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1. INTRODUCTION 

5G wireless systems face a fundamental computational-

accuracy tradeoff in channel estimation that constrains 

embedded platform deployment [4], [26]. This limitation 

becomes critical in MIMO configurations where traditional 

algorithms face polynomial complexity scaling while 

requiring statistical assumptions that prove weak under 

realistic propagation conditions[1], [3].  

Maximum Likelihood (ML) estimation achieves theoretical 

optimality but imposes O(N4) complexity, rendering real-

time implementation infeasible for practical MIMO systems 

[6]. A4×4 MIMO configuration requires ~106 operations per 

estimate, exceeding coherence time constraints in high-

mobility scenarios [14]. Minimum Mean Square Error 

(MMSE) estimation reduces complexity to O(N3) but exhibits 

robustness limitations under non-stationary noise conditions 

[2], [6]. Field measurements show 15-20 dB noise fluctuations 

that violate MMSE's Gaussian assumptions, causing 

performance degradation [2], [20].  

Convolutional Neural Networks (CNNs) overcome these 

limitations through data-driven pattern recognition that learns 

channel-to-pilot mappings without explicit statistical 

assumptions [1],[2]. CNN architectures exploit frequency-

domain correlations in OFDM responses through 1D 

convolutions while maintaining computational efficiency for 

embedded deployment [8], [10]. Simulation studies using 

3GPP TR 38.901 models demonstrate 3-5 dB MSE 

improvements over conventional approaches in low-SNR 

scenarios, with graceful degradation under non-Gaussian 

noise where traditional methods fail [13], [14], [16] .   
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The deployment challenge involves reconciling CNN 

requirements with embedded hardware constraints [4], [26]. 

Existing research assumes desktop GPU platforms are 

incompatible with battery-powered devices requiring energy 

efficiency and real-time operation [22]. The STM32H753ZI 

platform addresses these limitations through ARM Cortex-M7 

architecture at 480 MHz with integrated FPU and DSP 

accelerators, providing 2048 KB Flash and 1056 KB SRAM 

including 192 KB memory for deterministic inference [29], 

[30]. 

Fig. 1 A base station, equipped with an array of transmitting 

antennas, establishes concurrent links with multiple user 

terminals, each featuring its own set of receiving antennas. 

This architecture facilitates spatial multiplexing, enabling 

increased data capacity and improved link robustness within 

the wireless channel. 

This work looks over CNN-based channel estimation 

algorithms optimized for STM32H753ZI embedded 

deployment through systematic architectural design and 

quantization strategies. We develop SISO and MIMO 2×2 

CNN architectures leveraging platform-specific accelerators 

while maintaining superior estimation accuracy across 3GPP 

TR 38.901 propagation environments [15]
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limited computing power. Traditional least squares and minimum mean square error (MMSE) estimators 
work well in lab conditions, but they have trouble with the 15-20 dB noise changes that happen in real 
networks. We built a convolutional neural network (CNN)-based method for the STM32H753ZI 
platform, dealing with the ARM Cortex-M7's memory limits through careful quantization. Our system 
cuts memory use by 75% with only 2% accuracy drop compared to full-precision models. Tests on 
single-input single-output (SISO) and multiple-input multiple-output (MIMO) 2×2 setups using Indoor 
Hotspot (InH), Urban Micro (UMi), and Urban Macro (UMa) channel models give good results, though 
MIMO performance changes a lot with pilot density. The method shows that neural networks can work 
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The methodology encompasses dataset generation using InH, 

UMi, and UMa channel models with configurable delay spread 

and Doppler parameters [28]. Our contributions include: (1) 

Computationally efficient CNN architectures tailored for ARM 

Cortex-M7 constraints; (2) Comprehensive evaluation against 

ML and MMSE baselines demonstrating consistent CNN 

superiority; (3) STM32H753ZI deployment framework 

utilizing STM32CubeAI for automated optimization and C code 

generation [30]. The theoretical framework demonstrates 

feasibility for sub-millisecond channel estimation within 

embedded platform constraints, establishing foundations for 

practical CNN-based estimation in resource-constrained 5G 

environments.  
  

2. LITERATURE REVIEW 
 

Channel estimation in wireless communications has reached a 

critical juncture with 5G deployments. Classical methods that 

worked adequately for earlier generations now struggle with 

massive MIMO arrays and dense urban environments where 

fundamental linearity assumptions break down [1], [3]. The 

situation becomes particularly challenging when considering 

power-constrained mobile devices [27]. This has driven 

considerable research interest toward CNN-based approaches, 

though their computational overhead remains a significant 

concern [4], [8], [13]. 

