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1. INTRODUCTION 

Our modern world relies heavily on robust civil infrastructure 

highways, bridges, tunnels, and airports are the very arteries 

of economic development and daily life [1], [3]. Yet, these 

vital structures are constantly battling environmental wear 

and tear, from relentless weather to repeated vehicle loading, 

leading to various forms of damage. Among these, cracks are 

the most common and, frankly, the most insidious [1], [3]. 

Left unchecked, these seemingly small fissures can escalate 

into severe structural deterioration, accelerating concrete 

aging and even causing steel corrosion, ultimately 

jeopardizing safety and long-term integrity [1], [3]. This 

makes timely and accurate crack detection not just important, 

but critical for proactive maintenance and preventing 

catastrophic failures [1], [3]. 

© 2025 The Author(s). Published by ISVE, Ranchi, India 

 

 

The Limitations of Manual Inspection: A Call for Automation 

For too long, we’ve leaned on manual inspections for 

pavement crack detection. While a foundational practice, this 

traditional approach is increasingly unsustainable for our vast 

and complex infrastructure networks [2], [3], [5], [6], [7]. 

Imagine the sheer inefficiency: it’s slow, labour-intensive, 

and often disrupts traffic, posing significant safety risks to 

inspectors themselves [2], [3], [5], [6], [7]. Beyond the 

practical hurdles, human assessment introduces a high degree 

of subjectivity. Results can vary wildly based on an 

individual’s experience or even their mood, making objective, 

quantitative analysis a real challenge [2], [3], [5], [6], [7]. And 

let’s not forget the invisible cracks—those hidden threats that 

manual eyes simply can’t catch [5]. The cumulative effect of 

these drawbacks—high costs, limited accuracy, and a general 

lack of reliability—shouts for an automated, efficient, and 

highly accurate detection methodology [2], [3], [5], [6], [7]. 
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The Dawn of Automated Solutions: From Pixels to Deep 

Learning 

The urgent need for better solutions has propelled us into the 

era of automated crack detection. Initially, this journey began 

with digital image processing techniques, which sought to 

analyze images in either the spatial or frequency domain [2], 

[3], [4], [5]. These methods, while a step forward, often 

struggled with real-world complexities like noise, uneven 

illumination, and the sheer variety of crack appearances [2], 

[3], [4]. They frequently demanded tedious manual parameter 

adjustments, limiting their robustness and full automation [2], 

[3], [4]. 

Then came the game-changer: deep learning, particularly 

Convolutional Neural Networks (CNNs) [1], [3], [6], [9]. This 

wasn’t just an incremental improvement; it was a paradigm 

shift. Instead of us painstakingly engineering features, CNNs 

learned them automatically from raw image data, 

dramatically improving their ability to understand real 

pavement conditions [1], [3], [6]. This paper dives deep into 

the world of software- centric crack detection, tracing its 

evolution from traditional image processing and early 

machine learning to the cutting- edge of CNNs. We’ll explore 

how these technologies are transforming structural health 

monitoring, offering solutions 

that are not only accurate and efficient but also scalable for 

the immense task of keeping our infrastructure safe. 

II. EVOLUTION OF AUTOMATED 

CRACK DETECTION 

The quest for automated crack detection has been a 

fascinating journey, marked by continuous innovation to 

overcome the limitations of previous approaches and achieve 

greater accuracy and robustness. 

A. Traditional Image Processing Techniques: A 

Foundation Laid 

Early efforts to automate crack detection primarily relied on 

digital image processing methods. These techniques typically 

analysed images by manipulating pixel characteristics 

directly (spatial domain) or by transforming them into 

frequency components (frequency domain) [2], [3], [4], [5]. 

Spatial domain methods, for instance, used techniques like 

threshold segmentation to separate cracks from backgrounds 

based on grayscale differences [2], [3], [4]. Otsu’s method, a 

popular adaptive thresholding technique, automatically 

determines an optimal global threshold from the image 

histogram, minimizing intra-class variance of the foreground 

and background pixels [2]. This helps in separating crack 

regions from the non-crack background more effectively. 

