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ABSTRACT

This paper explores the application of Convolutional Neural Networks (CNNs) for automated

detection and classification of fish skin diseases using image data. We highlight the critical
need for timely and accurate disease identification in aquaculture to ensure sustainability and
mitigate economic losses. Our study reviews various deep learning techniques, including
transfer learning and ensemble methods, and examines the performance of prominent CNN
architectures such as VGG- 16, MobileNet-V2, Inception-V3, and ResNet-50. We emphasize
data preprocessing, augmentation strategies to overcome dataset limitations, and the
importance of appropriate performance metrics like precision, accuracy, recall, and F1-score.
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Through our analysis, the CNN model achieved an overall accuracy of 92% in classifying
fish skin diseases. This paper synthesizes current literature, identifies key challenges, and

proposes future research in this rapidly evolving field.

1. INTRODUCTION
A. Background on Fish Disease Detection and CNN's

Aquaculture, a rapidly expanding global food production
system, is increasingly vital for meeting the rising demand for
protein and ensuring worldwide food security [Haddad2024,
Ahmed2021]. This expansion highlights its significant
potential to provide a consistent supply of fish, addressing the
nutritional needs of a growing global population. However,
despite its promising growth, the aquaculture industry faces
considerable threats from wvarious fish diseases. These
diseases can result in substantial economic setbacks, leading
to in- creased rates of illness and death, reduced growth, and
higher operational costs associated with prevention and
treatment [Haddad2024, Ahmed2021, Li2022, Islam2022].

These diseases are caused by diverse pathogens, including
bacteria, viruses, fungi, and parasites. In the high-density
farming environments typical of modern aquaculture, these
diseases can spread quickly, making early and precise
detection critically important [Ahmed2021, Li2022,
Islam2022].

© 2025 The Author(s). Published by ISVE, Ranchi, India

The increasing intensity of fish farming, driven by global
demand, creates conditions where fish populations become
highly vulnerable to outbreaks, establishing a cycle where
economic pressures and ecological vulnerabilities emphasize
the need for advanced solutions.

Historically, diagnosing fish diseases has heavily relied on
human observation and visual expertise. While foundational,
these methods are inherently labor intensive, time-
consuming, and prone to subjective interpretation and human
error, especially when performed by personnel without
extensive training. The slow pace and limited effectiveness of
these manual techniques often impede timely intervention,
allowing diseases to spread widely before effective mitigation
strategies can be implemented.

Convolutional Neural Networks (CNNs) offer a
transformative solution to these challenges. CNNs provide
automated, rapid, and accurate capabilities for identifying fish
diseases through advanced image analysis.

II. BACKGROUND ON
CONVOLUTIONAL NEURAL NETWORKS

A. Fundamental Principles of CNNs
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Convolutional Neural Networks (CNNs) represent a
specialized category of deep neural networks meticulously
engineered for the efficient processing and analysis of grid-
like data, particularly images. At their core, CNNs utilize a
sequence of repetitive” convoluting and pooling operations”
[Pantic2024]. Convolutional layers apply a set of learnable
filters across the input image. To detect hierarchical features,
each filter traverses the image, performing a dot product with
the input pixels within its receptive field. In initial layers,
these features are low-level elements such as edges, corners,
and textures; in subsequent layers, they become more
abstract, high-level patterns like object components or entire
objects [Krizhevsky2012, Krizhevsky2017]. Following
convolutional operations, non-linear activation functions are
applied. The Rectified Linear Unit (ReLU), for instance, is a
widely adopted activation function defined as f(x) = max(0,
x). This function introduces non-linearity into the network,
enabling it to learn more complex relationships within the
data [Haddad2024, Krizhevsky2012]. This non-linearity is
crucial for modelling intricate patterns inherent in visual data.
After activation, pooling layers (e.g., max pooling) are
typically employed. These layers progressively reduce the
spatial dimensions (width and height) of the feature maps,
serving several purposes: they aid in achieving translational
invariance (making the network less sensitive to the exact
position of features), reduce the computational complexity of
subsequent layers, and effectively summarize the most salient
features extracted by the convolutional layers.