The foundational work by Ye et al. [1] demonstrated 

approximately 40% MSE improvements over traditional OFDM 

estimators. More importantly, they identified why CNNs 

outperform conventional methods: instead of simple linear 

interpolation between pilots, neural networks learn complex 

non-linear patterns. However, their analysis was limited to 

relatively simple channel models. 

Building on this foundation, Soltani et al. [2] tackled more 

challenging scenarios, while Wen et al. [3] explored massive 

MIMO CSI feedback using deep learning. Surprisingly, their 

results exceeded theoretical predictions based on spatial 

structure analysis. This suggests that correlation patterns 

between spatial and spectral domains are more intricate than 

conventional models assume [12], [19] - a finding that deserves 

further investigation. 

A persistent limitation in early CNN work was the assumption 

of fixed SNR conditions. Recent efforts have addressed this 

through adaptive architectures [6], [9], but the solutions remain 

incomplete. The fundamental challenge is that optimal 

strategies differ dramatically between low SNR (requiring 

aggressive denoising) and high SNR (preserving weak 

components) scenarios. 

Training presents its own complications. Batch normalization 

helps with wireless signals' wide dynamic range, and Adam 

optimization works well for non-stationary channels [23], [24]. 

Samuel et al. [6] showed that learning-based detection can 

approximate optimal performance efficiently, though their 

validation used idealized conditions that may not reflect real 

deployments. 

The transition from simulation to practice reveals significant 

challenges. While 40-50% improvements are common in 

simulation, real 5G conditions with multipath scattering and fast 

fading can cause substantial performance degradation [5], [14]. 

Both Balevi et al. [5] and Ye et al. [1] documented similar issues 

across different OFDM configurations. This suggests CNNs 

provide conditional rather than universal advantages - a critical 

distinction often overlooked in the literature. 

MIMO systems introduce additional complexity that cannot be 

resolved through simple SISO scaling. Channel correlations 

behave differently, and practical impairments like pilot 

contamination become more severe [15]. Mashhadi et al. [16] 

focused on pilot design for MIMO-OFDM systems, while other 

work addressed distributed feedback. Despite these efforts, 

understanding remains fragmented. 

Embedded deployment necessitates quantization, typically from 

32-bit floating-point to 8-bit integers. This achieves 75% 

memory reduction with only 2% accuracy loss - an encouraging 

result for practical applications. ARM Cortex-M 

implementations can achieve sub-10ms inference times [22], 

though whether this meets real-time requirements depends on 

specific use cases. 

Energy efficiency drives research into pruning techniques that 

exploit channel sparsity, achieving 40-60% complexity 

reductions. Huang et al. [11] investigated millimeter-wave 

MIMO precoding, while spatial deep learning approaches 

address scheduling optimization [19]. However, most of these 

techniques remain academically focused with limited practical 

validation. 

Recent work has expanded into intelligent communication 

systems and multi-user MIMO detection [20]. While this 

demonstrates CNN versatility beyond basic channel estimation, 

it raises questions about where deep learning provides genuine 

advantages versus unnecessary complexity. 

For practical deployment, STMicroelectronics' STM32CubeAI 

toolkit [30] offers automated C code generation from trained 

models, documented in their STM32H753ZI specifications 

[29]. The ARM Cortex-M7 provides the computational 

foundation for embedded CNN inference, though platform 

constraints remain significant. 

 

3. METHODOLOGY 
 

3.1 System Model and Dataset Generation Strategy 

We implement an OFDM system that employs N = 64 

subcarriers with Np = 16 pilot tones, where the pilot spacing Δp 

= 4 subcarriers satisfies Nyquist sampling requirements for 

frequency-selective channels according to 3GPP specifications. 

The transmitted signal structure follows X[k] = P[k] for pilot 

subcarriers and zero otherwise, where Ψ𝑝 =

 {0, 4, 8, . . . , 60} define pilot positions with P[k] = 1 representing 

unit amplitude pilot symbols that enable channel estimation 

through known reference signals. The multipath channel 

follows the standard tapped delay line model described by 

equation (1):  

   ℎ(𝑡) = ∑ 𝛼𝑙𝑒
𝑗φ𝑙(𝑡 −  𝜏𝑙)

𝑙−1

𝑙=0

              (1) 

  

