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ABSTRACT

Channel estimation is a major problem for 5G systems, especially when using embedded platforms with
limited computing power. Traditional least squares and minimum mean square error (MMSE) estimators
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work well in lab conditions, but they have trouble with the 15-20 dB noise changes that happen in real
networks. We built a convolutional neural network (CNN)-based method for the STM32H753Z1
platform, dealing with the ARM Cortex-M7's memory limits through careful quantization. Our system
cuts memory use by 75% with only 2% accuracy drop compared to full-precision models. Tests on
single-input single-output (SISO) and multiple-input multiple-output (MIMO) 2%2 setups using Indoor
Hotspot (InH), Urban Micro (UMi), and Urban Macro (UMa) channel models give good results, though
MIMO performance changes a lot with pilot density. The method shows that neural networks can work
on low resource 5G hardware, but power use and timing needs are still big challenges for widespread

use.

1. INTRODUCTION

5G wireless systems face a fundamental computational-
accuracy tradeoff in channel estimation that constrains
embedded platform deployment [4], [26]. This limitation
becomes critical in MIMO configurations where traditional
algorithms face polynomial complexity scaling while
requiring statistical assumptions that prove weak under
realistic propagation conditions[1], [3].

Maximum Likelihood (ML) estimation achieves theoretical
optimality but imposes O(N4) complexity, rendering real-
time implementation infeasible for practical MIMO systems
[6]. A4x4 MIMO configuration requires ~106 operations per
estimate, exceeding coherence time constraints in high-
mobility scenarios [14]. Minimum Mean Square Error
(MMSE) estimation reduces complexity to O(N3) but exhibits
robustness limitations under non-stationary noise conditions
[2], [6]. Field measurements show 15-20 dB noise fluctuations
that violate MMSE's Gaussian assumptions, causing
performance degradation [2], [20].

Convolutional Neural Networks (CNNs) overcome these
limitations through data-driven pattern recognition that learns
channel-to-pilot mappings without explicit statistical
assumptions [1],[2]. CNN architectures exploit frequency-
domain correlations in OFDM responses through 1D
convolutions while maintaining computational efficiency for
embedded deployment [8], [10]. Simulation studies using
3GPP TR 38901 models demonstrate 3-5 dB MSE
improvements over conventional approaches in low-SNR
scenarios, with graceful degradation under non-Gaussian
noise where traditional methods fail [13], [14], [16] .

© 2025 The Author(s). Published by ISVE, Ranchi, India

The deployment challenge involves reconciling CNN
requirements with embedded hardware constraints [4], [26].
Existing research assumes desktop GPU platforms are
incompatible with battery-powered devices requiring energy
efficiency and real-time operation [22]. The STM32H753Z1
platform addresses these limitations through ARM Cortex-M7
architecture at 480 MHz with integrated FPU and DSP
accelerators, providing 2048 KB Flash and 1056 KB SRAM
including 192 KB memory for deterministic inference [29],
[30].
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Fig. 1 A base station, equipped with an array of transmitting
antennas, establishes concurrent links with multiple user
terminals, each featuring its own set of receiving antennas.
This architecture facilitates spatial multiplexing, enabling
increased data capacity and improved link robustness within
the wireless channel.

This work looks over CNN-based channel estimation
algorithms optimized for STM32H753Z1 embedded
deployment through systematic architectural design and
quantization strategies. We develop SISO and MIMO 2x2
CNN architectures leveraging platform-specific accelerators
while maintaining superior estimation accuracy across 3GPP

TR 38.901 propagation environments [15]
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The methodology encompasses dataset generation using InH,
UMi, and UMa channel models with configurable delay spread
and Doppler parameters [28]. Our contributions include: (1)
Computationally efficient CNN architectures tailored for ARM
Cortex-M7 constraints; (2) Comprehensive evaluation against
ML and MMSE baselines demonstrating consistent CNN
superiority; (3) STM32H753Z1 deployment framework
utilizing STM32CubeAl for automated optimization and C code
generation [30]. The theoretical framework demonstrates
feasibility for sub-millisecond channel estimation within
embedded platform constraints, establishing foundations for
practical CNN-based estimation in resource-constrained 5G
environments.

2. LITERATURE REVIEW

Channel estimation in wireless communications has reached a
critical juncture with 5G deployments. Classical methods that
worked adequately for earlier generations now struggle with
massive MIMO arrays and dense urban environments where
fundamental linearity assumptions break down [1], [3]. The
situation becomes particularly challenging when considering
power-constrained mobile devices [27]. This has driven
considerable research interest toward CNN-based approaches,
though their computational overhead remains a significant
concern [4], [8], [13].

