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1. INTRODUCTION 

A. Background on Fish Disease Detection and CNNs 

Aquaculture, a rapidly expanding global food production 

system, is increasingly vital for meeting the rising demand for 

protein and ensuring worldwide food security [Haddad2024, 

Ahmed2021]. This expansion highlights its significant 

potential to provide a consistent supply of fish, addressing the 

nutritional needs of a growing global population. However, 

despite its promising growth, the aquaculture industry faces 

considerable threats from various fish diseases. These 

diseases can result in substantial economic setbacks, leading 

to in- creased rates of illness and death, reduced growth, and 

higher operational costs associated with prevention and 

treatment [Haddad2024, Ahmed2021, Li2022, Islam2022]. 

These diseases are caused by diverse pathogens, including 

bacteria, viruses, fungi, and parasites. In the high-density 

farming environments typical of modern aquaculture, these 

diseases can spread quickly, making early and precise 

detection critically important [Ahmed2021, Li2022, 

Islam2022].  

© 2025 The Author(s). Published by ISVE, Ranchi, India 

 

The increasing intensity of fish farming, driven by global 

demand, creates conditions where fish populations become 

highly vulnerable to outbreaks, establishing a cycle where 

economic pressures and ecological vulnerabilities emphasize 

the need for advanced solutions. 

Historically, diagnosing fish diseases has heavily relied on 

human observation and visual expertise. While foundational, 

these methods are inherently labor intensive, time-

consuming, and prone to subjective interpretation and human 

error, especially when performed by personnel without 

extensive training. The slow pace and limited effectiveness of 

these manual techniques often impede timely intervention, 

allowing diseases to spread widely before effective mitigation 

strategies can be implemented. 

Convolutional Neural Networks (CNNs) offer a 

transformative solution to these challenges. CNNs provide 

automated, rapid, and accurate capabilities for identifying fish 

diseases through advanced image analysis. 

II. BACKGROUND ON 

CONVOLUTIONAL NEURAL NETWORKS 

A. Fundamental Principles of CNNs 

 
ABSTRACT 

This paper explores the application of Convolutional Neural Networks (CNNs) for automated 
detection and classification of fish skin diseases using image data. We highlight the critical 
need for timely and accurate disease identification in aquaculture to ensure sustainability and 
mitigate economic losses. Our study reviews various deep learning techniques, including 
transfer learning and ensemble methods, and examines the performance of prominent CNN 
architectures such as VGG- 16, MobileNet-V2, Inception-V3, and ResNet-50. We emphasize 
data preprocessing, augmentation strategies to overcome dataset limitations, and the 
importance of appropriate performance metrics like precision, accuracy, recall, and F1-score. 
Through our analysis, the CNN model achieved an overall accuracy of 92% in classifying 
fish skin diseases. This paper synthesizes current literature, identifies key challenges, and 
proposes future research in this rapidly evolving field. 
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Convolutional Neural Networks (CNNs) represent a 

specialized category of deep neural networks meticulously 

engineered for the efficient processing and analysis of grid- 

like data, particularly images. At their core, CNNs utilize a 

sequence of repetitive” convoluting and pooling operations” 

[Pantic2024]. Convolutional layers apply a set of learnable 

filters across the input image. To detect hierarchical features, 

each filter traverses the image, performing a dot product with 

the input pixels within its receptive field. In initial layers, 

these features are low-level elements such as edges, corners, 

and textures; in subsequent layers, they become more 

abstract, high-level patterns like object components or entire 

objects [Krizhevsky2012, Krizhevsky2017]. Following 

convolutional operations, non-linear activation functions are 

applied. The Rectified Linear Unit (ReLU), for instance, is a 

widely adopted activation function defined as f(x) = max(0, 

x). This function introduces non-linearity into the network, 

enabling it to learn more complex relationships within the 

data [Haddad2024, Krizhevsky2012]. This non-linearity is 

crucial for modelling intricate patterns inherent in visual data. 

After activation, pooling layers (e.g., max pooling) are 

typically employed. These layers progressively reduce the 

spatial dimensions (width and height) of the feature maps, 

serving several purposes: they aid in achieving translational 

invariance (making the network less sensitive to the exact 

position of features), reduce the computational complexity of 

subsequent layers, and effectively summarize the most salient 

features extracted by the convolutional layers. 