Edge detection algorithms, such as Canny, Robert, Prewitt, 

and Laplacian operators, aimed to find cracks by identifying 

sharp changes in pixel intensity, characteristic of crack 

boundaries [3], [4], [11], [15]. Canny is celebrated for its 

multi-stage approach, which involves noise reduction, 

gradient calculation, non-maximum suppression, and 

hysteresis thresholding, making it robust in detecting a wide 

range of edges while minimizing false positives [11]. While 

simple to implement, these methods often struggled with 

noise and subtle crack features, requiring extensive manual 

parameter tuning [2], [3], [4], [11]. Morphological operations 

(like expansion and erosion) were also applied to refine crack 

images and remove noise, helping to connect broken crack 

segments or remove small spurious objects [2], [4]. 

Frequency domain methods, such as wavelet transform, 

offered multi-scale local information and improved 

robustness against noise [3], [4]. The wavelet transform 

decomposes an image into different frequency sub-bands, 

allowing for the isolation of crack features that might be 

obscured by noise or varying illumination in the spatial 

domain. This multi-resolution analysis can capture cracks of 

different scales. However, these techniques also demanded 

numerous manually set parameters, hindering full automation 

and often falling short of practical accuracy requirements in 

diverse real-world scenarios [3], [4]. The challenge with these 

traditional methods was their limited ability to generalize 

across varying crack appearances, lighting conditions, and 

surface textures without significant human intervention. 

B. Early Machine Learning and the Rise of Deep 

Learning 

The inherent limitations of traditional image processing, 

particularly their sensitivity to noise and reliance on manual 

parameter adjustments, paved the way for machine learning 

(ML) approaches [3], [4]. Early ML applications in crack 

detection often employed Support Vector Machines (SVM) 

and Artificial Neural Networks (ANN) [3], [6]. These 

methods aimed to classify image patches or pixels as either 

crack or non- crack, offering improvements over purely 

image-processing techniques [3], [6]. For instance, SVMs, 

known for their strong theoretical foundation and 

effectiveness in high-dimensional spaces, could learn a 

decision boundary to separate crack features from non-crack 

features after manual feature extraction (e.g., intensity, 

texture, edge features) [12]. ANNs, with their layered 

structure, could also learn complex mappings from input 

features to crack presence, though early networks were often 

shallow and limited in their ability to capture intricate patterns 

[6]. However, they still faced challenges with complex feature 

construction and sometimes struggled to differentiate cracks 

from visually similar objects like shadows or sealant lines [3]. 

The true revolution arrived with deep learning, especially 

after the groundbreaking success of AlexNet in 2012 [14]. 

This marked a pivotal shift from manual feature engineering 

to automatic feature learning. Deep learning models, with 

their multi-layered architectures, demonstrated an 

unparalleled ability to automatically extract and integrate 

complex features directly from raw image data [1], [3], [6]. 

This capability significantly improved their representation of 

real pavement conditions, eliminating the need for 

complicated, manually designed features that plagued earlier 

approaches [1], [3]. 

Initially, deep learning methods often classified small image 

patches, but a critical limitation was their inability to pinpoint 

the exact location of cracks [1], [3]. This spurred the 

development of more sophisticated object detection and 

pixel-level segmentation methods, which could provide 
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precise localization alongside classification, offering more 

actionable information for maintenance [1], [3]. This 

evolution underscores a clear trend: as algorithms became 

more automated and robust, their reliance on human-defined 

features and parameters diminished, leading to superior 

performance across diverse real-world conditions [1], [3]. 

III. SOFTWARE-CENTRIC CRACK 

DETECTION 

Our journey into automated crack detection has seen re- 

markable progress, moving from meticulously crafted 

features to the powerful, self-learning capabilities of deep 

neural net- works. This section details key software 

implementations, from traditional machine learning to 

advanced CNN architectures, including our own experimental 

work. 

