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1. INTRODUCTION 

In recent years, digital twin technology—commonly 

described as a comprehensive, data-driven virtual mirror of a 

real-world entity—has emerged as a powerful method for 

improving system performance, safety, and predictive 

decision-making [1]. Unlike static models, a DT continuously 

synchronizes with its physical counterpart, updating its 

parameters and behaviors in real time using live data from 

sensors, control systems, and environmental inputs [2,3]. 

These synchronized models are applied across a wide 

spectrum of industries, including aerospace, healthcare, 

manufacturing, energy systems, urban infrastructure, and 

mobility services [4,5]. By enabling predictive analytics, 

what-if simulations, and closed-loop operational control, DTs 

offer significant pathways to improving efficiency, reducing 

maintenance costs, and optimizing resource allocation [6,7]. 

Within transportation systems, particularly in the realm of 

advanced parking assist technologies, DT integration 

provides direct benefits such as improved spatial 

optimization, enhanced driver safety, and reduced search 

times for available parking spaces [8]. Urban parking 

management often demands continuous monitoring of 

multiple sensor streams,  
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robust communication channels, and intelligent control 

algorithms—requirements that map naturally onto Digital 

Twin architectures [9]. 

Recent advances in edge computing hardware, low-latency 

communication protocols, cloud platform capabilities, and 

AI-based decision engines have made it feasible to deploy 

cost-efficient DT-based parking assist solutions at scale 

[9,10]. By modeling vehicles, surrounding infrastructure, and 

environmental influences simultaneously, such systems can 

enable precise maneuvering and space occupancy prediction 

[11]. Nevertheless, the deployment of such architectures still 

presents challenges, including ensuring strict real-time 

responsiveness, preserving user privacy, achieving accurate 

sensor fusion, and ensuring interoperability across diverse 

IoT and vehicular platforms [12,13,14,15] 

 The primary objective of this work is to design and 

implement a Digital Twin–enabled IoT-based parking assist 

framework that integrates local sensing, mechanical 

actuation, and cloud-based analytics to facilitate real-time 

monitoring, decision-making, and control for autonomous 

and semi-autonomous parking.The proposed framework 

leverages a Raspberry Pi 3B+ with ultrasonic sensors, DC and 
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servo motors for local perception and actuation, and AWS IoT 

services—including IoT Core, TwinMaker, Timestream DB, 

Lambda, and SageMaker—for secure communication, data 

processing, visualization, and decision intelligence. The 

system demonstrates a closed feedback loop between edge 

and cloud, highlighting the potential of scalable DT 

architectures for future intelligent transportation and smart 

parking applications. 

II. RELATED WORK 

Various sensor technologies have been explored for parking 

digital twins (DTs), each with distinct operating principles 

and applications. Ultrasonic sensors operate on sound wave 

reflection to measure proximity and occupancy, offering low 

cost and easy installation, though with limited range and 

environmental noise sensitivity [27]. Magnetic sensors detect 

disturbances in magnetic fields caused by vehicle metals, 

enabling low-power space detection but facing challenges 

with non-metallic objects [28]. Camera-based vision systems, 

coupled with AI processing, provide rich data for vehicle 

classification and behavior analysis, yet require 

computationally intensive image processing and raise privacy 

concerns [29]. Radar sensors utilize radio wave reflection and 

Doppler effect to measure speed, distance, and obstacles, 

functioning reliably in low visibility but at higher cost and 

integration complexity [30]. Pressure sensors detect vehicle 

presence through weight measurement, offering a simple 

binary output but requiring careful calibration [31]. LiDAR 

systems employ laser scanning to generate high-accuracy 3D 

spatial maps, supporting advanced mapping and autonomous 

navigation, though their high cost limits widespread adoption 

[32]. 

III.  PARKING ASSIST SYSTEMS 

A. Steering Assisted Parking  

 A steering assisted parking system displays helpful 

driving instructions on the dashboard as you park. It will give 

you cues about the best time to speed up, slow down, and shift 

gears. The car will steer itself and maneuver into the parking 

space [16]. 

B. Park-and-Exit Assistance 

A park-and-exit assistance system adds the capability to guide 

you out of the parking space, making it easier to leave the slot 

if your vehicle got boxed in while you were away. Otherwise, 

it works the same as steering assisted parking [16]. 

C. Fully Automated Parking 

This type of park assist can park your car for you. It can even 

control the accelerator and brake pedals. While fully 

automated park assist comes with many safety features, you 

might prefer to stay in control of your vehicle [16]. 

