

Tuning of Acceleration Coefficients of Particle Swarm Optimization for Economic Load Dispatch

Nimish Kumar, Vikash Kumar, Sujeet Kumar and Apurv Raj

Cite as: Kumar, N., Kumar, V., Kumar, S., & Raj, A. (2025). Tuning of Acceleration Coefficients of Particle Swarm Optimization for Economic Load Dispatch. International Journal of Microsystems and IoT, 3(7), 1706–1709. <https://doi.org/10.5281/zenodo.18160595>

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

Published online: 30 July 2025

Submit your article to this journal:

Article views:


View related articles:

View Crossmark data:

<https://doi.org/10.5281/zenodo.18160595>

Tuning of Acceleration Coefficients of Particle Swarm Optimization for Economic Load Dispatch

Nimish Kumar, Vikash Kumar, Sujeet Kumar and Apurv Raj

Department of Electrical and Electronics Engineering, Bakhtiyarpur College of Engineering, Bakhtiyarpur, Patna, India

ABSTRACT

Economic load dispatch (ELD) is one of the most common power industry optimization problems. Particle swarm optimization (PSO) is the most effective technique to solve ELD problems. Since the invention of PSO, tuning PSO control parameters has gained a lot of attention among the researchers that improves the performance of PSO. In this study, local and social acceleration coefficient (C1 and C2 respectively) of PSO has been tuned for ELD problem. The study found that the best fuel cost is 1597.989 \$/hr. for the load demand of 150 MW. The obtained results also reveal that the equal values of local and social coefficients (C1 = C2 = 2) provide best fuel cost and less average power loss in 20 trial runs. However, higher value of local coefficients (C1 = 3 and C2 = 1) provides consistent results and higher value of social coefficients (C1 = 1.5 and C2 = 2.5) give results in less run time.

KEYWORDS

Economic Load Dispatch (ELD);
 Particle Swarm Optimization (PSO);
 Local Acceleration Coefficient,
 Social Acceleration Coefficient.

1. INTRODUCTION

Economic load dispatch (ELD) is a major optimization problem in the electricity market. It is essentially the process of figuring out the best way to combine the power output of participating generator units to satisfy all operational limitations while meeting the consumer's power demand at the lowest feasible fuel cost [1]-[10].

PSO is one of the best modern optimization algorithm discovered by Eberhart and Kennedy in 1995, through social behavior observed in nature that are used for variety of optimization problems [11]-[14]. It has several advantages over other existing techniques [15], [16] such as simple to understand its algorithm; fewer control parameters etc. [17]-[19]. However, PSO effectively solve the ELD problems, the performance of PSO algorithm can be improved by tuning its control parameters [20]-[24].

In the present study, ELD problem has been solved using PSO algorithm. The proper tuning of local and social acceleration coefficient (AC) has also been presented to improve the effectiveness of PSO algorithm. The best combinations of these coefficients have been obtained based on various criteria like best fuel cost, consistent result, less run time and less average power losses. The rest of the study is organized as follows. Section 2 deals with ELD problems whereas section 3 describes the PSO algorithm. In section 4, results and discussions have been presented while conclusions of the study have been included in section 5.

2. ELD PROBLEM

The ELD is the core optimization problem of power system where the power plant's producing units are scheduled to have the lowest generation cost possible for certain power demand while still adhering to operational limitations [2]-

[4]. The following is the statement of the ELD problems:

Minimize

$$F = \sum_{i=1}^n (a_i P_i^2 + b_i P_i + c_i) + K^* (P_D + P_L - \sum_{i=1}^n P_i) \quad (1)$$

subjected to operational limitations.

Where F is the fuel cost or objective function, n is the number of thermal generating units, P_i is the power produced by i -th generating unit, P_D is the power demand, P_L is the power losses in the system, K is the penalty coefficients and (a_i, b_i, c_i) are the cost coefficients of the i -th generating units.

