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1. INTRODUCTION 

Electromyography is an electrical signal produced by the 

human brain during muscle contraction and relaxation phases. 

When muscles contract, the brain sends an electrical signal to 

the muscle that can be detected using electrodes placed on the 

skin (surface EMG) or by inserting them directly into the 

muscle (intramuscular EMG). There are numerous purposes in 

the realms of medicine, clinical practice, and research. 

Categorizing movements based on EMG is valuable as it helps 

in understanding how muscles work during different actions. 

 

Neck muscles are basically the boss of how your head moves, 

how you stand up straight, and how you keep your balance. A 

tool called surface electromyography, or sEMG for short, lets 

us check how those muscles fire without any surgery, and it’s 

already showing up in prosthetics, rehab, and even some cool 

wearables [1]. The two big players here are the 

sternocleidomastoid (SCM) and the trapezius (TRP) muscles—

they handle all the neck moves like nodding, looking up, 

turning your head, or tilting it sideways. If we keep an eye on 

them with sEMG, we can build systems that figure out what 

you’re trying to do, keep track of your posture, and sort out 

each movement as it happens. 

 

This approach is all about building a simple machine-learning 

setup that can tell what kind of neck move you’re making. We 

grab the info from tiny muscle signals (called sEMG) picked 

up by sensors stuck on key neck muscles. The cool part is 

we’re keeping it practical: think helping people rehab after 

neck injuries, fixing bad posture, or even letting you control a 

computer without using your hands. We’re sticking with small, 

fast classifiers, processing the signals on the fly, and picking 

only the most useful data points so everything still runs 

smoothly on low-power wearables like smart collars or small 

bands. 

 
© 2025 The Author(s). Published by ISVE, Ranchi, India 

 

 

 

 

 

 

Many researchers have reviewed effective filtering methods 

such as bandpass filtering, notch filtering, and wavelet-based 

denoising [7].  

 

Once the signal is clean, the next step is featuring extraction—

turning the raw waveforms into compact values that represent 

different signal characteristics. Time-domain features like 

RMS, MAV, and waveform length are the most used, 

especially in low-power systems [8]. Features in the frequency 

and time-frequency domain, like Mean Frequency and Discrete 

Wavelet Transform (DWT), are also used when more detail is 

needed [9]. 

The challenge is finding a good trade-off between complexity 

and performance. Systems meant for real-time, wearable use 

must be both accurate and fast. Reducing redundant features 

using statistical techniques can improve classifier performance 

without increasing computational load [9]. Dimensionality 

reduction helps minimize the impact of user-specific 

variations, which is a big challenge in neck EMG signals due 

to individual posture habits and muscle strength [10]. 

 

For classification, several machine learning models have been 

used in previous studies. Traditional classifiers like SVM, 

kNN, and LDA are lightweight and work well with limited 

training data. In more recent work, neural networks—

especially LSTM—have shown promise for time-series EMG 

classification [11]. LSTM can handle temporal changes in 

EMG patterns, making it more adaptable to real-world use 

cases. However, training deep networks requires large datasets, 

so simpler models are still preferred when working with a 

small number of subjects or limited movement classes. 

 

Wireless sEMG sensors for neck posture classification, and 

they found SCM and TRP activity to be the most consistent 

and reliable indicators of head orientation. Similarly, multi-

channel sEMG can effectively classify neck posture with high 

accuracy using Random Forest classifiers[12]. Combining 

sEMG with accelerometer data to improve robustness in 

wearable health-monitoring systems[9]. These studies 
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highlight the growing interest in applying sEMG-based 

movement classification beyond limb-based systems. 

 

In this study, we focus on using surface EMG signals from 

neck muscles to classify head and neck movements. We aim to 

keep the system practical and low-latency, suitable for 

wearable deployment. Our method focuses on real-time 

processing, compact feature sets, and the use of ML (machine 

learning) classifiers suited for efficient operation on resource-

limited devices. Ultimately, the researchers aim to contribute 

to applications in neck injury rehab, smart posture feedback, 

and touch less human-machine interfaces. 

 

  

 2.   LITERATURE REVIEW 

Surface EMG (sEMG) has recently become one of the most 

important techniques for estimating neuromuscular activity 

with neck movement being an example of a physical task. 