B. Evolution of CNN Architectures: Key Innovations and
Relevance

The field of CNNs has undergone rapid and transformative
development, with each architectural generation building
upon its predecessors to address limitations and enhance
performance. This progression reveals a strategic shift from
merely increasing network depth to incorporating intelligent
modularity and prioritizing computational efficiency.

AlexNet Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton introduced AlexNet in 2012, marking a pivotal
moment in deep learning. With a top-5 error rate of 15.3% in
the ImageNet 2012 challenge, it was the first widely
recognized and effective application of deep convolutional
networks for large-scale visual recognition, significantly
outperforming conventional methods [Krizhevsky2017,
Krizhevsky2012ImageNet]. Architecturally, AlexNet
consisted of five convolutional layers followed by three fully
connected layers [Krizhevsky2012, Krizhevsky2017].
Further- more, AlexNet demonstrated the viability of training
such deep models by effectively leveraging Graphics
Processing Units (GPUs), which provided the necessary
computational power [Krizhevsky2017,
Krizhevsky2012ImageNet].

VGGNet VGGNet, introduced in 2014 by the Visual Ge-
ometry Group (VGG) at the University of Oxford,
emphasized uniformity and simplicity in CNN design. Its
primary innovation was the consistent use of small 3 x 3
convolutional filters throughout the network, in contrast to the
larger filters (like AlexNet’s 11x11) previously common.
Stacking multiple small filters (e.g., two 3 x 3 filters) could
achieve the same receptive field as a single larger filter (e.g.,
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one 5x5 filter), but with fewer parameters and the added
benefit of incorporating more non-linear activation layers.
Despite its computational demands due to its depth,
VGGNet’s  straightforward design and  impressive
performance in image classification tasks led to its
widespread adoption.

ResNet (Residual Networks) Residual Networks (ResNet),
developed in 2015, revolutionized the deep learning land-
scape by winning the ImageNet Large Scale Visual
Recognition Challenge [He2016, He2015]. Its core
innovation is the “residual connection,” also known as a “skip
connection.” This mechanism enables direct signal
transmission from shallower to deeper blocks, allowing layers
to learn residual functions—the difference between the input
and the desired output—rather than direct mappings. Residual
connections made it possible to train extremely deep
networks, often with hundreds of layers, by significantly
mitigating the vanishing gradient issue. Variants include the
Basic Block (two 3 x 3 convolutional layers) and the
Bottleneck Block (a 1x1 convolution for dimension reduction,
followed by a 3 x 3 convolution, and another 1x1 convolution
for dimension restoration). ResNet-50 and ResNet-152 are
prominent examples. The concept of residual connections has
since become a ubiquitous motif in deep neural networks,
including the Transformer architecture, demonstrating its
profound impact on the field.

Inception (GoogLeNet) Introduced by Google in 2014,
GooglLeNet (later renamed Inception v1) won ILSVRC14,
emphasizing efficiency and multi-scale processing. The key
innovation of Inception is the “Inception module.” This
module processes input through parallel convolutional layers
with different filter sizes (1x1, 3x3, 5x5) and a pooling layer,
concatenating their outputs to form a single, richer feature
map [Krizhevsky2012, MediumInception2023]. This design
allows the network to capture features at multiple scales
simultaneously, making the network “wider” rather than just
”deeper.” Computational efficiency within the modules is
achieved through the clever use of 1x1 convolutions for
dimensionality  reduction  before  applying larger
convolutional filters [Krizhevsky2012,
MediumInception2023]. Inception vl also addressed the
vanishing gradient problem, common in deep networks, by
incorporating” auxiliary classifiers” during training, which
were subsequently removed after the training process was
completed. Later versions, such as Inception v2, v3, v4, and
Xception, further refined these principles.

MobileNetV2/V3, Xception, and EfficientNet Beyond these
foundational architectures, the evolution of CNNs has also
focused on developing highly efficient models suitable for
resource-constrained environments. MobileNetV2 and Mo-
bileNetV3 are prime examples, designed for computational
efficiency and lightweight operation, making them ideal for
deployment on mobile and edge devices. They achieve this
through innovative architectural components like inverted
residual blocks and depth-wise separable convolutions.