D. Automated Parallel Parking Systems 

Automated parallel parking systems use sensors and cameras 

to detect available parking spaces and guide the vehicle into 

a parallel parking spot. The system takes control of the 

steering while the driver operates the accelerator and brake 

pedals. This technology eliminates the need for complex 

manoeuvres and reduces the chances of scraping the vehicle 

against curbs or other parked cars [17]. 

E. Perpendicular Parking Systems 

 Perpendicular parking systems assist drivers in 

parking their vehicles perpendicularly. Similar to automated 

parallel parking systems, these systems utilise sensors and 

cameras to detect obstacles and guide the driver into the 

parking spot. Perpendicular parking systems are particularly 

useful in tight spaces where manoeuvring can be challenging 

[17]. 

F.    360-Degree Camera Systems 

360-degree camera systems provide drivers with a 
comprehensive view of the vehicle and its surroundings, 
aiding in parking and manoeuvring in crowded areas . By  

IV. SYSTEM OVERVIEW 

A DT consists of three core components: the physical entity, 

the virtual representation, and the data communication 

interface between them. [18]. In parking systems, these 

components map directly onto the physical vehicle and 

sensors (e.g., cameras, radar, LiDAR), the virtual parking 

model, and the communication systems (e.g., IoT and edge 

computing) that maintain synchronization [19]. 

1. Physical System 

The Physical System represents the tangible hardware 

components responsible for sensing, data acquisition, and 

communication. 

a) Sensors 

The sensor layer comprises measurement devices such as 

ultrasonic rangefinders and imaging modules (e.g., USB 

camera) for environmental perception. These sensors capture 

physical parameters, including obstacle distance and spatial 

imagery, which are essential for parking assistance 

functionalities. 

b) Data Acquisition Layer 

This layer interfaces directly with the sensors to digitize and 

preprocess raw signals. For ultrasonic sensors, analog echo 

pulse timings are converted into precise distance 

measurements. For vision-based inputs, image frames are 

acquired in digital format. The objective of this layer is to 

transform low-level physical signals into structured digital 

datasets. 

c) Data Communication Layer 

The communication layer, implemented on the Raspberry Pi, 

packages the acquired sensor data into structured messages 

and transmits them to the cloud using secure protocols such 
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Table I: Comparison of existing Digital Twin based Parking systems

 

 

Fig 1 Framework for the proposed DT-enabled parking assist system 

 
 

Fig 2 System architecture for proposed DT-enabled parking assist system

References Sensor Types  
Principle of 

Operations 
Data Collected Advantages Disadvantages 

Typical Use 

Cases in Parking 

DTs 

[27] Ultrasonic 
Sound wave 

reflection 
Proximity, space 

occupancy 

Low-cost, short-

range, easy to 

install 

Limited range, 

sensitivity to 

environment noise 

Spot-level 

detection of 

vehicle presence 

[28] Magnetic 
Magnetic field 

disturbance from 

vehicle metals 

Vehicle presence 
Small size, low 

power 

Sensitivity issues 
with non-metallic 

objects 

Embedded in 

ground for space 

occupancy 
detection 

[29] Camera (Vision) 
Image capture + 

AI processing 

Vehicle type, 

space status, user 
behavior 

Rich data, enables 

AI-based analytics 

Requires image 

processing, 
privacy concerns 

License plate 

recognition, spot 
monitoring 

[30] Radar 

Radio wave 

reflection and 
Doppler 

Speed, distance, 

obstacle detection 

Works in low 

visibility 

More expensive, 

data integration 
challenges 

Vehicle tracking, 

movement 
detection in lots 

[31] 

Pressure Sensor Measures 

weight/pressure 
applied on surface 

Space occupancy Simple binary 

signal 

Sensitive to 

calibration 

Detects car 

presence in 
individual parking 

bays 

[32] 

 LiDAR Laser-based 
scanning to 

generate 3D map 

Detailed spatial 
layout 

High accuracy High cost Advanced 
mapping, 

autonomous 

parking navigation 
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 as MQTT over TLS. This layer also manages the reverse 

communication channel, whereby actuation commands from 

the cloud are relayed to the physical actuators (e.g., motors 

controlling vehicle movement) 

2. Digital Component in AWS 

The digital component is implemented within the AWS 

ecosystem, hosting the virtual representation of the physical 

system, AI inference modules, and historical data storage 

mechanisms. 

