pixel-level outlines) at the same time it’s identifying objects
and drawing bounding boxes [8], [13]. A crucial upgrade in
Mask R-CNN is replacing the older RolIPool operation with
RolAlign. This change allows it to create much more accurate
segmentation masks by precisely aligning features to the input
without losing detail [8], [13]. This architecture often uses a
Feature Pyramid Network (FPN) and a ResNet101 backbone
[8], [13]. For crack detection, its main goal isn’t just to spot
cracks, but to draw exact pixel-by-pixel outlines for each one,
giving a clear visual representation of surface cracks on
concrete [8], [13]. In terms of how well it performs, Mask R-
CNN achieved 85% crack detection precision and 77% recall
[8]. It also showed high accuracy in measuring cracks, with
width errors of just +£0.15 mm and length errors less than 10%
[8]. However, it does tend to miss very tiny cracks,
specifically those smaller than 0.15 mm, which points to a
challenge in detecting hairline fissures [8].

B. Comparative Performance Analysis

When we compare how these different software-based
approaches perform, we can see a clear path of increasing
capability. Our HOG+SVM model, while effective for its
category, achieved an accuracy of 82.54%. This tells us that
even traditional methods, when paired with good feature
engineering, can still provide a solid starting point. Our
custom CNN, trained on a specific dataset, showed
outstanding performance with 100% training and validation
accuracy, truly demonstrating the raw power of deep learning
in picking up intricate patterns. This suggests that for well-
defined datasets, CNNs can achieve nearly perfect
classification.

Looking at the bigger picture, advanced models like YOLOvS
and Mask R-CNN deliver robust performance in complex,
real-world scenarios. YOLOVS5’s attention-enhanced version
hit 94.4% precision and 95.6% recall, with a strong
mAP@0.5:0.95 of 87% [1]. This makes it an excellent choice
for real-time applications where both speed and accuracy are
crucial. Mask R-CNN, while having slightly lower precision
(85%) and recall (77%), offers pixel-level segmentation. This
is incredibly valuable for detailed crack analysis and
quantification, allowing us to precisely quantify crack
dimensions [8].

The following table summarizes the comparative perfor-
mance of YOLOVS against other methods, highlighting the
strengths of CNN-based approaches.

TABLE 1
COMPARISON OF PAVEMENT CRACK DETECTION RESULTS (YOLOVS
VS. OTHER METHODS)

[Methods [Pr | Re | F1 | mAP@0.5|
u et al. [1] 0.920 0.893 | 0.768 | 0.740
. Liu et al. 1] - 0.906 | 0.706

aster-RCNN [1] - - -
OLOVS (Proposed method) [1] [0.944 0.956 | 0.95 0.987

Table I provides a side-by-side look at how YOLOVS stacks
up against other pavement crack detection methods. It clearly
demonstrates that the YOLOVS approach we’re discussing
achieves superior results across all key performance
indicators: Precision (Pr), Recall (Re), Fl-score, and mean
Average Precision at 0.5 IoU (mAP@0.5). This really
highlights its effectiveness in accurately finding and
pinpointing cracks, making it a strong contender for real-time
applications where speed and precision are critical.

This comparison clearly illustrates that while traditional
methods like HOG+SVM give us a good starting point,
CNNs—whether custom-built or advanced models like
YOLOvV5 and Mask R-CNN—offer significantly higher ac-
curacy and more sophisticated capabilities for automated
crack detection. The ability of CNNs to learn complex
features directly from raw image data is a true game-changer,
pushing the boundaries of what’s possible in structural health
monitoring.

V. CHALLENGES
CRACK DETECTION

IN REAL-WORLD

While deep learning models have revolutionized crack

1777

detection, putting them to work effectively in the real world
comes with its own set of unique challenges. These often arise
because real-world environments are so much more variable
and unpredictable compared to controlled lab settings.

A. Environmental Factors and Data

Variability

Real-world images of cracks are rarely as clean or consistent
as those we use in carefully curated datasets. Environmental
factors play a big role in making detection tricky.

. [llumination Variations: Lighting can change
dramatically, from bright sunlight creating harsh shadows to
cloudy days or nighttime inspections needing artificial light.
Shadows, in particular, can easily be mistaken for cracks by
models, leading to false alarms [2]. On the flip side, poor
lighting can hide actual cracks, causing the model to miss
them.

. Surface Irregularities and Noise: Pavement surfaces
are often uneven, textured, or covered with debris, oil stains,
or water. These imperfections can introduce noise that looks
just like crack patterns, making it hard for models to tell the
difference between a real crack and something else [2].
Sealant lines, common in road maintenance, also pose a
challenge because they can look very similar to cracks.

. Crack Diversity: Cracks come in all shapes and
sizes—longitudinal, transverse, alligator, block, and so on.
They can be hairline thin, wide, branched, or all connected. A
model trained on one type of crack might struggle with
another, especially if the dataset doesn’t have enough variety

[3].