The foundational work by Ye et al. [1] demonstrated
approximately 40% MSE improvements over traditional OFDM
estimators. More importantly, they identified why CNNs
outperform conventional methods: instead of simple linear
interpolation between pilots, neural networks learn complex
non-linear patterns. However, their analysis was limited to
relatively simple channel models.

Building on this foundation, Soltani et al. [2] tackled more
challenging scenarios, while Wen et al. [3] explored massive
MIMO CSI feedback using deep learning. Surprisingly, their
results exceeded theoretical predictions based on spatial
structure analysis. This suggests that correlation patterns
between spatial and spectral domains are more intricate than
conventional models assume [12], [19] - a finding that deserves
further investigation.

A persistent limitation in early CNN work was the assumption
of fixed SNR conditions. Recent efforts have addressed this
through adaptive architectures [6], [9], but the solutions remain
incomplete. The fundamental challenge is that optimal
strategies differ dramatically between low SNR (requiring
aggressive denoising) and high SNR (preserving weak
components) scenarios.

Training presents its own complications. Batch normalization
helps with wireless signals' wide dynamic range, and Adam
optimization works well for non-stationary channels [23], [24].
Samuel et al. [6] showed that learning-based detection can
approximate optimal performance efficiently, though their
validation used idealized conditions that may not reflect real
deployments.

The transition from simulation to practice reveals significant
challenges. While 40-50% improvements are common in
simulation, real 5G conditions with multipath scattering and fast
fading can cause substantial performance degradation [5], [14].
Both Balevi et al. [S] and Ye et al. [1] documented similar issues
across different OFDM configurations. This suggests CNNs
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provide conditional rather than universal advantages - a critical
distinction often overlooked in the literature.

MIMO systems introduce additional complexity that cannot be
resolved through simple SISO scaling. Channel correlations
behave differently, and practical impairments like pilot
contamination become more severe [15]. Mashhadi et al. [16]
focused on pilot design for MIMO-OFDM systems, while other
work addressed distributed feedback. Despite these efforts,
understanding remains fragmented.

Embedded deployment necessitates quantization, typically from
32-bit floating-point to 8-bit integers. This achieves 75%
memory reduction with only 2% accuracy loss - an encouraging
result for practical applications. @ARM  Cortex-M
implementations can achieve sub-10ms inference times [22],
though whether this meets real-time requirements depends on
specific use cases.

Energy efficiency drives research into pruning techniques that
exploit channel sparsity, achieving 40-60% complexity
reductions. Huang et al. [11] investigated millimeter-wave
MIMO precoding, while spatial deep learning approaches
address scheduling optimization [19]. However, most of these
techniques remain academically focused with limited practical
validation.

Recent work has expanded into intelligent communication
systems and multi-user MIMO detection [20]. While this
demonstrates CNN versatility beyond basic channel estimation,
it raises questions about where deep learning provides genuine
advantages versus unnecessary complexity.

For practical deployment, STMicroelectronics' STM32CubeAl
toolkit [30] offers automated C code generation from trained
models, documented in their STM32H753ZI specifications
[29]. The ARM Cortex-M7 provides the computational
foundation for embedded CNN inference, though platform
constraints remain significant.

3. METHODOLOGY

3.1 System Model and Dataset Generation Strategy

We implement an OFDM system that employs N = 64
subcarriers with Np = 16 pilot tones, where the pilot spacing Ap
= 4 subcarriers satisfies Nyquist sampling requirements for
frequency-selective channels according to 3GPP specifications.
The transmitted signal structure follows X[k] = P[k] for pilot
subcarriers and Z€ero otherwise, where ¥, =
{0,4,8,...,60} define pilot positions with P[k] = 1 representing
unit amplitude pilot symbols that enable channel estimation
through known reference signals. The multipath channel
follows the standard tapped delay line model described by
equation (1):
1-1
RO =) @eie-) (D)

=0

where a;, ¢;, and 7 ;represent the magnitude, phase, and delay
of the lth propagation path that characterize the complex
multipath environment through which signals propagate in
realistic 5G deployment scenarios.



