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ABSTRACT

The concept of the Digital Twin (DT) has emerged as a transformative paradigm in intelligent
system design, offering the ability to mirror and interact with physical assets in real time. This
paper presents the development and demonstration of a DT-enabled [oT-based parking assist
framework that closely integrates local sensing, mechanical actuation, and cloud-based
analytics and visualization. The core implementation employs a Raspberry Pi 3B+ coupled
with an ultrasonic motion sensor, DC and servo motor actuators, and AWS IoT services to
enable seamless communication between the edge and cloud. Sensor data is transmitted to
AWS IoT Core using the MQTT protocol for secure, low-latency exchanges, while AWS ToT
TwinMaker is used to construct an interactive and simplified digital twin representation of
the complete parking assist system. A closed feedback loop allows the cloud to transmit
operational commands back to the edge device, enabling responsive and adaptive control. The
implementation serves as a proof-of-concept, demonstrating the viability of cloud-linked DT
architectures for autonomous and semi-autonomous parking assistance applications and
highlighting the benefits of integrating scalable edge computing with advanced cloud
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ecosystems.

1. INTRODUCTION

In recent years, digital twin technology—commonly
described as a comprehensive, data-driven virtual mirror of a
real-world entity—has emerged as a powerful method for
improving system performance, safety, and predictive
decision-making [1]. Unlike static models, a DT continuously
synchronizes with its physical counterpart, updating its
parameters and behaviors in real time using live data from
sensors, control systems, and environmental inputs [2,3].
These synchronized models are applied across a wide
spectrum of industries, including aerospace, healthcare,
manufacturing, energy systems, urban infrastructure, and
mobility services [4,5]. By enabling predictive analytics,
what-if simulations, and closed-loop operational control, DTs
offer significant pathways to improving efficiency, reducing
maintenance costs, and optimizing resource allocation [6,7].
Within transportation systems, particularly in the realm of
advanced parking assist technologies, DT integration
provides direct benefits such as improved spatial
optimization, enhanced driver safety, and reduced search
times for available parking spaces [8]. Urban parking
management often demands continuous monitoring of
multiple sensor streams,

© 2025 The Author(s). Published by ISVE, Ranchi, India

robust communication channels, and intelligent control
algorithms—requirements that map naturally onto Digital
Twin architectures [9].

Recent advances in edge computing hardware, low-latency
communication protocols, cloud platform capabilities, and
Al-based decision engines have made it feasible to deploy
cost-efficient DT-based parking assist solutions at scale
[9,10]. By modeling vehicles, surrounding infrastructure, and
environmental influences simultaneously, such systems can
enable precise maneuvering and space occupancy prediction
[11]. Nevertheless, the deployment of such architectures still
presents challenges, including ensuring strict real-time
responsiveness, preserving user privacy, achieving accurate
sensor fusion, and ensuring interoperability across diverse
IoT and vehicular platforms [12,13,14,15]

The primary objective of this work is to design and
implement a Digital Twin—enabled IoT-based parking assist
framework that integrates local sensing, mechanical
actuation, and cloud-based analytics to facilitate real-time
monitoring, decision-making, and control for autonomous
and semi-autonomous parking.The proposed framework
leverages a Raspberry Pi 3B+ with ultrasonic sensors, DC and
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servo motors for local perception and actuation, and AWS IoT
services—including [oT Core, TwinMaker, Timestream DB,
Lambda, and SageMaker—for secure communication, data
processing, visualization, and decision intelligence. The
system demonstrates a closed feedback loop between edge
and cloud, highlighting the potential of scalable DT
architectures for future intelligent transportation and smart
parking applications.

I1. RELATED WORK

Various sensor technologies have been explored for parking
digital twins (DTs), each with distinct operating principles
and applications. Ultrasonic sensors operate on sound wave
reflection to measure proximity and occupancy, offering low
cost and ecasy installation, though with limited range and
environmental noise sensitivity [27]. Magnetic sensors detect
disturbances in magnetic fields caused by vehicle metals,
enabling low-power space detection but facing challenges
with non-metallic objects [28]. Camera-based vision systems,
coupled with AI processing, provide rich data for vehicle
classification and behavior analysis, yet require
computationally intensive image processing and raise privacy
concerns [29]. Radar sensors utilize radio wave reflection and
Doppler effect to measure speed, distance, and obstacles,
functioning reliably in low visibility but at higher cost and
integration complexity [30]. Pressure sensors detect vehicle
presence through weight measurement, offering a simple
binary output but requiring careful calibration [31]. LiDAR
systems employ laser scanning to generate high-accuracy 3D
spatial maps, supporting advanced mapping and autonomous
navigation, though their high cost limits widespread adoption
[32].

