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ABSTRACT

In this paper, we propose a machine learning system for the classification of neck movements from
SEMG signals. Ten subjects were measured with four Bio Amp Patchy sensors, which were attached
onto the Sternocleidomastoid, upper trapeziusm and scalene muscles.
microcontroller was used for timing and accurate acquisition of the EMG signals. The methodology
consisted of five stages: data collection, signal preprocessing, feature extractions, classification, and
performance assessment. Time domain features were also extracted and classification using a Random
Forest algorithm. Finally, high accuracy was achieved and the system demonstrated great potential in
posture monitoring, rehabilitation, and hands-free human—machine interaction.

1. INTRODUCTION

Electromyography is an electrical signal produced by the
human brain during muscle contraction and relaxation phases.
When muscles contract, the brain sends an electrical signal to
the muscle that can be detected using electrodes placed on the
skin (surface EMG) or by inserting them directly into the
muscle (intramuscular EMG). There are numerous purposes in
the realms of medicine, clinical practice, and research.
Categorizing movements based on EMG is valuable as it helps
in understanding how muscles work during different actions.

Neck muscles are basically the boss of how your head moves,
how you stand up straight, and how you keep your balance. A
tool called surface electromyography, or SEMG for short, lets
us check how those muscles fire without any surgery, and it’s
already showing up in prosthetics, rehab, and even some cool
wearables [1]. The two big players here are the
sternocleidomastoid (SCM) and the trapezius (TRP) muscles—
they handle all the neck moves like nodding, looking up,
turning your head, or tilting it sideways. If we keep an eye on
them with sSEMG, we can build systems that figure out what
you’re trying to do, keep track of your posture, and sort out
each movement as it happens.

This approach is all about building a simple machine-learning
setup that can tell what kind of neck move you’re making. We
grab the info from tiny muscle signals (called sSEMG) picked
up by sensors stuck on key neck muscles. The cool part is
we’re keeping it practical: think helping people rehab after
neck injuries, fixing bad posture, or even letting you control a
computer without using your hands. We’re sticking with small,
fast classifiers, processing the signals on the fly, and picking
only the most useful data points so everything still runs
smoothly on low-power wearables like smart collars or small
bands.

© 2025 The Author(s). Published by ISVE, Ranchi, India
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A STM32F411RE

Many researchers have reviewed effective filtering methods
such as bandpass filtering, notch filtering, and wavelet-based
denoising [7].

Once the signal is clean, the next step is featuring extraction—
turning the raw waveforms into compact values that represent
different signal characteristics. Time-domain features like
RMS, MAYV, and waveform length are the most used,
especially in low-power systems [8]. Features in the frequency
and time-frequency domain, like Mean Frequency and Discrete
Wavelet Transform (DWT), are also used when more detail is
needed [9].

The challenge is finding a good trade-off between complexity
and performance. Systems meant for real-time, wearable use
must be both accurate and fast. Reducing redundant features
using statistical techniques can improve classifier performance
without increasing computational load [9]. Dimensionality
reduction helps minimize the impact of user-specific
variations, which is a big challenge in neck EMG signals due
to individual posture habits and muscle strength [10].

For classification, several machine learning models have been
used in previous studies. Traditional classifiers like SVM,
kNN, and LDA are lightweight and work well with limited
training data. In more recent work, neural networks—
especially LSTM—have shown promise for time-series EMG
classification [11]. LSTM can handle temporal changes in
EMG patterns, making it more adaptable to real-world use
cases. However, training deep networks requires large datasets,
so simpler models are still preferred when working with a
small number of subjects or limited movement classes.

Wireless sSEMG sensors for neck posture classification, and
they found SCM and TRP activity to be the most consistent
and reliable indicators of head orientation. Similarly, multi-
channel sEMG can effectively classify neck posture with high
accuracy using Random Forest classifiers[12]. Combining
sEMG with accelerometer data to improve robustness in
wearable health-monitoring systems[9]. These studies
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highlight the growing interest in applying sEMG-based
movement classification beyond limb-based systems.