A. Feature Extraction and Traditional Machine 

Learning: Our HOG and SVM Approach 

Before the widespread adoption of deep learning, feature 

engineering played a crucial role in preparing images for 

machine learning algorithms. One such powerful technique is 

the Histogram of Oriented Gradients (HOG). HOG 

descriptors capture the local appearance and shape of objects 

within an or edge directions [10]. This method is particularly 

robust to geometric and photometric transformations, making 

it valuable for varied image conditions [10]. 

In our project, we first applied Canny Edge Detection to the 

original crack images. Canny is a multi-stage algorithm 

renowned for its ability to detect a wide range of edges while 

suppressing noise and minimizing false positives [11]. The 

output of the Canny filter provides a clear outline of potential 

crack structures. Following this, we extracted HOG features 

from the processed images. These features, representing the 

gradient orientations, were then used as input for a Support 

Vector Machine (SVM) classifier [12]. SVMs are supervised 

learning models used for classification and regression 

analysis, known for their effectiveness in high-dimensional 

spaces [12]. 

Figure 1 illustrates this process: 

Fig. 1. Feature Extraction: Original Image, Canny Edge Detection, and 
HOG Features. The HOG features, represented as a histogram, capture 
the gradient orientations essential for crack identification. 

Our SVM model was trained and evaluated, yielding a Model 

Accuracy of 82.54%. The classification report provided 

detailed metrics: 

• Precision (Class 0): 0.84 

• Recall (Class 0): 0.80 

• F1-score (Class 0): 0.82 

• Support (Class 0): 477 

• Precision (Class 1): 0.81 

• Recall (Class 1): 0.85 

• F1-score (Class 1): 0.83 

• Support (Class 1): 474 

The confusion matrix further broke down the performance: 

[[381 96], [70 404]], indicating 381 True Negatives, 96 False 

Positives, 70 False Negatives, and 404 True Positives. This 

demonstrates a solid, interpretable performance for crack 

detection using traditional machine learning techniques. 

Figure 2 presents the classification report and confusion 

matrix: 

B. Our Custom CNN Implementation 

In our project, we also developed and trained a custom CNN 

model for crack detection. This model was designed to 

leverage the power of deep learning for automated feature 

extraction and classification. The architecture of our custom 

CNN was designed to be relatively lightweight yet effective, 

consisting of several convolutional layers followed by 

pooling 

 

 

Fig. 2. SVM Classification Report and Confusion Matrix.  

This output details the precision, recall, F1-score, and support 

for each class, alongside the confusion matrix, indicating the 

model’s performance layers to progressively extract higher-

level features and reduce dimensionality. A typical 

architecture would involve: 

•Input Layer: Accepts grayscale or RGB images of a fixed 

size (e.g., 256 × 256 pixels). 
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• Convolutional Layers: Multiple layers with small 

filters (e.g., 3 × 3) to detect local features like edges and 

textures. Each layer is followed by a ReLU activation 

function to introduce non-linearity. 

•Pooling Layers: Max pooling layers (e.g., 2 × 2) are used 

after convolutional blocks to down sample the feature maps, 

making the model more robust to minor shifts and reducing 

computational cost. 

•Flatten Layer: Converts the 2D feature maps into a 1D 

vector. 

•Dense Layers: Fully connected layers that interpret the 

extracted features for classification. 

•Output Layer: A sigmoid activation function for binary 

classification (crack/no crack) or softmax for multi-class 

crack types. 

The training process involved monitoring both loss and 

accuracy over several epochs to ensure optimal model 

performance and prevent overfitting. We used standard 

optimization techniques like Adam and a binary cross-

entropy loss function, common for binary classification tasks. 

 

Figure 3 illustrates the training and validation curves for our CNN model 
incidence of expensive and time-intensive rework [24].  

As observed from Figure 3, our CNN model achieved 

remarkable results during training: 

•Training Loss: Decreased significantly, reaching a very low 

value (e.g., 1e − 13) by the end of training. This indicates that 

the model was effectively learning from the training data. 

•Validation Loss: Also decreased, mirroring the training loss, 

indicating good generalization. The validation loss staying 

low alongside training loss suggests the model was not merely 

memorizing the training data but learning generalizable 

patterns. 