Numerous Research reports have concentrated on application 

of sEMG signals to recognize neck postures and related neck 

motions, wearable systems, and produce real time assistive 

applications. The remainder of this section performs a 

comprehensive review on the classifiers, features, and signal 

acquisition approaches underlying the reviewed works, as well 

as system-level issues such as latency, fatigue, and 

generalization.  

 

A. Classification of Neck Movements Using sEMG 

A linear classifier capable of recognizing ten distinct neck 

movements using merely four sEMG channels placed on the 

sternocleidomastoid (SCM) and trapezius (TRP) muscles. 

Instead of relying on deep learning, this algorithm was crafted 

using patterns of muscular coordination and cross-correlation 

of muscular activity, rendering it efficient for real-time 

applications. Furthermore, in this study, a novel labeling 

correction strategy was promoted to decrease misclassification 

during live usage by taking into account the temporal structure 

of the movements themselves. This technique makes the 

algorithm particularly useful for wearable applications. [13].  

In another study, a low-cost, two-channel sEMG acquisition 

system was developed using MATLAB and analog hardware. 

For its inexpensive setup, the described system could still 

detect three types of head movements: 1. flexion, 2. lateral 

flexion, and 3. rotation. They emphasize live visual feedback 

and signal clarity, which makes it appropriate for prototyping 

and small-scale deployments [14]. 

An analogous group established a structure capable of 

categorizing head movements through the use of a standard 

pattern recognition pipeline [15]. Using time-domain 

attributes, they obtained results that did not overcomplicate 

model architecture and were, in fact, quite accurate. This was 

achieved with minimal hardware and, as was noted, quite 

efficient classification.  

 

B. Feature Extraction and Selection Techniques 

Feature engineering is the vital factor for raising classification 

accuracy while keeping computational efficiency intact. A 

principal study investigated the improvement of KNN 

performance through feature selection based on genetic 

algorithms (GA). The GA, of course, was trained on a massive 

number of redundant and non-informative features. By 

removing those features, as well as using GA to find and keep 

the significant features, classification rates of EMG signals 

from the SCM and TRP areas were boosted [16]. 

 

A second group worked on designing features in the low-

complexity time domain. They focused on using root mean 

square (RMS), mean absolute value (MAV), waveform length 

(WL), and slope sign changes (SSC). These features strike a 

good balance between computational cost and our ability to 

form well-separated classes. Nonetheless, the use of these 

time-domain features helped them keep the model size down 

while maintaining high accuracy [17]. 
 

C. Wearable Systems and Posture Classification 

A relevant application in this field was a wireless sEMG 

apparatus for distinguishing between neutral and flexed head 

positions. The authors extracted RMS and MAV characteristics 

from TRP and SCM and employed an SVM classifier where a 

classification accuracy of 96% was obtained. It showed that a 

small feature set can be used to fuel wearable, robust sEMG 

systems in practical contexts [18]. 

 

A hybrid-interface EMG system that is based on readings of 

neck and eye muscles, or on both to determine the desired head 

movement. Even though the above approach is not only for 

neck EMG, their approach can predict user intent and may be 

useful in VR, gaming, assistive control applications [19]. This 

exposes the possibility of EMG signals not only being used to 

sense activity, but also to derive intention for proactive system 

actions. 

  

D. Deep Learning and Hybrid Models 

Some works explore deep learning approaches. Spectrogram-

based EMG representations were used in another study that 

employed CNNs to recognize hand gestures with relatively 

high classification performance. While these were not directed 

at neck EMG, this approach could be applied to the neck if raw 

signals could be transformed to time-frequency representations 

[20]. 

 

Another study combined EMG feature extraction with LSTM-

based recurrent networks, showing how temporal dynamics in 

EMG signals could be leveraged for classification. Though 

more computationally intensive, these methods are promising 

for systems with powerful on-board processors [21]. 

 

E. Addressing Fatigue and Real-Time Constraints 

Real-world deployment of sEMG systems faces several 

challenges, especially due to muscle fatigue. In one 

investigation, researchers found that classification accuracy 

 declined significantly over time if adaptive learning 

techniques weren’t used. They suggested periodic model 

retraining or adaptation strategies to retain performance [22]. 

 

Additionally, some studies explored embedded system 

constraints such as latency, memory footprint, and power 

consumption. One such work discussed optimizing algorithms 
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for use in battery-powered microcontrollers, emphasizing real-

time inference with minimal delay [23]. 