a) AWS IoT Core 

AWS IoT Core serves as the primary cloud gateway for 

bidirectional communication between the Physical System 

and the cloud infrastructure. It provides secure authentication, 

device identity management, and message routing 

capabilities. The service ensures low-latency delivery of 

sensor telemetry and feedback commands. 

b) IoT Rules 

IoT Rules define the conditional logic for routing incoming 

data streams to the appropriate AWS services. For example, 

real-time sensor data is forwarded to Amazon Timestream for 

archival, whereas selected datasets are transmitted to AWS 

Lambda for processing and inference triggering. 

c) Amazon Timestream 

Amazon Timestream is employed as a time-series database 

optimized for storing high-volume, timestamped sensor 

readings. This enables temporal analysis, trend identification, 

and performance monitoring of the physical system over 

extended periods. 

d) AWS Lambda 

AWS Lambda functions act as serverless computational units 

for on-demand data processing. Upon receiving new sensor  

 
Fig 3 Flowchart for Lambda function 

updates, Lambda retrieves relevant datasets from 

Timestream, performs necessary preprocessing (e.g., 

normalization, filtering), and forwards the structured input to 

Amazon SageMaker for inference. Lambda also post-

processes inference results for subsequent feedback 

transmission. 

e) Amazon SageMaker 

Amazon SageMaker hosts the machine learning inference 

model responsible for decision-making in the parking 

assistance task. The model analyzes the incoming sensory 

data and outputs recommended control actions (e.g., move 

forward, halt, adjust steering angle) to facilitate optimal 

parking maneuvers. These inferences are returned to AWS 

Lambda for communication back to the Physical System. 

f) AWS IoT TwinMaker 

AWS IoT TwinMaker constructs and maintains the virtual 

representation of the Physical System. It integrates real-time 

telemetry with the 3D visualization of the parking 

environment, thereby enabling remote monitoring and 

simulation. This module dynamically updates based on both 

the physical sensor data and inferred control actions, ensuring 

accurate synchronization between the physical and digital 

entities. 

3. Feedback Mechanism 

The architecture is underpinned by a continuous feedback 

loop. Sensor data flows from the Physical System to AWS 

IoT Core, through processing and inference pipelines, and 

returns as control commands to the Raspberry Pi. 

Simultaneously, visualization updates in IoT TwinMaker 

reflect the latest system state, ensuring the digital twin mirrors 

the physical environment in real time. 

V. DIGITAL TWIN ARCHITECTURE FOR 

PARKING ASSISTANCE 

The proposed solution integrates ultrasonic sensors, servo 

motors, DC motors, a Raspberry Pi, and a suite of AWS 

services to implement a smart parking system. The AWS 

services used include IoT Core, Timestream DB, SageMaker, 

Lambda, and TwinMaker, each contributing to data 

collection, processing, decision-making, and visualization. 

Precision of obstacle detection plays a critical role in ensuring 

the safety and accuracy of parking maneuvers. 

The servo motor in the solution represents the steering 

mechanism of a vehicle. It receives feedback through the 

AWS IoT Core using an MQTT connection. Based on the 

feedback, the servo motor adjusts its rotation angle to steer 

the vehicle accordingly. Similarly, the DC motor represents 

the vehicle’s engine. It also receives commands from IoT 

Core via MQTT, which direct the motor to switch on, switch 

off, or keep moving, effectively simulating engine operation. 

AWS SageMaker hosts the decision-making model that 

governs the vehicle’s actions. This model is deployed as an 

endpoint, allowing other services to make inference requests. 

The current model primarily accepts distance data from the 

ultrasonic sensor as input, though integration of spatial data 

captured via a webcam is underway to enhance performance. 

The output of the model includes operational commands such 

as “start,” “stop,” “keep moving,” and steering angles for the 

servo motor. 

AWS IoT Core manages secure communication between the 

Raspberry Pi and the AWS cloud. Security credentials include 

the certificates AmazonRootCA1.pem and 
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certificate.pem.crt, as well as the private key private.pem.key. 

These credentials are embedded in the Raspberry Pi program 

to ensure encrypted and authenticated communication. Two 

IoT rules are defined for message routing: (i) 

SendToTimestream, which stores incoming data in the 

Timestream database along with a timestamp, and (ii) 

LambdaTrigger, which invokes a Lambda function for further 

processing. The Timestream DB component consists of a 

database named smartParkingDB with a table obstacle 

Distance. This table stores incoming distance readings and 

associated metadata, enabling both historical analysis and 

real-time inspection through queries. The Lambda function, 

named Interact with Model, is triggered by the 

LambdaTrigger IoT rule. This function connects to the 

SageMaker model endpoint, sends sensor input data for 

inference, and transmits the resulting decisions back to IoT 

Core. This enables near-real-time command generation for 

the actuators. 