I11. PARKING ASSIST SYSTEMS

A. Steering Assisted Parking

A steering assisted parking system displays helpful
driving instructions on the dashboard as you park. It will give
you cues about the best time to speed up, slow down, and shift
gears. The car will steer itself and maneuver into the parking
space [16].

B. Park-and-Exit Assistance

A park-and-exit assistance system adds the capability to guide
you out of the parking space, making it easier to leave the slot
if your vehicle got boxed in while you were away. Otherwise,
it works the same as steering assisted parking [16].

C. Fully Automated Parking

This type of park assist can park your car for you. It can even
control the accelerator and brake pedals. While fully
automated park assist comes with many safety features, you
might prefer to stay in control of your vehicle [16].

D. Automated Parallel Parking Systems

Automated parallel parking systems use sensors and cameras
to detect available parking spaces and guide the vehicle into
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a parallel parking spot. The system takes control of the
steering while the driver operates the accelerator and brake
pedals. This technology eliminates the need for complex
manoeuvres and reduces the chances of scraping the vehicle
against curbs or other parked cars [17].

E. Perpendicular Parking Systems

Perpendicular parking systems assist drivers in
parking their vehicles perpendicularly. Similar to automated
parallel parking systems, these systems utilise sensors and
cameras to detect obstacles and guide the driver into the
parking spot. Perpendicular parking systems are particularly
useful in tight spaces where manoeuvring can be challenging
[17].

F. 360-Degree Camera Systems

360-degree camera systems provide drivers with a
comprehensive view of the vehicle and its surroundings,
aiding in parking and manoeuvring in crowded areas . By

IV.  SYSTEM OVERVIEW

A DT consists of three core components: the physical entity,
the virtual representation, and the data communication
interface between them. [18]. In parking systems, these
components map directly onto the physical vehicle and
sensors (e.g., cameras, radar, LiDAR), the virtual parking
model, and the communication systems (e.g., [oT and edge
computing) that maintain synchronization [19].

1. Physical System

The Physical System represents the tangible hardware
components responsible for sensing, data acquisition, and
communication.

a) Sensors

The sensor layer comprises measurement devices such as
ultrasonic rangefinders and imaging modules (e.g., USB
camera) for environmental perception. These sensors capture
physical parameters, including obstacle distance and spatial
imagery, which are essential for parking assistance
functionalities.

b) Data Acquisition Layer

This layer interfaces directly with the sensors to digitize and
preprocess raw signals. For ultrasonic sensors, analog echo
pulse timings are converted into precise distance
measurements. For vision-based inputs, image frames are
acquired in digital format. The objective of this layer is to
transform low-level physical signals into structured digital
datasets.

c¢) Data Communication Layer

The communication layer, implemented on the Raspberry Pi,
packages the acquired sensor data into structured messages
and transmits them to the cloud using secure protocols such



Table I: Comparison of existing Digital Twin based Parking systems
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Principle of Typical Use
References Sensor Types P Data Collected Advantages Disadvantages Cases in Parking
Operations DTs
- Low-cost, short- Limited range, Spot-level
. Sound wave Proximity, space . .
[27] Ultrasonic . range, easy to sensitivity to detection of
reflection occupancy > . . .
install environment noise vehicle presence
Magnetic field Small size. low Sensitivity issues rEoumrF; ?(()1:(51 l:ce
[28] Magnetic disturbance from Vehicle presence i with non-metallic g P
. power . occupancy
vehicle metals objects .
detection
.. Image capture + Vehicle type, Rich data, enables Requires \mage Llcer}s.e plate
[29] Camera (Vision) . space status, user . processing, recognition, spot
Al processing . Al-based analytics . o
behavior privacy concerns monitoring
Radio wave Speed, distance, Works in low More expensive, Vehicle tracking,
[30] Radar reflection and obstacle detection visibility data integration movement
Doppler challenges detection in lots
Pressure Sensor Measures Space occupancy Simple binary Sensitive to Detects car
[31] weight/pressure signal calibration presence in
applied on surface individual parking
bays
LiDAR Laser-based Detailed spatial High accuracy High cost Advanced
scanning to layout mapping,
[32] g Y pping
generate 3D map autonomous
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Fig 1 Framework for the proposed DT-enabled parking assist system
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Fig 2 System architecture for proposed DT-enabled parking assist system




as MQTT over TLS. This layer also manages the reverse
communication channel, whereby actuation commands from
the cloud are relayed to the physical actuators (e.g., motors
controlling vehicle movement)