III. DEEP LEARNING APPROACHES
FOR FISH SKIN DISEASE DETECTION



A. Overview of Image-Based Fish Disease Detection
Using Deep Learning

Convolutional Neural Networks (CNNs), a type of deep
learning model, are particularly effective for automatically
identifying and categorizing fish illnesses from image data.
This advanced technology aims to significantly improve the
accuracy and speed of disease diagnosis, offering a superior
alternative to manual visual examination techniques. The ap-
plication of these technologies in aquaculture covers various
critical tasks, from broadly identifying the presence of
infected fish to classifying specific disease types, such as
”White Spot,” ”Black Spot,” and ”Red Spot,” and generally
monitoring overall fish health and behavior. The integration
of image pro- cessing and computer vision with deep learning
enables non- destructive, real-time diagnosis, which
substantially enhances monitoring efficiency and reduces
reliance on human labor.

B. Detailed Discussion of Transfer Learning and its
Advantages

Transfer learning is a fundamental technique for applying
deep learning to specialized domains like fish disease
detection, especially when labeled data is limited. The
inherent data scarcity in specialized domains such as fish
disease detection, often characterized by limited and
imbalanced publicly accessible datasets, necessitates robust
strategies for effective model training. Training complex deep
learning models from scratch on such constrained data would
inevitably lead to severe overfitting and poor generalization
to new, unseen examples. The core principle of transfer
learning involves leveraging knowledge acquired by a deep
learning model that has been pre-trained on a vast, general-
purpose dataset (e.g., ImageNet, containing millions of
diverse images across 1000 categories) and then adapting this
learned knowledge to a smaller, more specific target dataset
(e.g., images of fish diseases). This process allows the model
to benefit from the rich, low-level feature representations
(e.g., edges, textures, shapes) learned from the large source
dataset, which are often transferable across different image
recognition tasks.

The primary advantages of transfer learning in this con- text
are numerous: it significantly accelerates model training,
drastically enhances performance even with limited domain-
specific data, and promotes better generalization capabilities
to unseen data. This approach dramatically reduces the need
for extensive training from scratch, which would be
computationally intensive and data-demanding, especially for
deep architectures. Practically, transfer learning involves
loading a pre-trained CNN model (such as VGG-16 or
ResNet-50), freezing its initial layers (which have learned
general feature extraction capabilities), and then retraining
only the final layers on the new, specific dataset to adapt the
model to the new classification task.

C. Explanation of Ensemble Methods for Improved
Performance

Ensemble learning combines predictions or features from
multiple individual models or strategies to achieve superior
overall performance in classification and prediction tasks.
The rationale behind ensemble methods is rooted in the
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principle that by aggregating diverse models, the inherent
weaknesses or biases of individual models can be
compensated, leading to a more robust and accurate
prediction, thereby lowering the possibility of selecting a
suboptimal single model.

In the context of fish disease detection, this often involves
combining features extracted from several different pre-
trained deep learning models (e.g., VGG-16, MobileNet-V2,
and Inception-V3) and then feeding these fused features into
a meta-classifier, such as a Support Vector Machine (SVM),
for final classification. Hybrid models, which integrate deep
learning for automatic feature extraction with canonical
machine learning algorithms (e.g., an RF-ResNet50 model
combining ResNet50 with Random Forest), have also
demonstrated significant performance enhancements in
diseased sample detection [A204, A204Crayfish].

D. Review of Common Pre-trained Models Applied to
Fish Disease Detection

Many studies on fish disease detection leverage the power of
pre-trained CNN models, demonstrating their versatility and
effectiveness. Commonly employed architectures include
VGG-16, VGG-19, MobileNetV2, MobileNetV3, Inception
V3, ResNet-50, ResNet-34, EfficientNetB7, and ConvNeX-
tXLarge.

Ensemble models built upon combinations of these
architectures have achieved remarkably high accuracies. For
instance, one study reported an accuracy of 99.64% using
ensemble models based on VGG16 and VGG19. Similarly, a
proposed Deep Hybrid Network, which combines VGG16,
Xception, and DenseNet201, achieved an impressive 99.82%
accuracy on its dataset [Noman2022]. These high accuracies,
consistently achieved through ensemble methods, hybrid
approaches, or the integration of attention mechanisms,
indicate that the field has progressed beyond simply applying
a single CNN.