In this study, we focus on using surface EMG signals from
neck muscles to classify head and neck movements. We aim to
keep the system practical and low-latency, suitable for
wearable deployment. Our method focuses on real-time
processing, compact feature sets, and the use of ML (machine
learning) classifiers suited for efficient operation on resource-
limited devices. Ultimately, the researchers aim to contribute
to applications in neck injury rehab, smart posture feedback,
and touch less human-machine interfaces.

2. LITERATURE REVIEW

Surface EMG (sEMG) has recently become one of the most
important techniques for estimating neuromuscular activity
with neck movement being an example of a physical task.
Numerous Research reports have concentrated on application
of sSEMG signals to recognize neck postures and related neck
motions, wearable systems, and produce real time assistive
applications. The remainder of this section performs a
comprehensive review on the classifiers, features, and signal
acquisition approaches underlying the reviewed works, as well
as system-level issues such as latency, fatigue, and
generalization.

A. Classification of Neck Movements Using SEMG

A linear classifier capable of recognizing ten distinct neck
movements using merely four sSEMG channels placed on the
sternocleidomastoid (SCM) and trapezius (TRP) muscles.
Instead of relying on deep learning, this algorithm was crafted
using patterns of muscular coordination and cross-correlation
of muscular activity, rendering it efficient for real-time
applications. Furthermore, in this study, a novel labeling
correction strategy was promoted to decrease misclassification
during live usage by taking into account the temporal structure
of the movements themselves. This technique makes the
algorithm particularly useful for wearable applications. [13].

In another study, a low-cost, two-channel sSEMG acquisition
system was developed using MATLAB and analog hardware.
For its inexpensive setup, the described system could still
detect three types of head movements: 1. flexion, 2. lateral
flexion, and 3. rotation. They emphasize live visual feedback
and signal clarity, which makes it appropriate for prototyping
and small-scale deployments [14].

An analogous group established a structure capable of
categorizing head movements through the use of a standard
pattern recognition pipeline [15]. Using time-domain
attributes, they obtained results that did not overcomplicate
model architecture and were, in fact, quite accurate. This was
achieved with minimal hardware and, as was noted, quite
efficient classification.

B. Feature Extraction and Selection Techniques

Feature engineering is the vital factor for raising classification
accuracy while keeping computational efficiency intact. A
principal study investigated the improvement of KNN
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performance through feature selection based on genetic
algorithms (GA). The GA, of course, was trained on a massive
number of redundant and non-informative features. By
removing those features, as well as using GA to find and keep
the significant features, classification rates of EMG signals
from the SCM and TRP areas were boosted [16].

A second group worked on designing features in the low-
complexity time domain. They focused on using root mean
square (RMS), mean absolute value (MAV), waveform length
(WL), and slope sign changes (SSC). These features strike a
good balance between computational cost and our ability to
form well-separated classes. Nonetheless, the use of these
time-domain features helped them keep the model size down
while maintaining high accuracy [17].

C. Wearable Systems and Posture Classification

A relevant application in this field was a wireless sSEMG
apparatus for distinguishing between neutral and flexed head
positions. The authors extracted RMS and MAV characteristics
from TRP and SCM and employed an SVM classifier where a
classification accuracy of 96% was obtained. It showed that a
small feature set can be used to fuel wearable, robust SEMG
systems in practical contexts [18].

A hybrid-interface EMG system that is based on readings of
neck and eye muscles, or on both to determine the desired head
movement. Even though the above approach is not only for
neck EMG, their approach can predict user intent and may be
useful in VR, gaming, assistive control applications [19]. This
exposes the possibility of EMG signals not only being used to
sense activity, but also to derive intention for proactive system
actions.

D. Deep Learning and Hybrid Models

Some works explore deep learning approaches. Spectrogram-
based EMG representations were used in another study that
employed CNNs to recognize hand gestures with relatively
high classification performance. While these were not directed
at neck EMG, this approach could be applied to the neck if raw
signals could be transformed to time-frequency representations
[20].

Another study combined EMG feature extraction with LSTM-
based recurrent networks, showing how temporal dynamics in
EMG signals could be leveraged for classification. Though
more computationally intensive, these methods are promising
for systems with powerful on-board processors [21].

E. Addressing Fatigue and Real-Time Constraints

Real-world deployment of sEMG systems faces several
challenges, especially due to muscle fatigue. In one
investigation, researchers found that classification accuracy
declined significantly over time if adaptive learning
techniques weren’t used. They suggested periodic model
retraining or adaptation strategies to retain performance [22].