 

F. Dataset Limitations and Generalizability 

One of the biggest gaps in the literature is the lack of large and 

diverse datasets. Most datasets used in earlier works were built 

from only 3–5 healthy participants, with limited movement 

classes and static postures. This leads to models that perform 

well in lab settings but fail in practical usage. Multiple studies 

called out this limitation and emphasized the need for open-

source, multi-subject datasets for neck EMG classification 

[24],[25]. 

 

In response to this, your project contributes a more robust 

dataset by including ten participants performing a wide range 

of neck movements. By capturing signals from SCM, TRP, and 

scalenes using three EMG channels, your dataset enhances 

both class diversity and generalizability, addressing the 

shortcomings of previous research. 

 

G. Embedded Applications and Practical Deployment 

Some studies focused on creating custom embedded platforms 

for acquiring and processing sEMG signals. These platforms 

integrated analog-to-digital converters, filtering units, and low-

power MCUs capable of running machine learning models 

locally. Key metrics such as signal latency, bandwidth usage, 

and system delay were analyzed to ensure the hardware could 

support real-time movement classification [26]. 

 

In addition, a few studies compared lightweight classifiers like 

Random Forest and Decision Trees to deeper models. Methods 

like Random Forest offered a good tradeoff between speed and 

accuracy for smaller, real-time systems [27]. 

 

3.  METHODOLOGY 
This study methodology is having five section: data collection, 

signal preprocessing, feature extraction, classification, and 

performance evaluation. Below has the detail discussion about 

these section. 

 

 

A. Data Acquisition 

Muscles used for recording electromyography (EMG) signal: 

the sternocleidomastoid (SCM), upper trapezius, and scalenes, 

plays major role in facilitating diverse neck movements. Four 

Bio Amp Patchy sensors were used for collecting signals, with 

electrode placement performed in alignment with the 

standardized guidelines mentioned in data sheet of sensor. 

 

Prior to the placement of electrodes, skin preparation was done 

using Nueprep Skin Preparation Gel. The gel was used to 

exfoliate dead skin cells and remove oils and other impurities 

from the skin. Following this initial cleaning, the area was 

cleaned again with alcohol wipes. This second step ensured 

even better electrode adhesion and improved signal quality. 

The following hardware was used in the prototype,  

 

 

STM32F411RE microcontroller, Bio Amp Patchy sensors, 

breadboard and jumper wires. The experimental data 

acquisition was carried out on a sample of 10 healthy subjects 

(5 men and 5 women). All participants rested in a quiet indoor 

environment in a reclined position, to minimize motion 

artefacts and to maintain steady signal quality across sessions. 

 

 
(a) 

 
(b) 

Fig 1. (a) Electrode placement on the sternocleidomastoid 

muscles for neck movement classification  

(b) Electrode placement on the upper trapezius and scalene 

muscles for shoulder and neck monitoring 

 

   

B. Sensor and Hardware Configuration 

The Bio Amp Patchy is a compact, wearable surface EMG 

sensor designed for muscle activity monitoring. Its 

specifications are as follows: 

Operating Voltage: 5 V 

Input Impedance: 10¹² Ω 

Electrode Configuration: Three-electrode system (Vin+, Vin−, 

Reference) 

Output Signal: Analog EMG (0–5 V range) 

Microcontroller Compatibility: Any board equipped with an 

analog-to-digital converter (ADC) 

Dimensions: 25.4 mm × 10 mm 

The sensor features three output pins: Vin, GND, and OUT. 

For this study, the sensors were connected to the 

STM32F411RE Nucleo microcontroller board using a 

breadboard-based wiring setup. Analog signals from the 

sensors were read via four ADC channels configured to sample 

at 1000 Hz. 

The STM32 board was interfaced with a computer via USB to 

enable continuous data transfer. A custom Python script was 

used to capture real-time EMG signals from all four channels. 

The data were stored in CSV format along with timestamps 

generated by the host system. 

C. Data Collection Protocol 

Each participant underwent four trials per movement type. 

Within each trial, a single movement was performed 

repeatedly, alternating between 5 seconds of activity and 5 
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seconds of rest. Each trial lasted for a total of 40 seconds. For  

reducing  fatigue and ensure muscle recovery, a 4 seconds rest 

period was provided between different  

movement types.  