. Image Quality and Resolution: The quality of
images captured by inspection vehicles or drones can vary
due to camera limitations, motion blur, or dust on the lenses.
Low-resolution images, as we saw with Mask R-CNN’s
struggle with cracks below 0.15mm, can make tiny cracks
appear as just a few pixels, making accurate detection and
measurement almost impossible [8].

Tackling these challenges often means using extensive data
augmentation (making artificial variations of existing data),
carefully building datasets that include a wide range of real-
world conditions, and designing robust model architectures
that are less sensitive to these variations.

B. Generalization and Robustness

A big hurdle for any crack detection system is its ability to
perform well on new, unseen real-world conditions, not just
the data it was trained on. A model that’s fantastic on one
specific dataset might fall short when used in a new
environment with different pavement types, climate, or
inspection equipment.

* Domain Shift: Models trained on images from one
geographical area or using a specific camera might not work
as well in another. The way cracks look can change based on
the concrete mix, asphalt type, age of the pavement, and local

mailto:mAP@0.5

environmental factors.

* Adversarial Examples: While not as common in this field as
in others, tiny changes to input images (so small that humans
wouldn’t notice them) could potentially trick a model into
misclassifying a crack or missing it entirely. Ensuring models
are robust against such “adversarial attacks” is an ongoing
area of research.

*Computational ~Resources for Deployment: High-
performing CNNs, while accurate, demand a lot of computing
power. Deploying them on smaller devices (like drones,
mobile phones, or embedded systems) requires significant
model optimization (like quantization or pruning) to fit within
limited memory and processing power. This often means
balancing accuracy with efficiency, which is a crucial aspect
for practical, scalable solutions.

Overcoming these challenges requires continuous research
into more adaptable and efficient deep learning architectures,
as well as developing standardized, large-scale, and diverse
datasets that truly represent the complexity of global
infrastructure.

VI. FUTURE SCOPE

Looking ahead, future research should really zero in on a few
key areas to make CNN-based crack detection even better.
First, we need to improve how accurately we can spot and
measure those tiny, hairline cracks. This could involve
exploring super high-resolution imaging, combining different
types of sensors (like visual data with thermal or acoustic
information), or developing smart algorithms specifically for
crack images to get past current pixel limitations. Second, to
tackle the problem of missed cracks, especially in tricky spots
like dark areas, we need to build datasets with more diverse
and challenging examples, perhaps even by generating
synthetic data. Third, refining how we label images for
ambiguous or intersecting crack types will help our models
train more consistently and lead to more reliable
segmentation. This might mean using crowdsourcing for
annotations or creating tools that help us label images semi-
automatically. Finally, continued research into optimizing
models, including designing them specifically for certain
hardware, creating efficient ways to run them, and developing
advanced TinyML strategies, is crucial. This will help us
shrink the computing and energy demands of CNNs, making
them even more practical for widespread, real-time structural
health monitoring on small, embedded systems. This also
includes exploring brand-new neural network designs
specifically for devices with limited resources and looking
into how we can use federated learning for distributed model
training and updates.

VII. CONCLUSION

This paper has explored the incredible impact Convolutional
Neural Networks are having on automated crack detection in
our civil infrastructure. We’ve seen how traditional manual
inspections, which are slow, subjective, and risky, just aren’t
cutting it anymore for managing today’s massive and
complex infrastructure networks [2], [3], [5], [6], [7]. Deep

1778

learning, especially CNNs, has stepped in as a powerful
solution. It’s fundamentally changed how we approach this
problem, moving from us painstakingly designing features to
the models learning them automatically. This has
dramatically boosted accuracy, scalability, and how robust
these systems are [1], [3], [6].

Our own work showed that HOG+SVM can be effective,
achieving 82.54% accuracy, and our custom CNN model hit
a remarkable 100% training and validation accuracy. When
we compare these to advanced models like YOLOvV5 (with
94.4% precision and 95.6% recall) and Mask R-CNN (85%
precision and 77% recall), it’s clear that deep learning excels
at learning complex features and delivering strong
performance. This progression from older methods to
advanced CNNs represents a huge leap forward in making
crack detection more accurate, efficient, and reliable. These
smart software solutions are truly essential for keeping our
structures safe and sound.

However, putting these systems into action in the real world
still comes with challenges, like varying environmental
conditions, diverse data, and the need for models to generalize
well. Moving forward, we need to focus on getting even better
at detecting hairline cracks, reducing false negatives,
standardizing how we annotate images, and making models
more efficient for smaller, resource-limited devices. By
tackling these issues, we can truly enhance the reliability and
widespread use of automated crack detection systems,
ultimately building safer and more durable infrastructure for
generations to come.

ACKNOWLEDGMENT

I sincerely thank everyone who supported me throughout this
research work. I am especially grateful to my guide, Pooja
Gundewar, for their invaluable guidance and constant
encouragement. | also thank the faculty and staff of the
Electrical & Electronics Engineering Department, Dr.
Vishwanath Karad MIT World Peace University, Pune,
Mabharashtra, India, for their support and resources. Lastly,
heartfelt thanks to my family and friends for their unwavering
support throughout this journey.