The power loss in the system is computed using power generation and loss coefficients (B_{ij} , B_{i0} and B_{00}) and is presented as follows:

$$P_L = \sum_{i=1}^n \left(\sum_{j=1}^n (P_i B_{ij} P_j) \right) + \sum_{i=1}^n (B_{i0} P_i) + B_{00} \quad (2)$$

3. PSO ALGORITHM

PSO is the robust computational optimization algorithm that harnesses the social behavior of natural organisms like fish schooling and bird flocking to find out the optimal solution of given objective function in most effective and simple ways. The PSO algorithm finds optimal solution using movement of swarm of particles in the search space. Each particle has position, velocity, fitness value and track of their local best position and global best position that leads the movement of swarm towards best solutions [23]-[24]. The movement of particles in the search space is controlled by following velocity and position update equations:

$$V^{new} = wV^{old} + C1 r_1 (P^{best} - X^{old}) + C2 r_2 (G^{best} - X^{old}) \quad (3)$$

$$X^{new} = X^{old} + V^{new} \quad (4)$$

where X^{old} and V^{old} are the position and velocity in previous iteration respectively. P^{best} and G^{best} are the best position of the particle and best position of the swarm respectively. $C1$ and $C2$ are the local and social acceleration coefficients respectively. r_1 and r_2 are the uniformly distributed random numbers between 0 to 1. X^{new} and V^{new} are the position and velocity in current iteration respectively. w is the inertia weight that controls the balance between local and global search.

Shi and Eberhart suggested linearly decreasing inertia weight from 0.9 (w_{max}) to 0.4 (w_{min}) as presented below [23]:

$$w = w_{max} - k \left(\frac{w_{max} - w_{min}}{k_{max}} \right) \quad (5)$$

where k and k_{max} are the current iteration and maximum allowed iterations respectively.

The pseudocodes of PSO algorithm to find best fitness value are as follows:

```

PSO control parameters selection;
Input parameters of objective function loading;
Initialization;
While termination criteria not reached.
  Objective function calculation;
  Local and global best position selection;
  Velocity and position updating;
  Operational limitations handling;
End while.
Display optimal results.

```

4. RESULTS AND DISCUSSIONS

In this study, ELD problem of three generators system has been solved using PSO algorithm. The cost and loss coefficients and load demand of the system have been taken from ref. [25]. The considered control parameters of the PSO algorithm have been listed in table 1. To improve the performance of PSO, tuning of local and social AC has also considered in the study. Five combinations of local and social AC have been taken for analysis keeping in mind that the sum of local and social AC should be equal to 4. The fuel cost (best, average, worst and standard deviation), average of power losses, Iteration performed and run time of 20 trial runs have been calculated for different combinations of local and social AC. The trial runs have been performed using MATLAB platform. The best results and summarized results of 20 trial runs obtained in the study have been presented in table 2 and table 3 respectively considering different combinations of local and social AC. Further, convergences of best results obtained in the study for different combinations of AC have also been displayed in fig. 1. Moreover, best combinations of the AC have also been listed in table 4 on the basis of best fuel cost, consistent result, less run time and less average power losses obtained in the study.

Table. 1 Control parameters of PSO algorithm

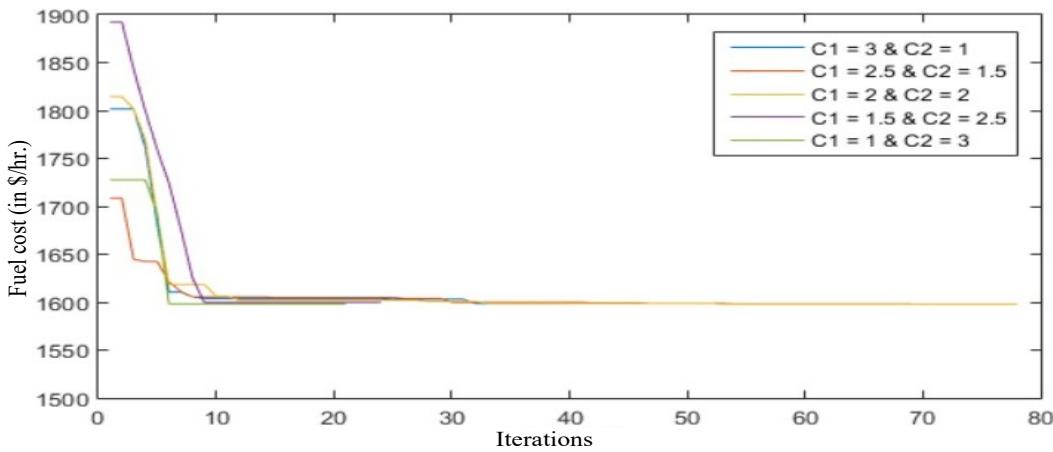

Control parameters	Value
Population	24
Maximum iteration	2000
Maximum inertia weight	0.9
Minimum inertia weight	0.4
Iteration when IW is 0.4	1500
Error gradient	10^{-6}