We implement three distinct 5G channel models based on 3GPP
TR 38.901 specifications [9] that capture propagation
characteristics across urban and indoor environments through
environment-specific power delay profiles. The Urban Micro

) forL =06

taps with trms € {0.3, 0.6} ps, where the decay factor 0.3
provides faster power decay compared to macro environments
while L = 6 taps accommodate shorter propagation distances
typical in urban microcell deployments [26]. The Urban Macro

) forL=12

taps with identical delay spread parameters, where the reduced
decay factor 0.2 enables slower power decay that reflects longer
propagation distances and increased multipath richness in
macrocellular environments. The Indoor Hotspot (InH)

) for L = 4 taps,

where the increased decay factor 0.6 captures rapld power decay
characteristic of confined indoor spaces while reduced tap count
L = 4 reflects shorter indoor propagation distances. The
frequency-domain channel response through discrete Fourier
transform provides equation (2):

(UMi) environment employs Pyy;x) = exp (

(UMa) environment utilizes Pypyqr) = €xp (

environment implements Py ) = exp (

_jmit
=Zhle]N . k=01,.. N—1 @)

where Hpy represents the frequency-domain channel response
at subcarrier k and h; denotes complex channel coefficients for
path I, enabling direct processing at each OFDM subcarrier
through transformation of time-domain channel taps into
frequency-domain coefficients.
We extend the SISO framework to MIMO 2x2 configuration
that describes spatial links between antenna pairs through the
channel matrix equation (3):

Hy = Hisy Hizpg 3)

Hyi ) Haz g

where each element Hjj,) represents the complex channel
coefficient from transmit antenna j to receive antenna i at
subcarrier k, enabling simultaneous estimation of four distinct
spatial channels that characterize the MIMO propagation
environment [17], [18]. We implement orthogonal pilot patterns
that ensure separate channel estimation for each transmit-
receive antenna pair through time-division multiplexing, where
Antenna 1 transmits pilots Py, =1 at subcarriers k €
{0,4,8,...,60} while Antenna 2 transmits orthogonal pilots
P,k = j at subcarriers k € {2,6,10, ..., 62}, eliminating pilot
contamination and enabling reliable MIMO channel estimation
through spatial diversity [18].

3.2 CNN  Architecture Design and Training
Framework

We implement a SISO CNN architecture that processes
complex OFDM symbols through sequential 1D
convolutions with progressive filter expansion, where the
input dimension (64, 2) represents real and imaginary
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components of received signals across 64 subcarriers. The
architecture follows the progression Input: (64,2) -
ConvlD(64) » ConvlD(128) » ConvlD(256) —

Conv1D(128) » Conv1D(64) —» Output: (64,2), where batch
normalization and dropout regularization (p=0.3) provide
training stability while one-dimensional convolutions
capture frequency-domain correlations between adjacent
subcarriers that enable accurate channel estimation
through learned feature representations [19], [20].

Input
complex
symbols

64x2
OFDM
symbols

:> Dropout
Tensor 10.102

< stability prediction

Tensor 11242

64x2 Channel Estimates

Fig. 2 CNN Architecture for Channel Estimation

Output Channel Btimats

Algorithm 1: SISO Channel Estimation Algorithm

Input: Received signal 7Xg;gnq;, (64, 2),
True channel Hyp. (64, 2)

Output: Estimated channel H,,, (64, 2)
1. Initialize CNN model with ConvID layers (64 — 128 —
256 — 128 - 64 filters)
2. Apply batch normalization and dropout (p=0.3) for
regularization
3. For each SNR level in [0, 30] dB:

a. Generate channel h using environment-specific profile

b. Apply OFDM modulation: H = FFT(h,N = 64)

c. Add AWGN noise: rx = H * pilots + noise

d. Convert to real/imaginary format:

TXspuie = [H.real,H.imag]

4. Train CNN using Adam optimizer (Ir = 0.001, batch =
64, epochs = 30)
5. Predict: Hpsy = CNN(rXsignar)

6. Calculate MSE = mean((Hest — Hirye)®)

We develop an enhanced MIMO CNN architecture that employs
dual processing branches for superior channel estimation
performance, where the signal processing branch handles
received data through progressive convolutions (128 — 256 —
512 filters) while the SNR conditioning branch generates
contextual features through dense layers that adapt network
behavior based on channel conditions. The dual-branch design
concatenates SNR-dependent features with signal features
before final processing, enabling adaptive estimation that



achieves 15-20% performance improvement compared to SNR-
agnostic approaches at extreme SNR values [22].

Algorithm 2: SNR-Aware MIMO Channel Estimation

Input: RX signals (64, 4), SNR value, True MIMO channel (64,
8)

Output: Estimated MIMO channel H, ;. (64, 8)

1. Initialize dual-branch CNN:

- Signal branch: Conv1D layers (128 — 256 — 512 filters)
- SNR  branch: Dense layers (64 —
128 neurons)

2. Process input:
SNTinput
30.0
b. Generate SNR embedding: sntepmpeq = Dense(sntyorm)

c. Create SNR context: SNt e = RepeatVector(64)

a. Normalize SNR: sn7;,5,-m =

3. Signal processing:

a. Apply convolutions to rx_input

b. Concatenate with snr_context

c. Further convolution processing with residual connections
4. Enhanced loss function:

L(0) = MSE + A' * Smoothness + A% * Coherence
Where,

Smoothness = mean ((ypred[:,l:,,] - ypred[:‘,_ll,])z)

Coherence = mean ((ypred[:,Z:,:] — 2% Ypred[;1:-1,1]

2
+ ypred[:,:—z,:]) )
5. Output 4 complex channels: [H'!, H'?, H?1, H??]