 

D. Signal Pre-processing 

The raw EMG activity was recorded from four neck muscle: 

left and right sternocleidomastoid and left and right upper 

trapezius. Data cleaning and pre-processing Several cleanup 

operations were conducted on the signals, before they were 

subjected to analysis. These operations were performed to 

improve the quality of the signals, eliminate distortions and 

normalize the data for feature extraction and classification. 

 

1) Signal Validation and Correctness Check: To begin with, 

every signal was inspected visually to make sure that the 

recorded electro-myographic activity looked like it might be 

normal. Then basic statistics were run to check the data for 

integrity. Signals that were too noisy, too saturated, or had too 

much dropout were identified and thrown out. Then the parts 

of the signals that were clean and representative were selected 

for processing [28]. 

2)  Frequency Domain Analysis: The Fast Fourier Transform 

(FFT) was used to study the frequency components of EMG 

signals. This decomposition enabled us to ascertain the 

relevant frequency components of interest resided in the 

expected 20–500 Hz range. The frequency analysis was also 

considered a means of validation that the filtering indeed 

would isolate the relevant signal components.[3]. 

3)  Band-Pass Filtering: Each EMG waveform was filtered 

using a fourth order Butterworth band-pass filter with cut-offs 

of 20 Hz and 450 Hz. This filter stage minimized low 

frequency artefact such as motion noise, and high frequency 

electrical interference while preserving the actual muscle 

signal. The Butterworth filter is selected due to its flat 

frequency response in the pass-band without distorting the 

EMG waveform [28]. 

4) Signal Rectification: Following filtering, full-wave 

rectification was applied to the EMG signals. This process 

involved converting all negative voltage values to their 

positive equivalents, allowing for consistent signal analysis 

across all channels. Rectification also smoothed the waveform, 

making it more suitable for time-domain feature extraction. 

 
       

4. LIST OF MOVEMENTS 
 

Sr. No. Movement Direction 

1 Head Rotation Right 

2 Head Rotation Left 

3 Backward tilt Right 

4 Backward tilt Left 

5 Neck Extension  

6 Neck Flexion  

7 Shoulder shrug  

 

 

5.  FEATURE EXTRACTION 
EMG signals (i.e., raw signals pre-processed (e.g., filtering 

and rectifying)) are used to extract meaningful features 

which will represent the muscle activation in different neck 

movements. Feature extraction is important as raw EMG 

data needs to be transformed to informative inputs for the 

classifier to operate efficiently [29]. 

In this work, we concentrate on time-domain (TD) features, 

since they are computationally efficient and are effective in 

real time systems. Features extracted from each EMG 

channel are as follows: 

• Root Mean Square (RMS): Reflects the power content 

of the EMG signal and correlates with muscle 

contraction strength [28]. 

RMS = √
1

N
∑ xn

2

N

n=1

 

• Mean Absolute Value (MAV): Represents the 

average rectified value and gives a measure of overall 

muscle activity. 

MAV=
1

𝑁 
∑ |𝑥𝑛|

𝑁

𝑛=1

 

• Waveform Length (WL): Measures the cumulative 

length of the waveform, capturing signal complexity. 

WL= ∑ |𝑥𝑛+1
𝑁
𝑛=1 − 𝑥𝑛 | 

• Slope Sign Changes (SSC): Counts the number of 

slope direction changes, indicating frequency-related 

features. 

𝑆𝑆𝐶 = ∑ 𝑓[(𝑥𝑛

𝑁

𝑛=2

− 𝑥𝑛−1)  × (𝑥𝑛  −  𝑥𝑛+1)] 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

These features are extracted over a fixed-length sliding 

window (e.g., 200 ms with 50%overlap) to capture temporal 

dynamics across the recording. 
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6.  CLASSIFICATION 
For this project, we went with the Random Forest (RF) 

algorithm as our main classifier. We picked it because it’s 

super accurate, doesn’t freak out over noisy data, and can deal 

with tons of features without breaking a sweat. Basically, 

Random Forest is a team of decision trees: it builds a bunch of 

them during training, then lets each tree vote, and whichever 

class gets the most votes wins[20]. 

One big plus of using Random Forest is that it spits out feature 

importance scores, so we can actually seewhich variables 

matter most for sorting the data. That fits perfectly with our 

plan to drop the extra stuff while still keeping the info that 

helps us tell the classes apart. 

We trained the classifier on four time-domain features—RMS, 

MAV, WL, and SSC—pulled from neck muscles like the 

sternocleidomastoid and trapezius. We built each input feature 

vector from a 200 ms sliding window that shifts by 50%, so 

the data stays smooth and consistent while the classifier does 

its thing. 