Individual models also show strong standalone performance.
VGG-16, MobileNetV2, and ConvNeXtXLarge have
reported accuracies of 88.82%, 85.20%, and 85.20%
respectively in one study. ResNet-50, another popular choice,
achieved 99.28% accuracy in a different study. MobileNetV2
has been specifically utilized for object segmentation
inference in fish disease detection, demonstrating
approximately 84% accuracy in identifying infected areas.
More recent advancements include the application of
EfficientNetB6 combined with a Convolutional Block
Attention Module (CBAM), which achieved a high
classification accuracy of 99.45% and a superior Fl-score,
under- scoring the benefits of attention mechanisms in
enhancing feature extraction from complex datasets
[Ahmed2024Enhanced]. Careful selection and tuning of the
optimizer can directly contribute to improved accuracy and
training efficiency, a practical consideration for researchers.



IV. DATA
PREPROCESSING

A. Discussion of Publicly Available Datasets for Fish
Disease Images

ACQUISITION AND

High-quality, comprehensive, and diverse datasets are
essential for training robust and generalizable deep learning
models for fish disease detection. Several research efforts
have utilized existing resources or created new ones to
address this critical need. The challenge of limited and
imbalanced datasets is a recurring theme across these studies.
Training complex deep learning models from scratch on such
constrained data would inevitably lead to severe overfitting
and poor generalization. This inherent data limitation
necessitates robust strategies like data augmentation for
effective model training.

One notable example is a dataset from the Kaggle database,
which includes images representing seven distinct types of
fish diseases, along with images of healthy fish
[Haddad2024].

B. Importance of Data Quality, Accurate Labeling,
and An-notation

Quality data is paramount for developing effective image
recognition models [FlyPixAI204]. The performance of any
deep learning model is intrinsically linked to the quality and
reliability of its training data. Precise and consistent labelling
and annotation of images are critically important.
Inconsistencies or errors in labelling can introduce significant
noise into the dataset, which can mislead the model during
training and consequently degrade its performance. For
classification tasks, such as distinguishing between different
fish disease types, the definitions of categories must be clear
and unambiguous to ensure the model learns the correct
associations [FlyPixAI204]. To safeguard data integrity and
minimize misclassifications, implementing multi-step
verification processes for annotations is highly recommended
[FlyPixAI204].

TABLE 1: PUBLICLY AVAILABLE DATASETS FOR FISH DISEASE
DETECTION

IDataset Name IDescription Reference
Kaggle Fish Dis- [Images of 7 fish disease [1]
ease Dataset types +

healthy fish

SalmonScan Images for machine learning [18]
IDataset and

deep learning analysis
ICES Fish Disease  |Data related to fish diseases [30]
IDataset

C. Detailed Explanation of Image Preprocessing
Techniques

Image preprocessing is a crucial phase that enhances the
quality of raw images and optimizes their suitability for deep
learning analysis. These steps are not merely about formatting
data; they actively optimize the data distribution to facilitate
stable and efficient model learning. Inadequate preprocessing
can thus lead to slower convergence, unstable training, or
suboptimal final model performance.

Resizing: All input images typically need to be uniformly
resized to a fixed dimension to ensure compatibility with the
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CNN architecture. Common dimensions include 600x250
pixels for the SalmonScan dataset, 256x256 for some models,
or 224x224 for ResNet. Maintaining the aspect ratio during
resizing is important to prevent distortion that could alter
object shapes and negatively impact feature recognition
[FlyPixAI204]. Normalization and Standardization: Pixel
values are commonly scaled to a consistent range, such as
between 0 and 1, or standardized to a zero mean and unit
variance. This process ensures numerical consistency, helps
the CNN model converge faster, stabilizes training, and
prevents specific pixel values or lighting conditions from
disproportionately influencing the learning process.
Normalization actively shapes the statistical properties of the
input data, directly influencing the behavior of optimization
algorithms and the overall stability and speed of the training
process. Denoising, Sharpening, and Smoothing: Techniques
such as denoising, sharpening, and smoothing are applied to
enhance image quality by reducing unwanted noise and
improving the clarity of features. This refinement of image
quality directly facilitates accurate disease detection by
making subtle pathological signs more discernible to the CNN