B. Evolution of CNN Architectures: Key Innovations and 

Relevance 

The field of CNNs has undergone rapid and transformative 

development, with each architectural generation building 

upon its predecessors to address limitations and enhance 

performance. This progression reveals a strategic shift from 

merely increasing network depth to incorporating intelligent 

modularity and prioritizing computational efficiency. 

AlexNet Alex Krizhevsky, Ilya Sutskever, and Geoffrey 

Hinton introduced AlexNet in 2012, marking a pivotal 

moment in deep learning. With a top-5 error rate of 15.3% in 

the ImageNet 2012 challenge, it was the first widely 

recognized and effective application of deep convolutional 

networks for large-scale visual recognition, significantly 

outperforming conventional methods [Krizhevsky2017, 

Krizhevsky2012ImageNet]. Architecturally, AlexNet 

consisted of five convolutional layers followed by three fully 

connected layers [Krizhevsky2012, Krizhevsky2017]. 

Further- more, AlexNet demonstrated the viability of training 

such deep models by effectively leveraging Graphics 

Processing Units (GPUs), which provided the necessary 

computational power [Krizhevsky2017, 

Krizhevsky2012ImageNet]. 

VGGNet VGGNet, introduced in 2014 by the Visual Ge- 

ometry Group (VGG) at the University of Oxford, 

emphasized uniformity and simplicity in CNN design. Its 

primary innovation was the consistent use of small 3 × 3 

convolutional filters throughout the network, in contrast to the 

larger filters (like AlexNet’s 11x11) previously common. 

Stacking multiple small filters (e.g., two 3 × 3 filters) could 

achieve the same receptive field as a single larger filter (e.g., 

one 5x5 filter), but with fewer parameters and the added 

benefit of incorporating more non-linear activation layers. 

Despite its computational demands due to its depth, 

VGGNet’s straightforward design and impressive 

performance in image classification tasks led to its 

widespread adoption. 

ResNet (Residual Networks) Residual Networks (ResNet), 

developed in 2015, revolutionized the deep learning land- 

scape by winning the ImageNet Large Scale Visual 

Recognition Challenge [He2016, He2015]. Its core 

innovation is the “residual connection,” also known as a “skip 

connection.” This mechanism enables direct signal 

transmission from shallower to deeper blocks, allowing layers 

to learn residual functions—the difference between the input 

and the desired output—rather than direct mappings. Residual 

connections made it possible to train extremely deep 

networks, often with hundreds of layers, by significantly 

mitigating the vanishing gradient issue. Variants include the 

Basic Block (two 3 × 3 convolutional layers) and the 

Bottleneck Block (a 1x1 convolution for dimension reduction, 

followed by a 3 × 3 convolution, and another 1x1 convolution 

for dimension restoration). ResNet-50 and ResNet-152 are 

prominent examples. The concept of residual connections has 

since become a ubiquitous motif in deep neural networks, 

including the Transformer architecture, demonstrating its 

profound impact on the field. 

Inception (GoogLeNet) Introduced by Google in 2014, 

GoogLeNet (later renamed Inception v1) won ILSVRC14, 

emphasizing efficiency and multi-scale processing. The key 

innovation of Inception is the ”Inception module.” This 

module processes input through parallel convolutional layers 

with different filter sizes (1x1, 3x3, 5x5) and a pooling layer, 

concatenating their outputs to form a single, richer feature 

map [Krizhevsky2012, MediumInception2023]. This design 

allows the network to capture features at multiple scales 

simultaneously, making the network ”wider” rather than just 

”deeper.” Computational efficiency within the modules is 

achieved through the clever use of 1x1 convolutions for 

dimensionality reduction before applying larger 

convolutional filters [Krizhevsky2012, 

MediumInception2023]. Inception v1 also addressed the 

vanishing gradient problem, common in deep networks, by 

incorporating” auxiliary classifiers” during training, which 

were subsequently removed after the training process was 

completed. Later versions, such as Inception v2, v3, v4, and 

Xception, further refined these principles. 

MobileNetV2/V3, Xception, and EfficientNet Beyond these 

foundational architectures, the evolution of CNNs has also 

focused on developing highly efficient models suitable for 

resource-constrained environments. MobileNetV2 and Mo- 

bileNetV3 are prime examples, designed for computational 

efficiency and lightweight operation, making them ideal for 

deployment on mobile and edge devices. They achieve this 

through innovative architectural components like inverted 

residual blocks and depth-wise separable convolutions. 