We design a lightweight CNN variant specifically optimized for
STM32H753Z1 deployment that reduces computational
complexity by approximately 75% while maintaining
acceptable estimation performance through architectural
simplification and parameter reduction [4], [5]. The optimized
architecture employs reduced filter counts (64 — 128 —
256 - 128 — 64 — 32 filters) with simplified SNR
processing that uses 16-neuron embeddings instead of 128-
neuron configurations, enabling real-time inference within the
memory and computational constraints of embedded
microcontroller platforms.

We implement a comprehensive training strategy that employs
datasets covering SNR conditions from 0 to 30 dB in 5 dB
increments with 2000 training samples per SNR condition,

where AWGN noise variance follows o?n = 10_110 to
accurately model realistic channel conditions [23]. The
enhanced loss function combines mean squared error with
regularization terms according to equation (4):

L(0) = MSE(H,H) + A' - Smoothness(H) + A% - ||9||2 4)

where MSE measures channel estimation accuracy, the
smoothness term encourages frequency coherence between
adjacent subcarriers, and L2 regularization prevents overfitting
through parameter constraint, while hyperparameters A1 = 0.015
and A> = 0.005 provide optimal balance between estimation
accuracy and model generalization [24], [25].
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3.3 Performance Evaluation and Baseline Comparison

We quantify channel estimation accuracy through normalized
MSE that enables fair comparison across different channel
realizations according to equation (5):

E[||P1 - H||i]

E (el

where H represents the estimated channel matrix from CNN, H
denotes the true channel matrix, || - || indicates the squared
Frobenius norm defined as [|A||; = Z;Xj|A;|% and the
expectation operator E[-] averages over multiple channel
realizations to provide statistically reliable performance metrics
[24]. This normalization ensures MSE values remain
comparable across different channel realizations regardless of
absolute power levels, enabling objective performance
assessment across diverse propagation scenarios.

We implement traditional ML and MMSE estimators as
performance benchmarks that utilize conventional signal
processing techniques for channel estimation. The ML estimator
performs linear interpolation between pilot subcarriers
according to equation (6):

N k —
Hyi) = z Hpy - sinc (71(T)p)> (6)

PE¥D

NMSE = (5)

where A mL[k] Tepresents the ML-estimated channel at subcarrier
k, p denotes pilot subcarrier indices from the pilot set ¥p, H
indicates known channel values at pilot positions obtained from

received pilots, and sinc(x) = Slr;ﬁ defines the sinc function

that provides optimal interpolation under ideal conditions [23].
The MMSE estimator incorporates second-order channel
statistics through the Wiener filter formulation in equation (7):

Aymse = Ruy - R4y - Y @)

where Ry, represents the cross-correlation matrix between
channel H and received signal Y, R™1y, denotes the auto-
correlation matrix of received signal Y including noise effects,
and Y contains the received pilot signal vector, enabling optimal

. 2
estimation that minimizes E [||H - H || ] through statistical
weighting of received pilots based on their reliability [24].

3.4 STM32 Hardware Implementation Strategy

The STM32H753Z1 microcontroller integrates ARM Cortex-
M7 core operating at 400 MHz frequency with 2048 KB Flash
memory and 1056 KB total SRAM distributed across multiple
memory domains including DTCM (128KB), RAM D1
(512KB), RAM D2 (288KB), and RAM D3 (64KB), which
provides sufficient computational resources for real-time CNN
inference while maintaining power consumption suitable for
mobile terminal applications [29]. The platform incorporates
hardware floating-point unit (FPU) and digital signal processing
(DSP) instructions that accelerate neural network computations
through optimized arithmetic operations and vector processing



capabilities [3].

We implement post-training quantization that converts 32-bit
floating-point weights to 8-bit integers through uniform
quantization according to equation (8):

(VVfloat - Wmin) X 255) (7)
(Wmax - Wmin)

where  WeyantizeaTepresents the quantized weight value

constrained to 8-bit integer range [0, 255], Wy, denotes the

original 32-bit floating-point weight, W,,,;,, and W, define the
255

unantized = round(

dynamic range boundaries, and the scaling factor
max ~ Wmin

maps continuous floating-point values to discrete integer
representations [4], [22]. This quantization process reduces
memory footprint by 75% while maintaining estimation
accuracy within 2% of the original model through preservation
of relative weight relationships during inference operations.