Additionally, some studies explored embedded system
constraints such as latency, memory footprint, and power
consumption. One such work discussed optimizing algorithms



for use in battery-powered microcontrollers, emphasizing real-
time inference with minimal delay [23].

F. Dataset Limitations and Generalizability

One of the biggest gaps in the literature is the lack of large and
diverse datasets. Most datasets used in earlier works were built
from only 3-5 healthy participants, with limited movement
classes and static postures. This leads to models that perform
well in lab settings but fail in practical usage. Multiple studies
called out this limitation and emphasized the need for open-
source, multi-subject datasets for neck EMG classification
[24],[25].

In response to this, your project contributes a more robust
dataset by including ten participants performing a wide range
of neck movements. By capturing signals from SCM, TRP, and
scalenes using three EMG channels, your dataset enhances
both class diversity and generalizability, addressing the
shortcomings of previous research.

G. Embedded Applications and Practical Deployment

Some studies focused on creating custom embedded platforms
for acquiring and processing sSEMG signals. These platforms
integrated analog-to-digital converters, filtering units, and low-
power MCUs capable of running machine learning models
locally. Key metrics such as signal latency, bandwidth usage,
and system delay were analyzed to ensure the hardware could
support real-time movement classification [26].

In addition, a few studies compared lightweight classifiers like
Random Forest and Decision Trees to deeper models. Methods
like Random Forest offered a good tradeoff between speed and
accuracy for smaller, real-time systems [27].

3. METHODOLOGY

This study methodology is having five section: data collection,
signal preprocessing, feature extraction, classification, and
performance evaluation. Below has the detail discussion about
these section.

A. Data Acquisition

Muscles used for recording electromyography (EMG) signal:
the sternocleidomastoid (SCM), upper trapezius, and scalenes,
plays major role in facilitating diverse neck movements. Four
Bio Amp Patchy sensors were used for collecting signals, with
electrode placement performed in alignment with the
standardized guidelines mentioned in data sheet of sensor.

Prior to the placement of electrodes, skin preparation was done
using Nueprep Skin Preparation Gel. The gel was used to
exfoliate dead skin cells and remove oils and other impurities
from the skin. Following this initial cleaning, the area was
cleaned again with alcohol wipes. This second step ensured
even better electrode adhesion and improved signal quality.
The following hardware was used in the prototype,

STM32F411RE microcontroller, Bio Amp Patchy sensors,
breadboard and jumper wires. The experimental data
acquisition was carried out on a sample of 10 healthy subjects
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(5 men and 5 women). All participants rested in a quiet indoor
environment in a reclined position, to minimize motion
artefacts and to maintain steady signal quality across sessions.

(b)
Fig 1. (a) Electrode placement on the sternocleidomastoid
muscles for neck movement classification
(b) Electrode placement on the upper trapezius and scalene
muscles for shoulder and neck monitoring

B. Sensor and Hardware Configuration

The Bio Amp Patchy is a compact, wearable surface EMG
sensor designed for muscle activity monitoring. Its
specifications are as follows:

Operating Voltage: 5 V

Input Impedance: 102 Q

Electrode Configuration: Three-electrode system (Vin+, Vin—,
Reference)

Output Signal: Analog EMG (0-5 V range)

Microcontroller Compatibility: Any board equipped with an
analog-to-digital converter (ADC)

Dimensions: 25.4 mm x 10 mm

The sensor features three output pins: Vin, GND, and OUT.
For this study, the sensors were connected to the
STM32F411RE Nucleo microcontroller board using a
breadboard-based wiring setup. Analog signals from the
sensors were read via four ADC channels configured to sample
at 1000 Hz.

The STM32 board was interfaced with a computer via USB to
enable continuous data transfer. A custom Python script was
used to capture real-time EMG signals from all four channels.
The data were stored in CSV format along with timestamps
generated by the host system.

C. Data Collection Protocol

Each participant underwent four trials per movement type.
Within each trial, a single movement was performed
repeatedly, alternating between 5 seconds of activity and 5



seconds of rest. Each trial lasted for a total of 40 seconds. For
reducing fatigue and ensure muscle recovery, a 4 seconds rest
period was provided between different

movement types.