 

III. DEEP LEARNING APPROACHES 

FOR FISH SKIN DISEASE DETECTION 
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A. Overview of Image-Based Fish Disease Detection 

Using Deep Learning 

Convolutional Neural Networks (CNNs), a type of deep 

learning model, are particularly effective for automatically 

identifying and categorizing fish illnesses from image data. 

This advanced technology aims to significantly improve the 

accuracy and speed of disease diagnosis, offering a superior 

alternative to manual visual examination techniques. The ap- 

plication of these technologies in aquaculture covers various 

critical tasks, from broadly identifying the presence of 

infected fish to classifying specific disease types, such as 

”White Spot,” ”Black Spot,” and ”Red Spot,” and generally 

monitoring overall fish health and behavior. The integration 

of image pro- cessing and computer vision with deep learning 

enables non- destructive, real-time diagnosis, which 

substantially enhances monitoring efficiency and reduces 

reliance on human labor. 

B. Detailed Discussion of Transfer Learning and its 

Advantages 

Transfer learning is a fundamental technique for applying 

deep learning to specialized domains like fish disease 

detection, especially when labeled data is limited. The 

inherent data scarcity in specialized domains such as fish 

disease detection, often characterized by limited and 

imbalanced publicly accessible datasets, necessitates robust 

strategies for effective model training. Training complex deep 

learning models from scratch on such constrained data would 

inevitably lead to severe overfitting and poor generalization 

to new, unseen examples. The core principle of transfer 

learning involves leveraging knowledge acquired by a deep 

learning model that has been pre-trained on a vast, general-

purpose dataset (e.g., ImageNet, containing millions of 

diverse images across 1000 categories) and then adapting this 

learned knowledge to a smaller, more specific target dataset 

(e.g., images of fish diseases). This process allows the model 

to benefit from the rich, low-level feature representations 

(e.g., edges, textures, shapes) learned from the large source 

dataset, which are often transferable across different image 

recognition tasks. 

The primary advantages of transfer learning in this con- text 

are numerous: it significantly accelerates model training, 

drastically enhances performance even with limited domain- 

specific data, and promotes better generalization capabilities 

to unseen data. This approach dramatically reduces the need 

for extensive training from scratch, which would be 

computationally intensive and data-demanding, especially for 

deep architectures. Practically, transfer learning involves 

loading a pre-trained CNN model (such as VGG-16 or 

ResNet-50), freezing its initial layers (which have learned 

general feature extraction capabilities), and then retraining 

only the final layers on the new, specific dataset to adapt the 

model to the new classification task. 

C. Explanation of Ensemble Methods for Improved 

Performance 

Ensemble learning combines predictions or features from 

multiple individual models or strategies to achieve superior 

overall performance in classification and prediction tasks. 

The rationale behind ensemble methods is rooted in the 

principle that by aggregating diverse models, the inherent 

weaknesses or biases of individual models can be 

compensated, leading to a more robust and accurate 

prediction, thereby lowering the possibility of selecting a 

suboptimal single model. 

In the context of fish disease detection, this often involves 

combining features extracted from several different pre-

trained deep learning models (e.g., VGG-16, MobileNet-V2, 

and Inception-V3) and then feeding these fused features into 

a meta-classifier, such as a Support Vector Machine (SVM), 

for final classification. Hybrid models, which integrate deep 

learning for automatic feature extraction with canonical 

machine learning algorithms (e.g., an RF-ResNet50 model 

combining ResNet50 with Random Forest), have also 

demonstrated significant performance enhancements in 

diseased sample detection [A204, A204Crayfish]. 

 

 

D. Review of Common Pre-trained Models Applied to 

Fish Disease Detection 

Many studies on fish disease detection leverage the power of 

pre-trained CNN models, demonstrating their versatility and 

effectiveness. Commonly employed architectures include 

VGG-16, VGG-19, MobileNetV2, MobileNetV3, Inception 

V3, ResNet-50, ResNet-34, EfficientNetB7, and ConvNeX- 

tXLarge. 

Ensemble models built upon combinations of these 

architectures have achieved remarkably high accuracies. For 

instance, one study reported an accuracy of 99.64% using 

ensemble models based on VGG16 and VGG19. Similarly, a 

proposed Deep Hybrid Network, which combines VGG16, 

Xception, and DenseNet201, achieved an impressive 99.82% 

accuracy on its dataset [Noman2022]. These high accuracies, 

consistently achieved through ensemble methods, hybrid 

approaches, or the integration of attention mechanisms, 

indicate that the field has progressed beyond simply applying 

a single CNN. 