2. Digital Component in AWS

The digital component is implemented within the AWS
ecosystem, hosting the virtual representation of the physical
system, Al inference modules, and historical data storage
mechanisms.

a) AWS IoT Core

AWS IoT Core serves as the primary cloud gateway for
bidirectional communication between the Physical System
and the cloud infrastructure. It provides secure authentication,
device identity management, and message routing
capabilities. The service ensures low-latency delivery of
sensor telemetry and feedback commands.

b) IoT Rules

IoT Rules define the conditional logic for routing incoming
data streams to the appropriate AWS services. For example,
real-time sensor data is forwarded to Amazon Timestream for
archival, whereas selected datasets are transmitted to AWS
Lambda for processing and inference triggering.

¢) Amazon Timestream

Amazon Timestream is employed as a time-series database
optimized for storing high-volume, timestamped sensor
readings. This enables temporal analysis, trend identification,
and performance monitoring of the physical system over
extended periods.

d) AWS Lambda

AWS Lambda functions act as serverless computational units
for on-demand data processing. Upon receiving new sensor

- "—
Gather event from Lambda,
< denify type of event =
\
1
Connect to DB
[ Getinput metrcsfor Analysis
Y
'
Based on input, generate output
WJass output o loT Core to Publish
Publish
Successful?

) &)

Fig 3 Flowchart for Lambda function

updates, Lambda retrieves relevant datasets from
Timestream, performs necessary preprocessing (e.g.,
normalization, filtering), and forwards the structured input to
Amazon SageMaker for inference. Lambda also post-
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processes inference results for subsequent feedback
transmission.

e) Amazon SageMaker

Amazon SageMaker hosts the machine learning inference
model responsible for decision-making in the parking
assistance task. The model analyzes the incoming sensory
data and outputs recommended control actions (e.g., move
forward, halt, adjust steering angle) to facilitate optimal
parking maneuvers. These inferences are returned to AWS
Lambda for communication back to the Physical System.

f) AWS IoT TwinMaker

AWS IoT TwinMaker constructs and maintains the virtual
representation of the Physical System. It integrates real-time
telemetry with the 3D visualization of the parking
environment, thereby enabling remote monitoring and
simulation. This module dynamically updates based on both
the physical sensor data and inferred control actions, ensuring
accurate synchronization between the physical and digital
entities.

3. Feedback Mechanism

The architecture is underpinned by a continuous feedback
loop. Sensor data flows from the Physical System to AWS
IoT Core, through processing and inference pipelines, and
returns as control commands to the Raspberry Pi.
Simultaneously, visualization updates in IoT TwinMaker
reflect the latest system state, ensuring the digital twin mirrors
the physical environment in real time.

V. DIGITAL TWIN ARCHITECTURE FOR
PARKING ASSISTANCE

The proposed solution integrates ultrasonic sensors, servo
motors, DC motors, a Raspberry Pi, and a suite of AWS
services to implement a smart parking system. The AWS
services used include IoT Core, Timestream DB, SageMaker,
Lambda, and TwinMaker, each contributing to data
collection, processing, decision-making, and visualization.
Precision of obstacle detection plays a critical role in ensuring
the safety and accuracy of parking maneuvers.

The servo motor in the solution represents the steering
mechanism of a vehicle. It receives feedback through the
AWS IoT Core using an MQTT connection. Based on the
feedback, the servo motor adjusts its rotation angle to steer
the vehicle accordingly. Similarly, the DC motor represents
the vehicle’s engine. It also receives commands from IoT
Core via MQTT, which direct the motor to switch on, switch
off, or keep moving, effectively simulating engine operation.

AWS SageMaker hosts the decision-making model that
governs the vehicle’s actions. This model is deployed as an
endpoint, allowing other services to make inference requests.
The current model primarily accepts distance data from the
ultrasonic sensor as input, though integration of spatial data
captured via a webcam is underway to enhance performance.
The output of the model includes operational commands such
as “start,” “stop,” “keep moving,” and steering angles for the
servo motor.

AWS IoT Core manages secure communication between the
Raspberry Pi and the AWS cloud. Security credentials include
the certificates AmazonRootCAl.pem and



certificate.pem.crt, as well as the private key private.pem.key.
These credentials are embedded in the Raspberry Pi program
to ensure encrypted and authenticated communication. Two
IoT rules are defined for message routing: (i)
SendToTimestream, which stores incoming data in the
Timestream database along with a timestamp, and (ii)
LambdaTrigger, which invokes a Lambda function for further
processing. The Timestream DB component consists of a
database named smartParkingDB with a table obstacle
Distance. This table stores incoming distance readings and
associated metadata, enabling both historical analysis and
real-time inspection through queries. The Lambda function,
named Interact with Model, is triggered by the
LambdaTrigger IoT rule. This function connects to the
SageMaker model endpoint, sends sensor input data for
inference, and transmits the resulting decisions back to IoT
Core. This enables near-real-time command generation for
the actuators.