•Training Accuracy: Reached 100% (1.00) and remained 

stable. This means the model perfectly classified all training 

examples. 

• Validation Accuracy: Also reached 100% (1.00) and 

remained stable. This is a strong indicator that the model 

performs exceptionally well on unseen data from the same 

distribution, demonstrating its robustness. 

This exceptional performance on our dataset highlights the 

CNN’s ability to learn complex patterns and accurately 

classify crack images, demonstrating the immense potential 

of deep learning for this task. It underscores the power of 

CNNs in automatically extracting relevant features, a task that 

was arduous and often suboptimal with traditional image 

processing or early machine learning methods. 

IV. RESULTS AND DISCUSSION 

This section presents the performance results of our 

implemented models and contextualizes them by comparing 

them with state-of-the-art deep learning architectures in crack 

detection. A.State-of-the-Art Object Detection Models: 

YOLOv5 and Mask R-CNN 

Beyond our custom implementation, the field has seen 

significant advancements with highly optimized architectures 

like YOLOv5 and Mask R-CNN. 

YOLOv5 (You Only Look Once, version 5) is a detection 

algorithm known for its incredible speed and efficiency. It 

cleverly combines the steps of finding potential objects and 

recognizing them into one streamlined network [1]. Its 

compact size and fast processing make it perfect for real-time 

applications. A key improvement in YOLOv5 is its use of 

attention mechanisms, which really help it focus on the 

important features. For example, a YOLOv5 model enhanced 

with attention showed an impressive nearly 6.7% boost in 

mAP@0.5:0.95 compared to the original version without 

attention [1]. This model achieved 94.4% precision and 

95.6% recall, processing images at a blazing speed of 13.15 

ms/pic (for a batch size of 16), easily meeting the demands of 

real-time detection [1]. 

Mask R-CNN is a cutting-edge approach for image 

segmentation. It builds on the Faster R-CNN framework by 

adding a third component that predicts segmentation masks 

(pixel-level outlines) at the same time it’s identifying objects 

and drawing bounding boxes [8], [13]. A crucial upgrade in 

Mask R-CNN is replacing the older RoIPool operation with 

RoIAlign. This change allows it to create much more accurate 

segmentation masks by precisely aligning features to the input 

without losing detail [8], [13]. This architecture often uses a 

Feature Pyramid Network (FPN) and a ResNet101 backbone 

[8], [13]. For crack detection, its main goal isn’t just to spot 

cracks, but to draw exact pixel-by-pixel outlines for each one, 

giving a clear visual representation of surface cracks on 

concrete [8], [13]. In terms of how well it performs, Mask R-

CNN achieved 85% crack detection precision and 77% recall 

[8]. It also showed high accuracy in measuring cracks, with 

width errors of just ±0.15 mm and length errors less than 10% 

[8]. However, it does tend to miss very tiny cracks, 

specifically those smaller than 0.15 mm, which points to a 

challenge in detecting hairline fissures [8]. 

B. Comparative Performance Analysis 
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When we compare how these different software-based 

approaches perform, we can see a clear path of increasing 

capability. Our HOG+SVM model, while effective for its 

category, achieved an accuracy of 82.54%. This tells us that 

even traditional methods, when paired with good feature 

engineering, can still provide a solid starting point. Our 

custom CNN, trained on a specific dataset, showed 

outstanding performance with 100% training and validation 

accuracy, truly demonstrating the raw power of deep learning 

in picking up intricate patterns. This suggests that for well-

defined datasets, CNNs can achieve nearly perfect 

classification. 

Looking at the bigger picture, advanced models like YOLOv5 

and Mask R-CNN deliver robust performance in complex, 

real-world scenarios. YOLOv5’s attention-enhanced version 

hit 94.4% precision and 95.6% recall, with a strong 

mAP@0.5:0.95 of 87% [1]. This makes it an excellent choice 

for real-time applications where both speed and accuracy are 

crucial. Mask R-CNN, while having slightly lower precision 

(85%) and recall (77%), offers pixel-level segmentation. This 

is incredibly valuable for detailed crack analysis and 

quantification, allowing us to precisely quantify crack 

dimensions [8]. 