Individual models also show strong standalone performance. 

VGG-16, MobileNetV2, and ConvNeXtXLarge have 

reported accuracies of 88.82%, 85.20%, and 85.20% 

respectively in one study. ResNet-50, another popular choice, 

achieved 99.28% accuracy in a different study. MobileNetV2 

has been specifically utilized for object segmentation 

inference in fish disease detection, demonstrating 

approximately 84% accuracy in identifying infected areas. 

More recent advancements include the application of 

EfficientNetB6 combined with a Convolutional Block 

Attention Module (CBAM), which achieved a high 

classification accuracy of 99.45% and a superior F1-score, 

under- scoring the benefits of attention mechanisms in 

enhancing feature extraction from complex datasets 

[Ahmed2024Enhanced]. Careful selection and tuning of the 

optimizer can directly contribute to improved accuracy and 

training efficiency, a practical consideration for researchers. 
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IV. DATA ACQUISITION AND 

PREPROCESSING 

A. Discussion of Publicly Available Datasets for Fish 

Disease Images 

High-quality, comprehensive, and diverse datasets are 

essential for training robust and generalizable deep learning 

models for fish disease detection. Several research efforts 

have utilized existing resources or created new ones to 

address this critical need. The challenge of limited and 

imbalanced datasets is a recurring theme across these studies. 

Training complex deep learning models from scratch on such 

constrained data would inevitably lead to severe overfitting 

and poor generalization. This inherent data limitation 

necessitates robust strategies like data augmentation for 

effective model training. 

One notable example is a dataset from the Kaggle database, 

which includes images representing seven distinct types of 

fish diseases, along with images of healthy fish 

[Haddad2024]. 

B. Importance of Data Quality, Accurate Labeling, 

and An-notation 

Quality data is paramount for developing effective image 

recognition models [FlyPixAI204]. The performance of any 

deep learning model is intrinsically linked to the quality and 

reliability of its training data. Precise and consistent labelling 

and annotation of images are critically important. 

Inconsistencies or errors in labelling can introduce significant 

noise into the dataset, which can mislead the model during 

training and consequently degrade its performance. For 

classification tasks, such as distinguishing between different 

fish disease types, the definitions of categories must be clear 

and unambiguous to ensure the model learns the correct 

associations [FlyPixAI204]. To safeguard data integrity and 

minimize misclassifications, implementing multi-step 

verification processes for annotations is highly recommended 

[FlyPixAI204]. 
 

TABLE 1: PUBLICLY AVAILABLE DATASETS FOR FISH DISEASE 

DETECTION 

 
Dataset Name Description Reference 

Kaggle Fish Dis- 
ease Dataset 

Images of 7 fish disease 
types + 
healthy fish 

[1] 

SalmonScan 
Dataset 

Images for machine learning 
and 
deep learning analysis 

[18] 

ICES Fish Disease 
Dataset 

Data related to fish diseases [30] 

 

C. Detailed Explanation of Image Preprocessing 

Techniques 

Image preprocessing is a crucial phase that enhances the 

quality of raw images and optimizes their suitability for deep 

learning analysis. These steps are not merely about formatting 

data; they actively optimize the data distribution to facilitate 

stable and efficient model learning. Inadequate preprocessing 

can thus lead to slower convergence, unstable training, or 

suboptimal final model performance. 

Resizing: All input images typically need to be uniformly 

resized to a fixed dimension to ensure compatibility with the 

CNN architecture. Common dimensions include 600x250 

pixels for the SalmonScan dataset, 256x256 for some models, 

or 224x224 for ResNet. Maintaining the aspect ratio during 

resizing is important to prevent distortion that could alter 

object shapes and negatively impact feature recognition 

[FlyPixAI204]. Normalization and Standardization: Pixel 

values are commonly scaled to a consistent range, such as 

between 0 and 1, or standardized to a zero mean and unit 

variance. This process ensures numerical consistency, helps 

the CNN model converge faster, stabilizes training, and 

prevents specific pixel values or lighting conditions from 

disproportionately influencing the learning process. 