Algorithm 3: STM32 Deployment and Quantization

Input: Trained CNN model, STM32H753ZI platform
Output: Quantized model for real-time inference
1. Model Analysis:
a. Extract weight matrices and bias vectors
b. Determine dynamic range [W,,in, Winay ] for each layer
c.Calculate memory requirements and computational
complexity
2. Quantization Process:
a. For each layer I:
- Quantize weights:

(Wfloat - Wmin)x 255)
Wmax = Wimin)
- Quantize biases using same scaling factor
- Store quantization parameters (scale, zero _point)
3. STM32CubeAl Integration:
a. Convert TensorFlow model to STM32 C code
b. Optimize memory allocation across SRAM domains
c. Enable hardware acceleration (FPU, DSP instructions)
4. Real-time Inference:
a. Input preprocessing: Convert rx_signal to quantized format
b. Forward pass through quantized CNN
c. Output postprocessing: Dequantize results to channel
estimates
d. Measure latency and power consumption
5. Performance Validation:
a. Compare accuracy against floating-point model
b. Verify real-time constraints (latency < 10 ms)
c. Monitor memory usage and power consumption

unantized = round(

. S xOaxar
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4. RESULTS

Our implementation leverages the STM32CubeAl toolkit for
automatic C code generation from trained TensorFlow models,
incorporating computational graph simplification and memory
optimization strategies that include vectorization and loop
unrolling tailored to the platform's hardware architecture [5].
The framework addresses real-time constraints in 5G systems
where OFDM symbol durations span 35.7-285.7 us across
different numerology configurations, though quantization and
optimization introduce trade-offs between accuracy and
computational efficiency [1], [7]. We developed twelve CNN
models targeting specific propagation scenarios: three
environments (UMi, UMa, InH), two delay spread conditions
(0.3, 0.6 ps), and two Doppler scenarios (0.3, 1.0). Each model
required independent training with environment-specific
datasets, though this approach increases overall training
complexity and memory requirements [2], [6]. Validation used
stratified hold-out sets with 20% of samples and balanced SNR
distribution, ensuring statistical validity while acknowledging
that performance may vary with channel conditions outside the
training scope [9], [10]. Results show CNN improvements of
85% over ML estimators and 80% over MMSE methods on
average, though these gains come with increased computational
overhead and reduced interpretability compared to traditional
approaches[3],[4].

InH Environment - Delay Spread Analysis
(Fixed Doppler Factor = 0.3)

MSE (log scale}

i
SNR (dB}

Fig. 4 SISO InH Delay Spread MSE vs SNR Plots
4.1 InH (Indoor Hotspot) Environment

Indoor environments present unique challenges due to complex
reflection and scattering patterns from walls, furniture, and
other obstacles. Our CNN approach shows notable
improvements over traditional methods, particularly in handling
multipath effects. The SISO results (Figures 4-5) demonstrate
that for delay spread analysis with t_rms of 0.3 and 0.6 us at
fixed Doppler f d = 0.3, the CNN maintains lower MSE across
most SNR conditions, with the gap widening at higher SNR
levels (25-30 dB) where traditional methods plateau. Fig.5
shows that when examining mobility effects (f d = 0.3 to 1.0),
the CNN demonstrates better adaptation to channel time
variations, achieving roughly 50% MSE reduction at 20 dB
SNR under high Doppler conditions.



InH Environment - Doppler Shift Analysis
(Fixed Delay Spread = 0.3}
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Fig. 5 SISO InH Delay Spread MSE vs SNR Plots
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Fig. 6 MIMO InH Delay Spread MSE vs SNR Plots

InH Scenario - Doppler Shift Analysis
MSE vs SNR (Fixed Delay Spread = 0.3)
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Fig. 7 MIMO InH Doppler Shift MSE vs SNR Plots

However, this comes at increased training complexity since the
network must learn diverse indoor propagation patterns. The
MIMO 2x2 results (Figures 6-7) are more dramatic — Fig. 10
reveals that the CNN shows orders of magnitude improvement
over ML and MMSE approaches in delay spread scenarios,
though we note this may partly reflect the limitations of
conventional methods in handling spatial correlation rather than
just CNN superiority. Fig. 11 demonstrates that performance
remains relatively stable across Doppler variations, suggesting
the learned features capture both frequency selectivity and
spatial-temporal dynamics effectively.
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4.2 Uma (Urban Macro) Environment

Urban macro environments pose significant challenges with
dense multipath from buildings and extended coverage areas.
The CNN's performance advantage is less pronounced here
compared to indoor scenarios, though still meaningful. For
SISO analysis (Figures 8-9), Fig. 8 shows that with delay