The following table summarizes the comparative perfor- 

mance of YOLOv5 against other methods, highlighting the 

strengths of CNN-based approaches. 

TABLE I 
COMPARISON OF PAVEMENT CRACK DETECTION RESULTS (YOLOV5 

VS. OTHER METHODS) 

 
 

Methods Pr Re F1 mAP@0.5 
 

Du et al. [1] 0.920 0.893 0.768 0.740 

J. Liu et al. [1] – – 0.906 0.706 

Faster-RCNN [1] – – – – 
YOLOv5 (Proposed method) [1] 0.944 0.956 0.95 0.987 

Table I provides a side-by-side look at how YOLOv5 stacks 

up against other pavement crack detection methods. It clearly 

demonstrates that the YOLOv5 approach we’re discussing 

achieves superior results across all key performance 

indicators: Precision (Pr), Recall (Re), F1-score, and mean 

Average Precision at 0.5 IoU (mAP@0.5). This really 

highlights its effectiveness in accurately finding and 

pinpointing cracks, making it a strong contender for real-time 

applications where speed and precision are critical. 

This comparison clearly illustrates that while traditional 

methods like HOG+SVM give us a good starting point, 

CNNs—whether custom-built or advanced models like 

YOLOv5 and Mask R-CNN—offer significantly higher ac- 

curacy and more sophisticated capabilities for automated 

crack detection. The ability of CNNs to learn complex 

features directly from raw image data is a true game-changer, 

pushing the boundaries of what’s possible in structural health 

monitoring. 

V. CHALLENGES IN REAL-WORLD 

CRACK DETECTION 

While deep learning models have revolutionized crack 

detection, putting them to work effectively in the real world 

comes with its own set of unique challenges. These often arise 

because real-world environments are so much more variable 

and unpredictable compared to controlled lab settings. 

A. Environmental Factors and Data 

Variability 

Real-world images of cracks are rarely as clean or consistent 

as those we use in carefully curated datasets. Environmental 

factors play a big role in making detection tricky. 

• Illumination Variations: Lighting can change 

dramatically, from bright sunlight creating harsh shadows to 

cloudy days or nighttime inspections needing artificial light. 

Shadows, in particular, can easily be mistaken for cracks by 

models, leading to false alarms [2]. On the flip side, poor 

lighting can hide actual cracks, causing the model to miss 

them. 

• Surface Irregularities and Noise: Pavement surfaces 

are often uneven, textured, or covered with debris, oil stains, 

or water. These imperfections can introduce noise that looks 

just like crack patterns, making it hard for models to tell the 

difference between a real crack and something else [2]. 

Sealant lines, common in road maintenance, also pose a 

challenge because they can look very similar to cracks. 

• Crack Diversity: Cracks come in all shapes and 

sizes—longitudinal, transverse, alligator, block, and so on. 

They can be hairline thin, wide, branched, or all connected. A 

model trained on one type of crack might struggle with 

another, especially if the dataset doesn’t have enough variety 

[3]. 

• Image Quality and Resolution: The quality of 

images captured by inspection vehicles or drones can vary 

due to camera limitations, motion blur, or dust on the lenses. 

Low-resolution images, as we saw with Mask R-CNN’s 

struggle with cracks below 0.15mm, can make tiny cracks 

appear as just a few pixels, making accurate detection and 

measurement almost impossible [8]. 

Tackling these challenges often means using extensive data 

augmentation (making artificial variations of existing data), 

carefully building datasets that include a wide range of real- 

world conditions, and designing robust model architectures 

that are less sensitive to these variations. 

B. Generalization and Robustness 

A big hurdle for any crack detection system is its ability to 

perform well on new, unseen real-world conditions, not just 

the data it was trained on. A model that’s fantastic on one 

specific dataset might fall short when used in a new 

environment with different pavement types, climate, or 

inspection equipment. 