D. Signal Pre-processing

The raw EMG activity was recorded from four neck muscle:
left and right sternocleidomastoid and left and right upper
trapezius. Data cleaning and pre-processing Several cleanup
operations were conducted on the signals, before they were
subjected to analysis. These operations were performed to
improve the quality of the signals, eliminate distortions and
normalize the data for feature extraction and classification.

1) Signal Validation and Correctness Check: To begin with,
every signal was inspected visually to make sure that the
recorded electro-myographic activity looked like it might be
normal. Then basic statistics were run to check the data for
integrity. Signals that were too noisy, too saturated, or had too
much dropout were identified and thrown out. Then the parts
of the signals that were clean and representative were selected
for processing [28].

2) Frequency Domain Analysis: The Fast Fourier Transform
(FFT) was used to study the frequency components of EMG
signals. This decomposition enabled us to ascertain the
relevant frequency components of interest resided in the
expected 20-500 Hz range. The frequency analysis was also
considered a means of validation that the filtering indeed
would isolate the relevant signal components.[3].

3) Band-Pass Filtering: Each EMG waveform was filtered
using a fourth order Butterworth band-pass filter with cut-offs
of 20 Hz and 450 Hz. This filter stage minimized low
frequency artefact such as motion noise, and high frequency
electrical interference while preserving the actual muscle
signal. The Butterworth filter is selected due to its flat
frequency response in the pass-band without distorting the
EMG waveform [28].

4) Signal Rectification: Following filtering, full-wave
rectification was applied to the EMG signals. This process
involved converting all negative voltage values to their
positive equivalents, allowing for consistent signal analysis
across all channels. Rectification also smoothed the waveform,
making it more suitable for time-domain feature extraction.

4. LIST OF MOVEMENTS

Sr. No. Movement Direction
1 Head Rotation Right
2 Head Rotation Left
3 Backward tilt Right
4 Backward tilt Left
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5 Neck Extension
6 Neck Flexion
7 Shoulder shrug

5. FEATURE EXTRACTION

EMG signals (i.e., raw signals pre-processed (e.g., filtering
and rectifying)) are used to extract meaningful features
which will represent the muscle activation in different neck
movements. Feature extraction is important as raw EMG
data needs to be transformed to informative inputs for the
classifier to operate efficiently [29].

In this work, we concentrate on time-domain (TD) features,
since they are computationally efficient and are effective in
real time systems. Features extracted from each EMG
channel are as follows:

e  Root Mean Square (RMS): Reflects the power content
of the EMG signal and correlates with muscle
contraction strength [28].

e Mean Absolute Value (MAV): Represents the
average rectified value and gives a measure of overall
muscle activity.

1 N
MAV=FZ 1%,
n=1

e Waveform Length (WL): Measures the cumulative
length of the waveform, capturing signal complexity.

WL= 211\1]=1 |xn+1 - xn|

e Slope Sign Changes (SSC): Counts the number of
slope direction changes, indicating frequency-related
features.

SSC = Z flG — xp—1) X (X — Xp41)]

(1, if x = threshold
) _{ 0,  otherwise
These features are extracted over a fixed-length sliding
window (e.g., 200 ms with 50%overlap) to capture temporal
dynamics across the recording.



6. CLASSIFICATION

For this project, we went with the Random Forest (RF)
algorithm as our main classifier. We picked it because it’s
super accurate, doesn’t freak out over noisy data, and can deal
with tons of features without breaking a sweat. Basically,
Random Forest is a team of decision trees: it builds a bunch of
them during training, then lets each tree vote, and whichever
class gets the most votes wins[20].

One big plus of using Random Forest is that it spits out feature
importance scores, so we can actually seewhich variables
matter most for sorting the data. That fits perfectly with our
plan to drop the extra stuff while still keeping the info that
helps us tell the classes apart.

We trained the classifier on four time-domain features—RMS,
MAV, WL, and SSC—pulled from neck muscles like the
sternocleidomastoid and trapezius. We built each input feature
vector from a 200 ms sliding window that shifts by 50%, so
the data stays smooth and consistent while the classifier does
its thing.