Finally, AWS TwinMaker provides a digital twin 

visualization of the parking lot environment. A workspace 

named Smart_Parking Workspace is created, containing a 3D 

scene of a parking lot and vehicle models. These assets are 

stored in an Amazon S3 bucket and linked within TwinMaker. 

The car model’s rotation and translation properties are bound 

to real-time feedback from the SageMaker model, enabling 

the digital twin to mirror physical actions. 

 

Fig 4:Parallel Parking representation in AWS 

 

Fig5 Perpendicular Parking representation in AWS 

 

VI. CHALLENGE AND FUTURE WORK 

 

A. Integration with Smart Cities 

Digital twins for parking assist systems are particularly 

relevant for smart cities, where they can support broader 

traffic management and resource allocation goals [24]. 

Integration with citywide data sources, such as traffic 

cameras and environmental sensors, will allow DTs to 

contribute to real-time urban mobility planning [24]. The 

adoption of DT-based parking assist systems in smart cities 

will require coordinated efforts to ensure compatibility and 

interoperability across systems [24].  

B. Real-Time Decision Making and Predictive 

Analytics 

To make real-time decisions, DTs must process vast 

quantities of data efficiently. Future research should focus 

on developing more efficient AI models and edge-

computing frameworks to meet these requirements. 

Additionally, predictive analytics can further optimize DT 

performance, allowing parking assist systems to anticipate 

future behaviors and respond proactively [25]. 

C. Enhancing Human-Machine Collaboration 

In semi-autonomous parking systems, the collaboration 

between human drivers and DTs remains a key focus area. 

Interface improvements and predictive alerts for drivers will 

enhance the user experience. Further work is needed to 

improve system transparency, allowing drivers to 

understand and trust the DT’s decisions [26]. 

 

VII. CONCLUSION 

Digital twins represent a transformative approach to 

advancing parking assist technology. By creating real-time, 

adaptable, and predictive models, DTs can enhance the 

efficiency, safety, and user experience of autonomous and 

semi-autonomous parking systems. However, as technology 

progresses, it will require ongoing attention to scalability, 

security, and compliance. Integrating DT-based parking 

solutions within smart city infrastructures holds promise for 

broader applications, making parking systems more 

intelligent and responsive. 

 

 

Fig 6: Distance Measurement output from raspberry pi to AWS 
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Table II shows the comparison between the actual and 

average measured distances from the ultrasonic sensor. The 

results show that the system maintained high accuracy, with 

deviations within ±1.3 cm for all tested distances. We 

observed both positive and negative error values, which 

corresponded to slight overestimation and underestimation. 

The largest deviation was −1.27 cm at an actual distance of 

25 cm, and the smallest was −0.15 cm at 24 cm. These 

results indicate stable and reliable distance measurement 

performance, making it suitable for parking assist 

applications. 

Table II: Comparison between Actual and measured Distance 
Actual Distance 

(cm) 
Average Measured 

Distance (cm) 
Average Error (cm) 

20 20.90 0.90 

23 22.60 -0.40 

24 23.85 -0.15 

25 23.73 -1.27 

31 31.20 0.20 

35 34.67 -0.32 

36 36.44 0.44 

The time from capturing sensor data to its arrival at 

Raspberry Pi averaged 18 ms. The minimum was 14 ms and 

the maximum was 27 ms. This stage makes up a small part 

of the total loop latency. MQTT-over-TLS transfer from the 

Raspberry Pi to AWS IoT Core averaged 78 ms. The 

minimum was 65 ms and the maximum was 104 ms. 

Network conditions and TLS overheads caused some 

variation. The combined AWS Lambda invocation and 

SageMaker inference averaged 142 ms, ranging from 118 

ms to 181 ms. This stage was the largest contributor to 

latency. The entire pipeline, from sensor acquisition to the 

inference result, averaged 238 ms. The minimum was 205 

ms and the maximum was 291 ms.  
 

Table III: Latency Analysis of the end-to-end Data Loop 

 

The results show response times under 300 ms, which are 

suitable for near-real-time applications. The inference 

stage (AWS Lambda + SageMaker) made up about 60% 

of the total latency. This indicates potential for 

improvement through model compression, serverless 

warm-start techniques, or edge deployment. The small 

standard deviation in the acquisition and network stages 

indicates stable hardware performance. Most of the 

variation came from the cloud inference stage. 
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