Finally, AWS TwinMaker provides a digital twin
visualization of the parking lot environment. A workspace
named Smart Parking Workspace is created, containing a 3D
scene of a parking lot and vehicle models. These assets are
stored in an Amazon S3 bucket and linked within TwinMaker.
The car model’s rotation and translation properties are bound
to real-time feedback from the SageMaker model, enabling
the digital twin to mirror physical actions.

om il

W 1=

Fig5 Perpendicular Parking representation in AWS

VI. CHALLENGE AND FUTURE WORK
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A. Integration with Smart Cities

Digital twins for parking assist systems are particularly
relevant for smart cities, where they can support broader
traffic management and resource allocation goals [24].
Integration with citywide data sources, such as traffic
cameras and environmental sensors, will allow DTs to
contribute to real-time urban mobility planning [24]. The
adoption of DT-based parking assist systems in smart cities
will require coordinated efforts to ensure compatibility and
interoperability across systems [24].

B. Real-Time Decision Making and Predictive
Analytics

To make real-time decisions, DTs must process vast
quantities of data efficiently. Future research should focus
on developing more efficient AI models and edge-
computing frameworks to meet these requirements.
Additionally, predictive analytics can further optimize DT
performance, allowing parking assist systems to anticipate
future behaviors and respond proactively [25].

C. Enhancing Human-Machine Collaboration

In semi-autonomous parking systems, the collaboration
between human drivers and DTs remains a key focus area.
Interface improvements and predictive alerts for drivers will
enhance the user experience. Further work is needed to
improve system transparency, allowing drivers to
understand and trust the DT’s decisions [26].

VII. CONCLUSION

Digital twins represent a transformative approach to
advancing parking assist technology. By creating real-time,
adaptable, and predictive models, DTs can enhance the
efficiency, safety, and user experience of autonomous and
semi-autonomous parking systems. However, as technology
progresses, it will require ongoing attention to scalability,
security, and compliance. Integrating DT-based parking
solutions within smart city infrastructures holds promise for
broader applications, making parking systems more
intelligent and responsive.
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Table II shows the comparison between the actual and
average measured distances from the ultrasonic sensor. The
results show that the system maintained high accuracy, with
deviations within +1.3 cm for all tested distances. We
observed both positive and negative error values, which
corresponded to slight overestimation and underestimation.
The largest deviation was —1.27 cm at an actual distance of
25 cm, and the smallest was —0.15 c¢cm at 24 c¢cm. These
results indicate stable and reliable distance measurement
performance, making it suitable for parking assist
applications.

Table II: Comparison between Actual and measured Distance

Actual Distance Average Measured Average Error (cm)
(cm) Distance (cm)

20 20.90 0.90

23 22.60 -0.40

24 23.85 -0.15

25 23.73 -1.27

31 31.20 0.20

35 34.67 -0.32

36 36.44 0.44

The time from capturing sensor data to its arrival at
Raspberry Pi averaged 18 ms. The minimum was 14 ms and
the maximum was 27 ms. This stage makes up a small part
of the total loop latency. MQTT-over-TLS transfer from the
Raspberry Pi to AWS IoT Core averaged 78 ms. The
minimum was 65 ms and the maximum was 104 ms.
Network conditions and TLS overheads caused some
variation. The combined AWS Lambda invocation and
SageMaker inference averaged 142 ms, ranging from 118
ms to 181 ms. This stage was the largest contributor to
latency. The entire pipeline, from sensor acquisition to the
inference result, averaged 238 ms. The minimum was 205
ms and the maximum was 291 ms.

Table I11: Latency Analysis of the end-to-end Data Loop

Process Stage Avg (ms) Min (ms) Max
(ms)
Sensor to Raspberry Pi 18 14 27
Pi to AWS IoT Core 78 65 104
AWS Lambda + SageMaker 142 118 181
Inference
Total End-to-End Loop 238 205 291

The results show response times under 300 ms, which are
suitable for near-real-time applications. The inference
stage (AWS Lambda + SageMaker) made up about 60%
of the total latency. This indicates potential for
improvement through model compression, serverless
warm-start techniques, or edge deployment. The small
standard deviation in the acquisition and network stages
indicates stable hardware performance. Most of the
variation came from the cloud inference stage.
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