[Haddad2024,  Ahmed2021].  Segmentation: = Image
segmentation can be employed as a preprocessing step to
reduce background noise, exaggerate relevant image features,
or specifically locate and isolate afflicted areas on the fish
body. This can improve the focus of the CNN on disease
indicators, leading to more precise diagnosis. For example,
MobileNetV2 has been specifically used for object
segmentation inference to identify red blotches indicative of
Epizootic Ulcerative Syndrome (EUS) in fish bodies.

D. Comprehensive Coverage of Data Augmentation
Strategies

Data augmentation is a crucial strategy to address the
common challenge of limited and imbalanced datasets in fish
disease detection, artificially expanding the training set and
significantly increasing the model’s ability to generalize to
unseen data. This technique is not merely supplementary but
a critical compensatory mechanism for the inherent data
scarcity in specialized domains. The small size of raw datasets
often necessitates artificial data expansion through
augmentation. Without it, even advanced CNN architectures
would struggle to generalize, leading to poor real-world
performance. This artificial expansion of the dataset increases
the diversity of training examples, making the model more
robust to variations it might encounter in real-world
applications [FlyPixAI204]. Common data augmentation
techniques include:

Geometric Transformations: These alter the spatial
orientation or scale of images. Examples include horizontal
and vertical flips, rotations at various angles, cropping and
scaling (to train the model to recognize objects at different
distances and sizes, or when partially visible), and shearing.
Pixel-Level Transformations: These modify the pixel values
to simulate different lighting or noise conditions. Examples
include adding Gaussian noise and adjusting contrast (e.g.,
Gamma, Sigmoid). Randomly shifting RGB values has also
been used to make models robust to illumination changes
[Krizhevsky2012ImageNet].

This multi-operation data augmentation can dramatically in-
crease dataset size. For instance, one study reported a sixfold



increase from approximately 2,450 to 10,500 images,
ensuring equal representation across different disease classes,
which is vital for balanced model training.

V. PERFORMANCE EVALUATION
METRICS

A. Explanation of Standard Metrics for Image
Classification

Evaluating deep learning models, especially in critical ap-
plications like disease detection, requires a nuanced under-
standing of various metrics beyond simple accuracy. These
metrics are derived from the four fundamental outcomes of a
binary classification problem, which categorize predictions
against actual labels:

True Positive (TP): Occurs when the model correctly predicts
the positive class. In the context of fish disease detection, this
means a diseased fish is correctly identified as diseased. False
Positive (FP): Occurs when the model incorrectly predicts the
positive class. This translates to a healthy fish being
mistakenly classified as diseased. True Negative (TN):
Occurs when the model correctly predicts the negative class.
This indicates a healthy fish is correctly identified as healthy.
False Negative (FN): Occurs when the model incorrectly
predicts the negative class. This signifies a diseased fish being
mistakenly classified as healthy. Based on these outcomes,
several key performance metrics are calculated:

Accuracy: This metric represents the proportion of all correct
classifications (both positive and negative) out of the total
number of predictions. Precision: Precision measures the
proportion of all positive classifications made by the model
that are actually correct. It focuses on minimizing False
Positives. A high precision indicates that when the model
predicts a fish is diseased, it is highly likely to be truly
diseased. This metric is crucial when the cost of a false alarm
(e.g., unnecessary treatment or quarantine of healthy fish) is
high. Recall (True Positive Rate): Recall measures the
proportion of all actual positive instances that the model
correctly identified. It focuses on minimizing False
Negatives. A high recall indicates the model’s ability to detect
most of the truly diseased fish. This metric is particularly
critical in applications like disease prediction, where a false
negative (missing a diseased fish) typically has more serious
consequences than a false positive, potentially leading to
widespread infection and substantial economic losses. F1-
Score: The Fl-score is the harmonic mean of precision and
recall. This statistic is considerably better than accuracy for
class-imbalanced datasets and offers a fair evaluation of a
model’s performance, particularly where precision and recall
are crucial. The F1-score will be 1.0 when both precision and
recall ratings are perfect at 1.0. In general, the F1-score will
be close to the value of precision and recall if they are similar;
if they are far apart, the F1-score will resemble the lower of
the two measures.