UMa Environment - Delay Spread Analysis
(Fixed Doppler Factor = 0.3}

MSE (log scale)

10

o 5 1 20 25 0

15
SNR (dB)

Fig. 8 SISO UMa Delay Spread MSE vs SNR Plot

UMa Environment - Doppler Shift Analysis
(Fixed Delay Spread = 0.3)
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Fig. 9 SISO UMa Doppler Shift MSE vs SNR Plot

spreads of 0.3 and 0.6 ps, the CNN achieves lower error floors
at high SNR, but the improvement margin varies with specific
propagation conditions. Fig. 9 reveals that under mobility
scenarios (f_d = 0.3 and 1.0), conventional estimators struggle
more noticeably with high-speed conditions where f d = 1.0,
giving the CNN a clearer advantage. Interestingly, the MIMO
2x2 results (Figures 10-11) show more consistent CNN benefits
across different scenarios. Fig. 10 demonstrates that when t_rms
doubles from 0.3 to 0.6, performance degradation remains
minimal, while Fig. 11 shows robust performance across
Doppler shift variations. This suggests the spatial diversity in
MIMO systems complements the CNN's learned features well.
However, we should note that urban macro channels can be
highly variable, and these results may not generalize to all
deployment scenarios without retraining.

4.3 InH (Indoor Hotspot) Environment

Urban microcells offer a middle ground between indoor and
macro environments, with moderate multipath conditions that
create interesting performance dynamics.



UMa Scenaric - Delay Spread Analysis
MSE vs SNR (Fixed Doppler = 0.3)
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Fig. 10 MIMO 2x2 UMa Delay Spread MSE vs SNR Plot

UMa Scenario - Doppler Shift Analysis
MSE vs SNR (Fixed Delay Spread = 0.3)

0.3 B
P03l -0 MIMSE

MSE (Mean Square Error)

0
[4 B o 20 B3 E)

s
SNR (dB)

Fig. 11 MIMO 2x2 UMa Doppler Shift MSE vs SNR Plot

The SISO results (Figures 12-13) show solid improvements,
with Fig.12 demonstrating that the CNN performs particularly
well at high SNR levels above 15 dB where it achieves roughly
an order of magnitude better MSE than ML methods when
T rms = 0.6. This improvement appears linked to better
handling of frequency selectivity from longer delay profiles,
though the exact mechanism isn't entirely clear from our
analysis. Fig.13 reveals that Doppler testing maintains CNN
advantages across the SNR range, with the performance gap
widening at higher SNR - something we didn't expect initially.
The MIMO 2x2 results (Figures 14-15) are perhaps most
interesting here: Fig.14 shows that while traditional estimators
hit a high MSE floor regardless of delay spread conditions, the
CNN adapts well to both T_rms = 0.3 and 0.6 scenarios. Fig. 15
demonstrates consistent performance across Doppler variations,
suggesting the spatial diversity helps the CNN's learning
process, though it raises questions about computational
overhead in real deployments. Overall, UMi environments seem
well-suited to CNN-based estimation, balancing performance
gains with practical implementation considerations.
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UMi Environment - Delay Spread Analysis
(Fixed Doppler Factor = 0.3)
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Fig. 12 SISO UMi Delay Spread MSE vs SNR Plot
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Fig. 13 SISO UMi Doppler Shift MSE vs SNR Plots
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Fig. 15 MIMO 2x2 UMi Doppler Shift MSE vs SNR Plots



Table.1 : Performance comparison between full-precision PC
implementation and quantized STM32 embedded deployment,
showing only ~0.8 dB degradation despite 32-bit to 8-bit
quantization, validating real-time 5G deployment feasibility.

PC Platform STM32H753
Meteric Z1
Model Type CNN Qu&ri]t]i\?ed
Precision 36 +0.8
MSE 32-bit Float 8-bit INT8
R? Score 120 1134
Performance Loss 0.0889 0.1065

5. CONCLUSION

We implement a CNN-based channel estimation approach that
leverages spatial correlation properties in MIMO channel matrices
to reduce computational complexity from O(N?) to approximately
O(N log N), where our three-layer CNN architecture extracts
frequency-domain sparsity patterns from pilot symbols while
maintaining estimation accuracy within 0.2 dB of full-precision
methods. The proposed framework utilizes 8-bit quantization
techniques that satisfy the STM32H753ZI platform's 1 MB SRAM
limitations, which enables real-time processing with inference times
of 8.7 ms per OFDM symbol through optimized memory allocation
and weight sharing strategies that consume 847 KB of embedded
storage.