Table. 2 Best result obtained for different combinations of AC in 20 trial runs

Acceleration Coefficients	Fuel Cost (in \$/hr.)	Power Generation (in MW)			Power losses (in MW)	Iteration Performed	Run Time (in sec)
		G1	G2	G3			
3 1	1598.681	41.064	61.328	49.999	2.360	49	4.591
2.5 1.5	1598.156	34.734	59.515	58.071	2.289	69	4.791
2 2	1597.989	32.111	66.804	53.489	2.371	78	5.479
1.5 2.5	1599.767	23.815	65.949	62.607	2.333	24	1.740
1 3	1598.192	30.562	67.253	54.580	2.369	21	1.525

Table. 3 Summarized result for different combinations of AC in 20 trial runs

Acceleration Coefficients	Fuel Cost (in \$/hr.)					Average Power losses (in MW)	Average Iteration Performed	Average Run Time (in sec)
	C1	C2	Best	Average	Worst			
3 1	1598.681		1604.981	1614.561	4.419	2.420	40	2.922
2.5 1.5	1598.156		1605.255	1628.088	7.936	2.431	54	3.801
2 2	1597.989		1606.950	1646.862	12.72	2.389	48	3.386
1.5 2.5	1599.767		1605.014	1625.530	7.776	2.505	41	2.879
1 3	1598.192		1605.621	1625.732	7.594	2.479	46	3.159

Fig. 1 Convergence of best fuel cost for different combinations of AC.

Table 4 Best combination of acceleration coefficients

Parameters	C1	C2
Best fuel cost	2	2
Consistent Result	3	1
Less average Run Time	1.5	2.5
Less Average Power Losses	2	2

The study obtained the best fuel cost of 1597.989 \$/hr. for a load demand of 150 MW when both the AC are equal i.e. $C1 = C2 = 2$ (see table 2). In that case, the power generations of 3 generators are 32.111 MW, 66.804 MW and 53.489 MW while power loss is 2.371 MW. This run takes 5.479 sec and 78 iterations to give result. The PSO algorithm converges faster if high value of social AC ($C1 = 1$ and $C2 = 3$) is considered as it takes minimum time (1.525 sec) and only 21 iterations to produce result.

The PSO algorithm provides consistent results when high value of local AC ($C1 = 3$ and $C2 = 1$) are considered because the standard deviation cost of 20 trial runs is minimum (4.419 \$/hr.) among five combinations of AC (see table 3). However, high social AC reduces average run time. The less average run time (2.879 sec) is obtained when $C1 = 1.5$ and $C2 = 2.5$. Moreover, best fuel cost (1597.989 \$/hr.) as well as less average power losses (2.389 MW) is obtained if both AC are equal to 2.

5. CONCLUSIONS

The ELD problem of 3 generators system has been solved by PSO algorithm in the present study. To improve the study of PSO algorithm, tuning of local and social AC has also been implemented. The study found that best fuel cost of 1597.989 \$/hr. for load demand of 150 MW and less average power losses of 2.389 MW in 20 trial runs are obtained when equal value of AC ($C1 = C2 = 2$). However, consistent results are obtained by PSO algorithm if high value of local AC is considered. Moreover, higher value of social AC in the PSO algorithm reduces the average run time.

Although PSO algorithm solves ELD problem efficiently and proper tuning of local and social AC enhances its performance, still there are several possibilities of tuning other control parameters like inertia weight, constriction factor etc. to improve the performance of the PSO algorithm.

REFERENCES

1. Hassan MH, Kamel S, Jurado F, Desideri U (2024) Global optimization of economic load dispatch in large scale power systems using an enhanced social network search algorithm, International Journal of Electrical Power and Energy Systems. 156:109719.
2. Wadhwa CL (2009) Electrical power systems. New Age International, New Delhi.
3. Kothari DP, Dhillon JS (2011) Power system optimization, 2nd edn. PHI, Delhi.
4. Nagrath JJ, Kothari DP (2003) Modern power system analysis. McGraw Hill, New York.
5. Hosseinezhad V, Babaei E (2013) Economic load dispatch using θ -PSO. Electrical Power and Energy Systems 49:160–169.
6. Jabr R, Coonick A, Cory B (2000) A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans Power Syst 15(3):930–936.
7. Meng K, Wang HG, Dong ZY, Wong KP (2010) Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans Power Syst 25(1):215–222.
8. Chen PH, Chang HC (1995) Large-scale economic dispatch by genetic algorithm. IEEE Trans Power Syst 10:1919–1926.
9. Vlachogiannis JG, Lee KY (2009) Economic load dispatch—A comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO. IEEE Trans Power Syst 24(2):991–1001.
10. Maharan HS, Dash SK (2019) A new approach to economic load dispatch by using improved QEMA based particle swarm optimization considering generator constraints. Int Res J Eng Technol 06(07):3661–3667.
11. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: International conference on neural networks, IEEE, Perth, pp 1942–1948.
12. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85:317–325.
13. Clerc M, Kennedy J (2002) The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1).
14. Bansa J, Singh LP, Saraswat M, Verma A, Jadon S, Abraham A (2011) Inertia weight strategies in particle swarm optimization. in Proceedings Third World Congress on Nature and Biologically Inspired Computing, pp. 633–640.