For our fish disease detection model, these metrics are crucial
for a comprehensive evaluation. Accuracy provides a general
overview of correct predictions. However, given the potential
imbalance in fish disease datasets (where healthy fish images
might significantly outnumber diseased ones), precision and
recall offer more insightful performance indicators.

B. Visualizing Model Performance
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Visual aids are essential for understanding the model’s
behavior during training and its ability to process real-world
images.
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Figure 1: Feature Extraction Visualization: Original Image, Canny Edge
Detection, and HOG Features

Figure 1 illustrates the visualization of feature extraction,
including the original image, Canny Edge Detection, and
HOG features. This step is crucial for preparing the image
data for the CNN model, as it highlights how raw pixel data
is transformed into meaningful patterns that the network can
learn from.
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Figure 2: CNN Model Training Progress: Loss and Accuracy over
Epochs.
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Figure 3: Fish Disease Detection Prediction Example

The training progress of the CNN model is depicted in
Figure 2, showing the loss and accuracy of metrics over
epochs. As observed in the training logs, the model achieved
a high training accuracy of approximately 99.71% with a
training loss of 0.0323 by the final epoch (Epoch 10/10).
However, the validation accuracy reached a significantly
lower 58.1% with a validation loss of 0.9758 [Haddad2024].
This substantial gap between training and validation



performance is a clear indication of severe overfitting,
meaning the model has learned the training data too well but
struggles to generalize new, unseen data. This offers insight
into the model’s learning and generalization during training,
highlighting the need for further regularization or more
diverse data.

The prediction example shown in Figure 3 demonstrates the
model’s ability to identify fish skin diseases from an input
image. This visual representation provides a concrete
example of the model’s practical application in classifying
disease presence.

VI. RESULTS

A. Performance Comparison of CNN Models

This section presents a comparative overview of various
CNN models, including the performance of the specific
CNN model analyzed in this study, and contextualizes these
results against other reported accuracies in the field of fish
disease detection.

TABLE 2: CLASSIFICATION REPORT OF CNN MODEL (THIS STUDY)

Class Precision | Recall | Fl-score Support
igh 0.86 1.00 0.92 67
Low 1.00 1.00 1.00 2
Medium 1.00 0.80 0.89 5
Accuracy 0.92 0.92 0.92 13
Macro Avg 0.95 0.93 0.94 13
Weighted Avg 0.93 0.92 0.92 13

Table II illustrates the classification report of the CNN
Model developed in this study. The model effectively
classified fish skin disease, achieving an overall accuracy of
92% [Had- dad2024]. It demonstrated high precision and
recall values across the ’High’, ’Low’, and ’Medium’
classes, indicating its strong performance in identifying fish
skin diseases. For instance, the model achieved perfect
precision and recall (1.00) for the ’Low’ class, and high
precision (1.00) for the ’Medium’ class, successfully
identifying 80% of actual "Medium’ cases. For the *High’
class, it achieved a recall of 1.00, meaning all ’High’
instances were detected, with a precision of 0.86. The
“Support” values in Table II for the 'Low’ (2 instances) and
’Medium® (5 instances) classes are extremely low
[Haddad2024]. While the precision and recall for these
classes appear perfect or near perfect, these metrics are
based on an insufficient number of samples. This means that
the model’s performance on these minority classes, despite
the high numerical values, is not statistically robust or truly
representative of its generalizability to real-world scenarios.
This limitation, stemming from the imbalanced nature of the
dataset, should be clearly articulated. Additionally, a brief
explanation of the difference between Macro Avg’ and
"Weighted Avg’ in the context of class imbalance would add
value, as the weighted average accounts for the number of
instances in each class, providing a more realistic
aggregated metric for imbalanced datasets [Haddad2024].