DISCLOSURE OF INTERESTS
The authors have no conflicts of interest to declare.
AUTHORS CONTRIBUTION STATEMENT

Ishika Sapkal contributed to the conceptualization, method-
ology design, software development for image processing and
CNN model, data acquisition and preprocessing, result
analysis, and drafting of the original manuscript. Pooja Gun-
dewar provided conceptual guidance, supervised the research,
contributed to methodology and analysis refinement,
provided necessary resources, validated the findings, and was
responsible for reviewing and editing the manuscript.

REFERENCES

[1] H. Yao, Y. Liu, X. Li, Z. You, Y. Feng, and W. Lu, ”A Detection
Method for Pavement Cracks Combining Object Detection and

(2]

B3]

(4]

[3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

Attention Mechanism,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 11, pp. 22179-22189, Nov. 2022.
C. Shao, Y. Chen, F. Xu, and S. Wang, A Kind of Pavement Crack
Detection Method Based on Digital Image Processing,” in 2019 IEEE
4th Advanced Information Technology, Electronic and Automation
Control Conference (IAEAC), 2019, pp. 397-401.

J. Wu, Y. Zhang, and X. Zhao, ”A Review of Image-Based Pavement
Crack Detection Algorithms,” in Proceedings of the 40th Chinese
Control Conference, 2021, pp. 301-306.

J. Li, Y. Liu, N. Wang, and Y. Yang, A Study of Crack Detection
Algorithm,” in 2015 Fifth International Conference on
Instrumentation and Measurement, Computer, Communication and
Control (IMCCC), 2015, pp. 1184-1187.

S. Agnes Shifani et al., ”A Study of Methods using Image Processing
Technique in Crack Detection,” in Proceedings of the Second Interna-
tional Conference on Innovative Mechanisms for Industry
Applications (ICIMIA 2020), 2020, pp. 578-582.

V. Vijayan, C. M. Joy, and S. S, A Survey on Surface Crack Detection
in Concretes using Traditional, Image Processing, Machine Learning,
and Deep Learning Techniques,” in 2021 International Conference on
Communication, Control and Information Sciences (ICCISc), 2021,
pp. 1-6.

S. Ashraf, 1. Hegazy, and T. L. Elarif, ”Algorithm for Automatic Crack
Analysis and Severity Identification,” in 2019 IEEE Ninth
International Conference on Intelligent Computing and Information
Systems (ICICIS), 2019, pp. 74-79.

C. S. Gepiga et al., "Automated Crack Detection and Measurement
Based on Mask R-CNN and Image Analysis with Mobile
Application,” in 2022 5th International Conference on Electronics and
Electrical Engineering Technology (EEET), 2022, pp. 14-22.

C.P. P. K. Hota et al., ”Automatic Detection and Analysis of Concrete
Cracks Using YOLO,” in 2024 4th International Conference on
Intelligent Technologies (CONIT), 2024, pp. 1-6.

Y. Hu and X. Zhao, ”Pavement Crack Detection Fused HOG and
Watershed Algorithm of Range Image,” ResearchGate, 2017.

H. Zhao, G. Qin, and X. Wang, "Improvement of Canny algorithm
based on pavement edge detection,” in Proc. 3rd Int. Congr. Image
Signal Process., Oct. 2010, pp. 964-967.

M. Al-Hammadi et al., "Deep Features with SVM for Enhanced Crack
Detection in Concrete Structures,” PMC, 2023.

K. He, G. Gkioxari, P. Dolla'r, and R. Girshick, ”Mask R-CNN,” 2017
IEEE International Conference on Computer Vision (ICCV), 2017.
A. Kirizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 2, pp. 84-90, May 2012.

R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, ” Automatic crack
detection on two-dimensional pavement images: An algorithm based
on minimal path selection,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 10, pp. 2718-2729, Oct. 2016.

Z.Fan et al., ”Automatic pavement crack detection based on structured
prediction with the convolutional neural network,” 2018.

X. Yang et al, “Automatic pixel-level crack detection and
measurement using fully convolutional network,” Comput.-Aided
Civil Infrastruct. Eng., 2018.

L. Zhang et al., "Road crack detection using deep convolutional neural
network,” in 2016 IEEE International Conference on Image
Processing (ICIP), 2016.

I. Chiuchisan, ”A New FPGA-based Real-Time Configurable System
for Medical Image Processing,” in 2013 4th IEEE International
Conference on E-Health and Bioengineering - EHB, 2013, pp. 1-4.

Z. Navabi, Digital Design and Implementation with Field
Programmable Devices. Kluwer Academic Publishers, 2005.

R. Gonzalez and R. Woods, Digital Image Processing. Prentice Hall,
2008.

1779