7.  PERFORMANCE EVALUATION 
To understand how well our system performs in recognizing 

different neck movements, we didn’t just stop at accuracy—

we looked deeper into how it handled each specific gesture. 

The final model, based on the Random Forest algorithm, 

reached an overall accuracy of about 92%, which is quite 

promising for a real-time EMG-based classification task. 

 

We tested the model using data from all movement types and 

participants. Looking at the confusion matrix, most classes 

were identified correctly. For example, head rotations—both 

left and right—were consistently recognized with minimal 

confusion. There were a few mix-ups, especially between 

movements that activate similar muscle groups. For instance, 

neck flexion and extension sometimes got misclassified due 

to overlapping muscle activity. Similarly, movements like 

shoulder shrug and right backward tilt had occasional 

overlap, which is understandable given the muscle 

coordination involved 

 

To give a clearer picture, we also checked how well the 

model performed for each class individually using standard 

metrics: precision, recall, and F1-score. Most classes scored 

over 90% across all three metrics. For example, “left 

backward tilt” had a precision of 94% and an F1-score of 

93%, while “shoulder shrug” had precision and recall both 

around 90–93%. These scores suggest the model is not only 

accurate in general but also consistent across different types 

of neck movements. 

 

Overall, the macro average F1-score came out to be around 

91%, and the weighted average was about the same. This 

means the model didn't just perform well for a few 

movements but handled all of them fairly evenly—even the 

ones with fewer samples like the backward tilts. 

On the technical side, the classification process was efficient. 

Each movement segment was classified using a 200 ms 

window with a 50% overlap, and predictions were made fast 

enough to support real-time feedback, even on standard 

hardware. This shows that the system is not only accurate but 

also lightweight enough for possible integration into portable 

or wearable devices. 

 

In short, these results confirm that our approach using time-

domain features and Random Forest works well for neck 

EMG classification, giving a solid balance between speed and 

accuracy—and without the need for complex or high-

compute models like deep neural networks. 

 

 
Fig.2. Confusion matrix showing the classification performance of neck 

movements  

 
Fig.3. Classification performance metrics including precision, recall, and F1-
score for  neck  movement  

 

8.  RESULT  
Our EMG-based classification system achieved an overall 

accuracy of 92% using a Random Forest model trained on 

time-domain features. Most neck movements, including head 

rotations, flexion, extension, and shoulder shrugs, were 

identified with high precision. The performance across all 

classes was consistent, with both the macro and weighted F1-

scores being around 91%. Only minor misclassifications 

between similar gestures occurred, as revealed by the 

confusion matrix. These results confirm that the use of a 

simple feature set and a lightweight classifier doesn't 

compromise the system's reliability, making it appropriate for 

real-time applications like rehabilitation or wearable EMG 

devices.

9. CONCLUSION 
This research presented an effective and simple technique for 

classifying neck movements with surface electromyography 

(sEMG) signals and a Random Forest classifier. Using only 

four features from the time domain, the model achieved an 

accuracy of 92% across seven different classes of neck 
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movement. Overall, this approach has a good trade-off 

between computational efficiency and predictive accuracy, 

making it suitable for real-time applications like posture 

correction and rehabilitation. Ten participants contributed 

data that improved the model’s generalizability. Research in 

the future will focus on creating models that are independent 

of the subject, broadening the dataset, and carrying out the 

system on embedded platforms so that it can be used in 

devices worn on the body. 

 

10. FUTURE SCOPE 
This work has shown promising results for separating neck 

movement patterns based on EMG signals, but the deserve 

for improvements still exists. One of the key goals in the 

future is to train a model that can continue to get good results 

on new users without training again. So far the best results 

have been obtained by training on subjects .To make the 

system practically applicable, especially in any clinical and 

wearable situation, the system should be able to successfully 

accommodate body shapes, muscle condition and the 

characteristics of the signals. If the dataset is enlarged to 

include subjects of different ages and body-type, it would be 

possible to develop a more transferable model. 

Additionally, combining EMG signals with other motion 

sensor signals such as the inertial motion measurement units 

(IMUs) might improve the classification accuracy during 

dynamic tasks. Finally, exploration of light weight deep 

learning models—computational efficiency intact—could not 

only enhance the classification but also adapting to the 

muscle fatigue over prolonged usage. 
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