15. Sahay KB, Kumar N (2020) ELD Operation of 26 Bus System using Global Optimization Techniques. *Journal of Green Engineering*. 10 (11): 12687-12698.
16. Sahay KB, Kumar N, Tripathi MM (2014) Implementation of different optimization techniques to solve ELD problem. *Int. Conf. Power India*. pp. 1-6, IEEE New Delhi.
17. Kumar N, Raman R (2025) Efficient approach for solving economic load dispatch problems of hybrid renewable energy system using particle swarm optimization algorithm. *Autom. Control Compu. Sci.* 59(2):127-137.
18. Al-Bahrani LT, Patra JC, Kowalczyk R (2016) Multi-gradient PSO algorithm for economic dispatch of thermal generating units in smart grid. In: *Proceedings of IEEE Innovative Smart Grid Technology-Asia (ISGT-Asia)*, pp 258–263.
19. Kumar N., Saha PK, Pal N, Kumari N (2021) Effect of Modulation Index of Nonlinearly Decreasing Inertia Weight on the Performance of PSO Algorithm for Solving ELD Problems. In: Reddy M.J.B., Mohanta D.K., Kumar D., Ghosh D. (eds.) *Advances in Smart Grid Automation and Industry 4.0*. LNEE, vol 693, pp. 767–775. Springer, Singapore.
20. Kumar N, Pal N, Kumar P, Kumari A (2018) Impact of different inertia weight functions on particle swarm optimization algorithm to resolve economic load dispatch problems. In: *International conference on recent advances in information technology*. Dhanbad, pp 1–5.
21. Kumar N, Nangia U, Sahay KB (2014) Economic load dispatch using improved particle swarm optimization algorithms. In: *International conference on power India*. IEEE, New Delhi, pp 1–6.
22. Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. *Comput Oper Res* 33:859–871.
23. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: *International conference on evolution computing*. IEEE, Nagoya, pp 69–73.
24. Shi Y, Eberhart R (1998) Parameter selection in particle swarm optimization. *Proc. Springer Lecture Notes in Computer Science Berlin Germany* 1447:591–600.
25. Saadat H (1999) *Power System Analysis*, Example 7.8, WCB/McGraw-Hill.

B.C.E. Bakhtiyarpur, Patna, India. His areas of interest are power system optimization, electricity forecasting, and solar photovoltaic system analysis.

Corresponding author E-mail: nimishkumar2k7@gmail.com

E-mail: vbikashkumar11@gmail.com

Vikash Kumar is pursuing B.Tech. in Electrical and Electronics Engineering from B.C.E. Bakhtiyarpur, Patna India. His areas of interest are power system optimization and economic load dispatch.

E-mail: sujeetsu2208@gmail.com

Sujeet Kumar is pursuing B.Tech. in Electrical and Electronics Engineering from B.C.E. Bakhtiyarpur, Patna India. His areas of interest are power system optimization and economic load dispatch.

E-mail: sujeetsu2208@gmail.com

Apurv Raj is pursuing B.Tech. in Electrical and Electronics Engineering from B.C.E. Bakhtiyarpur, Patna India. His areas of interest are load forecasting and power system optimization.

E-mail: apurv2u@gmail.com

AUTHORS:

Nimish Kumar received his B.Tech. degree in Electrical Engineering from B.I.T. Sindri, Dhanbad, India in 2011, M.Tech. degree in Power System from D.T.U. Delhi, India in 2014, and Ph.D. degree in Electrical Engineering from I.I.T. Dhanbad in 2022. He is currently Assistant Professor at the Department of Electrical and Electronics Engineering,