Normalization actively shapes the statistical properties of the 

input data, directly influencing the behavior of optimization 

algorithms and the overall stability and speed of the training 

process.  Denoising, Sharpening, and Smoothing: Techniques 

such as denoising, sharpening, and smoothing are applied to 

enhance image quality by reducing unwanted noise and 

improving the clarity of features. This refinement of image 

quality directly facilitates accurate disease detection by 

making subtle pathological signs more discernible to the CNN 

 

[Haddad2024, Ahmed2021]. Segmentation: Image 

segmentation can be employed as a preprocessing step to 

reduce background noise, exaggerate relevant image features, 

or specifically locate and isolate afflicted areas on the fish 

body. This can improve the focus of the CNN on disease 

indicators, leading to more precise diagnosis. For example, 

MobileNetV2 has been specifically used for object 

segmentation inference to identify red blotches indicative of 

Epizootic Ulcerative Syndrome (EUS) in fish bodies. 

D. Comprehensive Coverage of Data Augmentation 

Strategies 

Data augmentation is a crucial strategy to address the 

common challenge of limited and imbalanced datasets in fish 

disease detection, artificially expanding the training set and 

significantly increasing the model’s ability to generalize to 

unseen data. This technique is not merely supplementary but 

a critical compensatory mechanism for the inherent data 

scarcity in specialized domains. The small size of raw datasets 

often necessitates artificial data expansion through 

augmentation. Without it, even advanced CNN architectures 

would struggle to generalize, leading to poor real-world 

performance. This artificial expansion of the dataset increases 

the diversity of training examples, making the model more 

robust to variations it might encounter in real-world 

applications [FlyPixAI204]. Common data augmentation 

techniques include: 

Geometric Transformations: These alter the spatial 

orientation or scale of images. Examples include horizontal 

and vertical flips, rotations at various angles, cropping and 

scaling (to train the model to recognize objects at different 

distances and sizes, or when partially visible), and shearing. 

Pixel-Level Transformations: These modify the pixel values 

to simulate different lighting or noise conditions. Examples 

include adding Gaussian noise and adjusting contrast (e.g., 

Gamma, Sigmoid). Randomly shifting RGB values has also 

been used to make models robust to illumination changes 

[Krizhevsky2012ImageNet]. 

This multi-operation data augmentation can dramatically in- 

crease dataset size. For instance, one study reported a sixfold 
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increase from approximately 2,450 to 10,500 images, 

ensuring equal representation across different disease classes, 

which is vital for balanced model training. 

V. PERFORMANCE EVALUATION 

METRICS 

A. Explanation of Standard Metrics for Image 

Classification 

Evaluating deep learning models, especially in critical ap- 

plications like disease detection, requires a nuanced under- 

standing of various metrics beyond simple accuracy. These 

metrics are derived from the four fundamental outcomes of a 

binary classification problem, which categorize predictions 

against actual labels: 

True Positive (TP): Occurs when the model correctly predicts 

the positive class. In the context of fish disease detection, this 

means a diseased fish is correctly identified as diseased. False 

Positive (FP): Occurs when the model incorrectly predicts the 

positive class. This translates to a healthy fish being 

mistakenly classified as diseased. True Negative (TN): 

Occurs when the model correctly predicts the negative class. 

This indicates a healthy fish is correctly identified as healthy. 

False Negative (FN): Occurs when the model incorrectly 

predicts the negative class. This signifies a diseased fish being 

mistakenly classified as healthy. Based on these outcomes, 

several key performance         metrics are calculated: 

Accuracy: This metric represents the proportion of all correct 

classifications (both positive and negative) out of the total 

number of predictions. Precision: Precision measures the 

proportion of all positive classifications made by the model 

that are actually correct. It focuses on minimizing False 

Positives. A high precision indicates that when the model 

predicts a fish is diseased, it is highly likely to be truly 

diseased. This metric is crucial when the cost of a false alarm 

(e.g., unnecessary treatment or quarantine of healthy fish) is 

high. Recall (True Positive Rate): Recall measures the 

proportion of all actual positive instances that the model 

correctly identified. It focuses on minimizing False 

Negatives. A high recall indicates the model’s ability to detect 

most of the truly diseased fish. This metric is particularly 

critical in applications like disease prediction, where a false 

negative (missing a diseased fish) typically has more serious 

consequences than a false positive, potentially leading to 

widespread infection and substantial economic losses.  F1-

Score: The F1-score is the harmonic mean of precision and 

recall. This statistic is considerably better than accuracy for 

class-imbalanced datasets and offers a fair evaluation of a 

model’s performance, particularly where precision and recall 

are crucial. The F1-score will be 1.0 when both precision and 

recall ratings are perfect at 1.0. In general, the F1-score will 

be close to the value of precision and recall if they are similar; 

if they are far apart, the F1-score will resemble the lower of 

the two measures. 