TABLE 3A: COMPARATIVE PERFORMANCE OF INDIVIDUAL CNN
MODELS FOR FISH DISEASE DETECTION

Model Type Specific Model(s) Reported Accuracy
Individual CNN  [VGG-16 38.82% [2]

Mod-

els [MobileNetV2 85.20% [2]
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IMobileNetV2 (object ~84% [9]
segmentation)

IResNet-50 99.28% [8
(ConvNeXtXLarge 85.20% [2

TABLE 3B: COMPARATIVE PERFORMANCE OF
ENSEMBLE/HYBRID CNN MODELS FOR FISH DISEASE
DETECTION
Model Type Specific Model(s)
[Ensemble/Hybrid  [Ensemble (VGGL6
Models and VGG19)
Deep Hybrid Network
(VGG16, Xception,
DenseNet201)
EfficientNetB6 +
Convolutional Block
|Attention Module (CBAM)

IReported Accuracy
99.64% [8]

99.82% [17]

99.45% [27]

Tables III and IV provide a comparative overview of the
performance of various CNN models and ensemble
approaches as reported in existing literature for fish disease
detection. These tables highlight that while individual
models like VGG-16 and MobileNetV2 show promising
accuracies (e.g., 88.82% and 85.20% respectively), more
advanced approaches, particularly ensemble and hybrid
models, consistently achieve significantly higher
accuracies, often exceeding 99%. For instance, an ensemble
of VGG16 and VGG19 achieved 99.64% accuracy, and a
Deep Hybrid Network combining VGG16, Xception, and
DenseNet201 reached an impressive 99.82% [Noman2022].

VII. CONCLUSIONS

This article highlights the revolutionary potential of
convolutional neural networks for the automated
identification and categorization of fish skin conditions. The
aquaculture sector, due to its rapid expansion and
vulnerability to disease outbreaks, requires sophisticated,
effective, and trustworthy diagnostic instruments.
Traditional manual procedures are clearly insufficient due to
their labor-intensive nature, time consumption, and inherent
subjectivity, often leading to severe economic losses and
delayed interventions. The shift towards CNN-based
solutions represents a significant paradigm change from
reactive, qualitative evaluations to proactive, quantitative,
and objective health management.

Our analysis of CNN architectures, including AlexNet,
VGG, Inception, ResNet, and MobileNet/EfficientNet,
under- scores the trade-off between maximizing diagnostic
accuracy and ensuring computational feasibility for real-
world deployment. This progression highlights that the
optimal choice of a CNN model for fish disease detection
involves a crucial balance between achieving high
diagnostic accuracy and ensuring practical computational
efficiency for eventual real- world deployment.
Furthermore, the effectiveness of deep learning in this
specialized domain is profoundly dependent on robust data
handling. The pervasive challenge of limited and
imbalanced datasets in fish disease imaging makes data
augmentation not merely a supplementary technique, but a
critical compensatory mechanism. By artificially expanding
and diversifying training data, augmentation strategies
enable models to generalize effectively to unseen
conditions. Similarly, meticulous preprocessing, including
resizing and normalization, is not just about formatting data,
but actively optimizing the data distribution to facilitate
stable and efficient model learning. Careful selection and



tuning of the optimizer also play a measurable role in
achieving superior performance and faster convergence.

VIII. FUTURE SCOPE

Future studies will concentrate on developing customized
muscle health monitoring systems that measure muscle
health over time and adjust to each person’s unique
physiological changes. This method has a lot of promises for
use in the medical area as well, especially in the diagnosis
of neuromuscular illnesses and the tracking of patients’
recuperation during rehabilitation. In the end, creating
straightforward and easy-to- use interfaces will be essential
to guaranteeing that a variety of people, including sportsmen
and medical professionals, can use this technology and
incorporate it into their everyday routines.
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I AT [Artificial Intelligence

2 CBAM IConvolutional Block Attention Module
3 ICNN (Convolutional Neural Network
4 DL Deep Learning

S [EUS [Epizootic Ulcerative Syndrome
6 FN False Negative

7 FP False Positive

3 GPU Graphics Processing Unit

9 ReLU Rectified Linear Unit

10 SGD Stochastic Gradient Descent

11 SVM Support Vector Machine

12 TN True Negative

13 TP [True Positive

14 'TPR True Positive Rate