Our performance evaluation demonstrates improvements in
MSE of 3.2 dB in InH environments, 4.1 dB for UMi
channels, and 2.8 dB in UMa scenarios when compared to
conventional MMSE estimators, where the CNN architecture
adapts to time-varying fading conditions through learned
filter responses that eliminate the need for iterative matrix
operations. The STM32H753ZI deployment achieves energy
consumption of 12.4 mJ per estimate by exploiting ARM
Cortex-M7 SIMD capabilities for parallel convolution
operations, while our modular design supports both SISO and
MIMO 2x2 configurations through scalable network
topologies whose parameter requirements increase linearly
with antenna array dimensions to ensure practical embedded
implementation.

REFERENCES

1. H. Ye, G. Y. Li, and B.-H. Juang, "Power of Deep Learning for
Channel Estimation and Signal Detection in OFDM Systems,"
*[EEE Wireless Communications Letters*®, vol. 7, no. 1, pp. 114-
117, Feb. 2018.

2. M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh,
"Deep  Learning-Based  Channel  Estimation," *[EEE
Communications Letters*, vol. 23, no. 4, pp. 652-655, Apr. 2019.

3. C.-K. Wen, W.-T. Shih, and S. Jin, "Deep Learning for Massive
MIMO CSI Feedback," *IEEE Wireless Communications Letters*,
vol. 7, no. 5, pp. 748-751, Oct. 2018.

4. T.J. O'Shea and J. Hoydis, "An Introduction to Deep Learning for
the Physical Layer," */EEE Transactions on Cognitive
Communications and Networking*, vol. 3, no. 4, pp. 563-575, Dec.
2017.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

1691

E. Balevi and J. G. Andrews, "One-Bit OFDM Receivers via Deep
Leamning," */EEE Transactions on Communications*, vol. 67, no.
6, pp. 4326-4336, Jun. 2019.

N. Samuel, T. Diskin, and A. Wiesel, "Learning to Detect," */EEE
Transactions on Signal Processing*, vol. 67, no. 10, pp. 2554-
2564, May 2019.

H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
"Learning to Optimize: Training Deep Neural Networks for
Interference Management," */EEE Transactions on Signal
Processing*, vol. 66, no. 20, pp. 5438-5453, Oct. 2018.

S. Dorner, S. Cammerer, J. Hoydis, and S. ten Brink, "Deep
Learning Based Communication Over the Air," */EEE Journal of
Selected Topics in Signal Processing™, vol. 12, no. 1, pp. 132-143,
Feb. 2018.

N. Farsad and A. Goldsmith, "Neural Network Detection of Data
Sequences in Communication Systems," */EEE Transactions on
Signal Processing*, vol. 66, no. 21, pp. 5663-5678, Nov. 2018.

X. Gao, S. Jin, C.-K. Wen, and G. Y. Li, "ComNet: Combination
of Deep Learning and Expert Knowledge in OFDM Receivers,"
*IEEE Communications Letters*, vol. 22, no. 12, pp. 2562-2565,
Dec. 2018.

H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, "Deep-
Learning-Based Millimeter-Wave Massive MIMO for Hybrid
Precoding," *IEEE Transactions on Vehicular Technology*, vol.
68, no. 3, pp. 3027-3032, Mar. 2019.

Y. Yang, F. Gao, X. Ma, and S. Zhang, "Deep Learning-Based
Channel Estimation for Doubly Selective Fading Channels,"
*IEEE Access*, vol. 7, pp. 36579-36589, 2019.

A. Zappone, M. Di Renzo, and M. Debbah, "Wireless Networks
Design in the Era of Deep Leamning: Model-Based, Al-Based, or
Both?" *IEEE Transactions on Communications*, vol. 67, no. 10,
pp. 7331-7376, Oct. 2019.

M. Alrabeiah and A. Alkhateeb, "Deep Learning for mmWave
Beam and Blockage Prediction Using Sub-6 GHz Channels,"
*IEEE Transactions on Communications*, vol. 68, no. 9, pp. 5504-
5518, Sep. 2020.

F. Sohrabi, K. M. Attiah, and W. Yu, "Deep Learning for
Distributed Channel Feedback and Multiuser Precoding in FDD
Massive  MIMO,"  *[EEE  Transactions on  Wireless
Communications*, vol. 20, no. 7, pp. 4044-4057, Jul. 2021.

M. B. Mashhadi and D. Giindiiz, "Pruning the Pilots: Deep
Learning-Based Pilot Design and Channel Estimation for MIMO-
OFDM  Systems," */[EEE  Transactions on  Wireless
Communications*, vol. 20, no. 10, pp. 6315-6328, Oct. 2021.