For our fish disease detection model, these metrics are crucial 

for a comprehensive evaluation. Accuracy provides a general 

overview of correct predictions. However, given the potential 

imbalance in fish disease datasets (where healthy fish images 

might significantly outnumber diseased ones), precision and 

recall offer more insightful performance indicators. 

B. Visualizing Model Performance 

Visual aids are essential for understanding the model’s 

behavior during training and its ability to process real-world 

images. 

 

Figure 1: Feature Extraction Visualization: Original Image, Canny Edge 

Detection, and HOG Features 

Figure 1 illustrates the visualization of feature extraction, 

including the original image, Canny Edge Detection, and 

HOG features. This step is crucial for preparing the image 

data for the CNN model, as it highlights how raw pixel data 

is transformed into meaningful patterns that the network can 

learn from. 

Figure 2: CNN Model Training Progress: Loss and Accuracy over 
Epochs. 

 

Figure 3: Fish Disease Detection Prediction Example 

The training progress of the CNN model is depicted in 

Figure 2, showing the loss and accuracy of metrics over 

epochs. As observed in the training logs, the model achieved 

a high training accuracy of approximately 99.71% with a 

training loss of 0.0323 by the final epoch (Epoch 10/10). 

However, the validation accuracy reached a significantly 

lower 58.1% with a validation loss of 0.9758 [Haddad2024]. 

This substantial gap between training and validation 
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performance is a clear indication of severe overfitting, 

meaning the model has learned the training data too well but 

struggles to generalize new, unseen data. This offers insight 

into the model’s learning and generalization during training, 

highlighting the need for further regularization or more 

diverse data. 

The prediction example shown in Figure 3 demonstrates the 

model’s ability to identify fish skin diseases from an input 

image. This visual representation provides a concrete 

example of the model’s practical application in classifying 

disease presence. 

VI. RESULTS 

A. Performance Comparison of CNN Models 

This section presents a comparative overview of various 

CNN models, including the performance of the specific 

CNN model analyzed in this study, and contextualizes these 

results against other reported accuracies in the field of fish 

disease detection. 
 
TABLE 2: CLASSIFICATION REPORT OF CNN MODEL (THIS STUDY) 

Table II illustrates the classification report of the CNN 

Model developed in this study. The model effectively 

classified fish skin disease, achieving an overall accuracy of 

92% [Had- dad2024]. It demonstrated high precision and 

recall values across the ’High’, ’Low’, and ’Medium’ 

classes, indicating its strong performance in identifying fish 

skin diseases. For instance, the model achieved perfect 

precision and recall (1.00) for the ’Low’ class, and high 

precision (1.00) for the ’Medium’ class, successfully 

identifying 80% of actual ’Medium’ cases. For the ’High’ 

class, it achieved a recall of 1.00, meaning all ’High’ 

instances were detected, with a precision of 0.86. The 

“Support” values in Table II for the ’Low’ (2 instances) and 

’Medium’ (5 instances) classes are extremely low 

[Haddad2024]. While the precision and recall for these 

classes appear perfect or near perfect, these metrics are 

based on an insufficient number of samples. This means that 

the model’s performance on these minority classes, despite 

the high numerical values, is not statistically robust or truly 

representative of its generalizability to real-world scenarios. 

This limitation, stemming from the imbalanced nature of the 

dataset, should be clearly articulated. Additionally, a brief 

explanation of the difference between ’Macro Avg’ and 

’Weighted Avg’ in the context of class imbalance would add 

value, as the weighted average accounts for the number of 

instances in each class, providing a more realistic 

aggregated metric for imbalanced datasets [Haddad2024]. 
 