• Domain Shift: Models trained on images from one 

geographical area or using a specific camera might not work 

as well in another. The way cracks look can change based on 

the concrete mix, asphalt type, age of the pavement, and local 

mailto:mAP@0.5
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environmental factors. 

• Adversarial Examples: While not as common in this field as 

in others, tiny changes to input images (so small that humans 

wouldn’t notice them) could potentially trick a model into 

misclassifying a crack or missing it entirely. Ensuring models 

are robust against such ”adversarial attacks” is an ongoing 

area of research. 

•Computational Resources for Deployment: High- 

performing CNNs, while accurate, demand a lot of computing 

power. Deploying them on smaller devices (like drones, 

mobile phones, or embedded systems) requires significant 

model optimization (like quantization or pruning) to fit within 

limited memory and processing power. This often means 

balancing accuracy with efficiency, which is a crucial aspect 

for practical, scalable solutions. 

Overcoming these challenges requires continuous research 

into more adaptable and efficient deep learning architectures, 

as well as developing standardized, large-scale, and diverse 

datasets that truly represent the complexity of global 

infrastructure. 

VI. FUTURE SCOPE 

Looking ahead, future research should really zero in on a few 

key areas to make CNN-based crack detection even better. 

First, we need to improve how accurately we can spot and 

measure those tiny, hairline cracks. This could involve 

exploring super high-resolution imaging, combining different 

types of sensors (like visual data with thermal or acoustic 

information), or developing smart algorithms specifically for 

crack images to get past current pixel limitations. Second, to 

tackle the problem of missed cracks, especially in tricky spots 

like dark areas, we need to build datasets with more diverse 

and challenging examples, perhaps even by generating 

synthetic data. Third, refining how we label images for 

ambiguous or intersecting crack types will help our models 

train more consistently and lead to more reliable 

segmentation. This might mean using crowdsourcing for 

annotations or creating tools that help us label images semi-

automatically. Finally, continued research into optimizing 

models, including designing them specifically for certain 

hardware, creating efficient ways to run them, and developing 

advanced TinyML strategies, is crucial. This will help us 

shrink the computing and energy demands of CNNs, making 

them even more practical for widespread, real-time structural 

health monitoring on small, embedded systems. This also 

includes exploring brand-new neural network designs 

specifically for devices with limited resources and looking 

into how we can use federated learning for distributed model 

training and updates. 

VII. CONCLUSION 

This paper has explored the incredible impact Convolutional 

Neural Networks are having on automated crack detection in 

our civil infrastructure. We’ve seen how traditional manual 

inspections, which are slow, subjective, and risky, just aren’t 

cutting it anymore for managing today’s massive and 

complex infrastructure networks [2], [3], [5], [6], [7]. Deep 

learning, especially CNNs, has stepped in as a powerful 

solution. It’s fundamentally changed how we approach this 

problem, moving from us painstakingly designing features to 

the models learning them automatically. This has 

dramatically boosted accuracy, scalability, and how robust 

these systems are [1], [3], [6]. 

Our own work showed that HOG+SVM can be effective, 

achieving 82.54% accuracy, and our custom CNN model hit 

a remarkable 100% training and validation accuracy. When 

we compare these to advanced models like YOLOv5 (with 

94.4% precision and 95.6% recall) and Mask R-CNN (85% 

precision and 77% recall), it’s clear that deep learning excels 

at learning complex features and delivering strong 

performance. This progression from older methods to 

advanced CNNs represents a huge leap forward in making 

crack detection more accurate, efficient, and reliable. These 

smart software solutions are truly essential for keeping our 

structures safe and sound. 

However, putting these systems into action in the real world 

still comes with challenges, like varying environmental 

conditions, diverse data, and the need for models to generalize 

well. Moving forward, we need to focus on getting even better 

at detecting hairline cracks, reducing false negatives, 

standardizing how we annotate images, and making models 

more efficient for smaller, resource-limited devices. By 

tackling these issues, we can truly enhance the reliability and 

widespread use of automated crack detection systems, 

ultimately building safer and more durable infrastructure for 

generations to come. 
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