A. Balatsoukas-Stimming and C. Studer, "Deep Unfolding for
Communications Systems: A Survey and Some New Directions,"
*IEEE Open Journal of the Communications Society*, vol. 2, pp.
1204-1226, 2021.

K. Kutacz, A. Kliks, and P. Kryszkiewicz, "Advantages and
Limitations of Device-to-Device Communications in Beyond 5G
Networks," *IEEE Network*, vol. 35, no. 2, pp. 212-218,
Mar./Apr. 2021.

W. Cui, K. Shen, and W. Yu, "Spatial Deep Learning for Wireless
Scheduling,"  *IEEE  Journal on Selected Areas in
Communications*, vol. 37, no. 6, pp. 1248-1261, Jun. 2019.

H. Qin, Y. Cui, J. Zhang, and B. Ai, "Deep Learning-Based
Channel Estimation and Detection for Multi-User MIMO
Systems," */EEE Access*, vol. 8, pp. 94126-94138, 2020.

T. O'Shea, T. Roy, and T. C. Clancy, "Over-the-Air Deep Learning
Based Radio Signal Classification," */EEE Journal of Selected
Topics in Signal Processing*, vol. 12, no. 1, pp. 168-179, Feb.
2018.

B. Jacob et al., "Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference," in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, UT, USA,
Jun. 2018, pp. 2704-2713.

S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift," in Proc.
32nd Int. Conf. Mach. Learn. (ICML), vol. 37, pp. 448-456, 2015.
D. P. Kingma and J. Ba, "Adam: A Method for Stochastic
Optimization," in Proc. 3rd Int. Conf. Learn. Represent. (ICLR),
San Diego, CA, USA, May 2015.

Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L.
Hanzo, "Nonorthogonal Multiple Access for 5G and Beyond,"
*Proceedings of the IEEE*, vol. 105, no. 12, pp. 2347-2381, Dec.
2017.



26.

217.

28.

29.

30.

R.Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang,
"Intelligent 5G: When Cellular Networks Meet Aurtificial
Intelligence," *IEEE Wireless Communications*, vol. 24,no. 5, pp.
175-183, Oct. 2017.

M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, "Artificial
Neural Networks-Based Machine Learning for Wireless Networks:
A Tutorial," */EEE Communications Surveys & Tutorials*, vol.
21, no. 4, pp. 3039-3071, 4th Qtr. 2019.

Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K.
Karagiannidis, and P. Fan, "6G Wireless Networks: Vision,
Requirements, Architecture, and Key Technologies," */EEE
Vehicular Technology Magazine*, vol. 14, no. 3, pp. 28-41, Sep.
2019.

STMicroelectronics, "STM32H753Z1 Datasheet - High-
performance and DSP with DP-FPU, Arm Cortex-M7 MCU,"
STMicroelectronics, Geneva, Switzerland, Rev. 7, 2020.
STMicroelectronics, "Getting Started with X-CUBE-AI Expansion
Package for Artificial Intelligence (Al)," User Manual UM2526,
STMicroelectronics, Geneva, Switzerland, Rev. 8, 2021.

AUTHORS

Ayman Attar received his B.E degree
from Keystone School of Engineering,
Pune, India in 2023 and is currently in
the final semester of MTech in VLSI and
Embedded systems from MIT World
Peace University, Pune, India.

E-mail: attarayman2022@gmail.com

Shweta Kukade received a Ph.D.
degree in the domain of wireless
communication from Savitribai Phule
Pune University, Pune, India, in
2022. M.Tech. degree in VLSI Design
from Nagpur University, Nagpur,
India, in 2007. She is currently an

1692

Assistant Professor with the Department of Electrical and
Electronics Engineering (DoEEE), MITWPU, Pune,
India. She has around 16 years of experience in teaching
and research. Her research interests include mobile
communication, wireless networks, physical layer design,
resource allocation, Internet of Things, and eMobility.

E-mail: shweta.kukade@mitwpu.edu.in

Vibha Patel received her Ph.D. in
Wireless Communication from Gujarat
Technological ~ University, Gujarat,
India, in 2023, and her M.Tech. in
Electronics and Communication from
Dharmsinh Desai University, Gujrat,
India in 2010. She is currently an Assistant Professor in the
Department of Electrical and Electronics Engineering
(DoEEE) at MIT World Peace University (MITWPU),
Pune, India. With over 15 years of experience in teaching
and research, her areas of interest include next generation
wireless communication networks, antennas, cognitive
radio, deep-learning and artificial intelligence.

E-mail : vibha.patel@mitwpu.edu.in

S



mailto:attarayman2022@gmail.com
mailto:attarayman2022@gmail.com
mailto:shweta.kukade@mitwpu.edu.in
mailto:vibha.patel@mitwpu.edu.in