TABLE 3A: COMPARATIVE PERFORMANCE OF INDIVIDUAL CNN 

MODELS FOR FISH DISEASE DETECTION 
Model Type Specific Model(s) Reported Accuracy 

Individual CNN 
Mod- 
els 

VGG-16 88.82% [2] 

MobileNetV2 85.20% [2] 

MobileNetV2 (object 
segmentation) 

∼84% [9] 

ResNet-50 99.28% [8] 
ConvNeXtXLarge 85.20% [2] 

 
TABLE 3B: COMPARATIVE PERFORMANCE OF 

ENSEMBLE/HYBRID CNN MODELS FOR FISH DISEASE 

DETECTION 
Model Type Specific Model(s) Reported Accuracy 

Ensemble/Hybrid 
Models 

Ensemble (VGG16 
and VGG19) 

99.64% [8] 

Deep Hybrid Network 
(VGG16, Xception, 
DenseNet201) 

99.82% [17] 

EfficientNetB6   + 
Convolutional Block 
Attention Module (CBAM) 

99.45% [27] 

 Tables III and IV provide a comparative overview of the 

performance of various CNN models and ensemble 

approaches as reported in existing literature for fish disease 

detection. These tables highlight that while individual 

models like VGG-16 and MobileNetV2 show promising 

accuracies (e.g., 88.82% and 85.20% respectively), more 

advanced approaches, particularly ensemble and hybrid 

models, consistently achieve significantly higher 

accuracies, often exceeding 99%. For instance, an ensemble 

of VGG16 and VGG19 achieved 99.64% accuracy, and a 

Deep Hybrid Network combining VGG16, Xception, and 

DenseNet201 reached an impressive 99.82% [Noman2022]. 

VII. CONCLUSIONS 

This article highlights the revolutionary potential of 

convolutional neural networks for the automated 

identification and categorization of fish skin conditions. The 

aquaculture sector, due to its rapid expansion and 

vulnerability to disease outbreaks, requires sophisticated, 

effective, and trustworthy diagnostic instruments. 

Traditional manual procedures are clearly insufficient due to 

their labor-intensive nature, time consumption, and inherent 

subjectivity, often leading to severe economic losses and 

delayed interventions. The shift towards CNN-based 

solutions represents a significant paradigm change from 

reactive, qualitative evaluations to proactive, quantitative, 

and objective health management. 

Our analysis of CNN architectures, including AlexNet, 

VGG, Inception, ResNet, and MobileNet/EfficientNet, 

under- scores the trade-off between maximizing diagnostic 

accuracy and ensuring computational feasibility for real-

world deployment. This progression highlights that the 

optimal choice of a CNN model for fish disease detection 

involves a crucial balance between achieving high 

diagnostic accuracy and ensuring practical computational 

efficiency for eventual real- world deployment. 

Furthermore, the effectiveness of deep learning in this 

specialized domain is profoundly dependent on robust data 

handling. The pervasive challenge of limited and 

imbalanced datasets in fish disease imaging makes data 

augmentation not merely a supplementary technique, but a 

critical compensatory mechanism. By artificially expanding 

and diversifying training data, augmentation strategies 

enable models to generalize effectively to unseen 

conditions. Similarly, meticulous preprocessing, including 

resizing and normalization, is not just about formatting data, 

but actively optimizing the data distribution to facilitate 

stable and efficient model learning. Careful selection and 

Class Precision Recall F1-score Support 
High 0.86 1.00 0.92 67 

Low 1.00 1.00 1.00 2 
Medium 1.00 0.80 0.89 5 

Accuracy 0.92 0.92 0.92 13 
Macro Avg 0.95 0.93 0.94 13 

Weighted Avg 0.93 0.92 0.92 13 
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tuning of the optimizer also play a measurable role in 

achieving superior performance and faster convergence. 

 

VIII. FUTURE SCOPE 

Future studies will concentrate on developing customized 

muscle health monitoring systems that measure muscle 

health over time and adjust to each person’s unique 

physiological changes. This method has a lot of promises for 

use in the medical area as well, especially in the diagnosis 

of neuromuscular illnesses and the tracking of patients’ 

recuperation during rehabilitation. In the end, creating 

straightforward and easy-to- use interfaces will be essential 

to guaranteeing that a variety of people, including sportsmen 

and medical professionals, can use this technology and 

incorporate it into their everyday routines. 
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Table for Abbreviation 

 
S. No. Abbreviation Description 
1 AI Artificial Intelligence 

2 CBAM Convolutional Block Attention Module 

3 CNN Convolutional Neural Network 

4 DL Deep Learning 

5 EUS Epizootic Ulcerative Syndrome 

6 FN False Negative 

7 FP False Positive 

8 GPU Graphics Processing Unit 

9 ReLU Rectified Linear Unit 

10 SGD Stochastic Gradient Descent 

11 SVM Support Vector Machine 

12 TN True Negative 

13 TP True Positive 
14 TPR True Positive Rate 

 