7. PERFORMANCE EVALUATION

To understand how well our system performs in recognizing
different neck movements, we didn’t just stop at accuracy—
we looked deeper into how it handled each specific gesture.
The final model, based on the Random Forest algorithm,
reached an overall accuracy of about 92%, which is quite
promising for a real-time EMG-based classification task.

We tested the model using data from all movement types and
participants. Looking at the confusion matrix, most classes
were identified correctly. For example, head rotations—both
left and right—were consistently recognized with minimal
confusion. There were a few mix-ups, especially between
movements that activate similar muscle groups. For instance,
neck flexion and extension sometimes got misclassified due
to overlapping muscle activity. Similarly, movements like
shoulder shrug and right backward tilt had occasional
overlap, which 1is understandable given the muscle
coordination involved

To give a clearer picture, we also checked how well the
model performed for each class individually using standard
metrics: precision, recall, and Fl-score. Most classes scored
over 90% across all three metrics. For example, “left
backward tilt” had a precision of 94% and an F1-score of
93%, while “shoulder shrug” had precision and recall both
around 90-93%. These scores suggest the model is not only
accurate in general but also consistent across different types
of neck movements.

Overall, the macro average F1-score came out to be around
91%, and the weighted average was about the same. This
means the model didn't just perform well for a few

9. CONCLUSION

This research presented an effective and simple technique for
classifying neck movements with surface electromyography
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movements but handled all of them fairly evenly—even the
ones with fewer samples like the backward tilts.

On the technical side, the classification process was efficient.
Each movement segment was classified using a 200 ms
window with a 50% overlap, and predictions were made fast
enough to support real-time feedback, even on standard
hardware. This shows that the system is not only accurate but
also lightweight enough for possible integration into portable
or wearable devices.

In short, these results confirm that our approach using time-
domain features and Random Forest works well for neck
EMG classification, giving a solid balance between speed and
accuracy—and without the need for complex or high-
compute models like deep neural networks.

Confusion Matrix (~92% Accuracy)

Head Rotation- Left

Head Rotation -Right

left backward tilt -

Neck Extension

Actual

Neck Flexion -

right backward tilt - 10 H 10 15 15 230 10

shoulder shrug - 15 20 10 15 10

g

& o &
N & ® & ’
Predicted

Fig.2. Confusion matrix showing the classification performance of neck
movements
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Fig.3. Classification performance metrics including precision, recall, and F1-
score for neck movement

8. RESULT

Our EMG-based classification system achieved an overall
accuracy of 92% using a Random Forest model trained on
time-domain features. Most neck movements, including head
rotations, flexion, extension, and shoulder shrugs, were
identified with high precision. The performance across all
classes was consistent, with both the macro and weighted F1-
scores being around 91%. Only minor misclassifications
between similar gestures occurred, as revealed by the
confusion matrix. These results confirm that the use of a
simple feature set and a lightweight classifier doesn't
compromise the system's reliability, making it appropriate for
real-time applications like rehabilitation or wearable EMG
devices.

(sEMG) signals and a Random Forest classifier. Using only
four features from the time domain, the model achieved an
accuracy of 92% across seven different classes of neck



movement. Overall, this approach has a good trade-off
between computational efficiency and predictive accuracy,
making it suitable for real-time applications like posture
correction and rehabilitation. Ten participants contributed
data that improved the model’s generalizability. Research in
the future will focus on creating models that are independent
of the subject, broadening the dataset, and carrying out the
system on embedded platforms so that it can be used in
devices worn on the body.

10. FUTURE SCOPE

This work has shown promising results for separating neck
movement patterns based on EMG signals, but the deserve
for improvements still exists. One of the key goals in the
future is to train a model that can continue to get good results
on new users without training again. So far the best results
have been obtained by training on subjects .To make the
system practically applicable, especially in any clinical and
wearable situation, the system should be able to successfully
accommodate body shapes, muscle condition and the
characteristics of the signals. If the dataset is enlarged to
include subjects of different ages and body-type, it would be
possible to develop a more transferable model.

Additionally, combining EMG signals with other motion
sensor signals such as the inertial motion measurement units
(IMUs) might improve the classification accuracy during
dynamic tasks. Finally, exploration of light weight deep
learning models—computational efficiency intact—could not
only enhance the classification but also adapting to the
muscle fatigue over prolonged usage.
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