 

where 𝛼𝑙, 𝜑𝑙, and 𝜏 𝑙represent the magnitude, phase, and delay 

of the 𝑙𝑡ℎ propagation path that characterize the complex 

multipath environment through which signals propagate in 

realistic 5G deployment scenarios.  
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We implement three distinct 5G channel models based on 3GPP 

TR 38.901 specifications [9] that capture propagation 

characteristics across urban and indoor environments through 

environment-specific power delay profiles. The Urban Micro 

(𝑈𝑀𝑖) environment employs 𝑃𝑈𝑀𝑖(τ) = 𝑒𝑥𝑝 (
−0.3τ

τrms
)  for L = 6 

taps with τrms ∈ {0.3, 0.6} μs, where the decay factor 0.3 

provides faster power decay compared to macro environments 

while L = 6 taps accommodate shorter propagation distances 

typical in urban microcell deployments [26]. The Urban Macro 

(𝑈𝑀𝑎) environment utilizes  𝑃𝑈𝑀𝑎(τ) = 𝑒𝑥𝑝 (
−0.2τ

τrms
)  for L = 12 

taps with identical delay spread parameters, where the reduced 

decay factor 0.2 enables slower power decay that reflects longer 

propagation distances and increased multipath richness in 

macrocellular environments. The Indoor Hotspot (𝐼𝑛𝐻) 

environment implements 𝑃InH(τ) = 𝑒𝑥𝑝 (
−0.6τ

τrms
)  for L = 4 taps, 

where the increased decay factor 0.6 captures rapid power decay 

characteristic of confined indoor spaces while reduced tap count 

L = 4 reflects shorter indoor propagation distances. The 

frequency-domain channel response through discrete Fourier 

transform provides equation (2): 

 

𝐻[𝑘] = ∑ ℎ𝑙𝑒
−𝑗

2𝜋𝑘𝑙
𝑁

𝑙−1

𝑙=0

 ,       𝑘 = 0, 1, … . , 𝑁 − 1              (2) 

 

where 𝑯[𝒌]  represents the frequency-domain channel response 

at subcarrier 𝒌 and ℎ𝑙 denotes complex channel coefficients for 

path 𝒍, enabling direct processing at each OFDM subcarrier 

through transformation of time-domain channel taps into 

frequency-domain coefficients. 

We extend the SISO framework to MIMO 2×2 configuration 

that describes spatial links between antenna pairs through the 

channel matrix equation (3): 

𝐻[𝑘] =  [
𝐻11 [𝑘] 𝐻12 [𝑘]

𝐻21 [𝑘] 𝐻22 [𝑘]
]               (3) 

 

where each element 𝐻𝑖𝑗[𝑘] represents the complex channel 

coefficient from transmit antenna j to receive antenna 𝑖 at 

subcarrier 𝑘, enabling simultaneous estimation of four distinct 

spatial channels that characterize the MIMO propagation 

environment [17], [18]. We implement orthogonal pilot patterns 

that ensure separate channel estimation for each transmit-

receive antenna pair through time-division multiplexing, where 

Antenna 1 transmits pilots 𝑃1[𝑘] = 1 at subcarriers 𝑘 ∈

 {0, 4, 8, … , 60} while Antenna 2 transmits orthogonal pilots 

𝑃2[𝑘] = 𝑗 at subcarriers 𝑘 ∈  {2, 6, 10, … , 62}, eliminating pilot 

contamination and enabling reliable MIMO channel estimation 

through spatial diversity [18]. 

3.2 CNN Architecture Design and Training 

Framework  

We implement a SISO CNN architecture that processes 

complex OFDM symbols through sequential 1D 

convolutions with progressive filter expansion, where the 

input dimension (64, 2) represents real and imaginary 

components of received signals across 64 subcarriers. The 

architecture follows the progression 𝐼𝑛𝑝𝑢𝑡: (64, 2) →
 𝐶𝑜𝑛𝑣1𝐷(64) →  𝐶𝑜𝑛𝑣1𝐷(128) →  𝐶𝑜𝑛𝑣1𝐷(256) →

 𝐶𝑜𝑛𝑣1𝐷(128) →  𝐶𝑜𝑛𝑣1𝐷(64) →  𝑂𝑢𝑡𝑝𝑢𝑡: (64, 2), where batch 

normalization and dropout regularization (p=0.3) provide 

training stability while one-dimensional convolutions 

capture frequency-domain correlations between adjacent 

subcarriers that enable accurate channel estimation 

through learned feature representations [19], [20]. 

 

Fig. 2 CNN Architecture for Channel Estimation 

Algorithm 1: SISO Channel Estimation Algorithm 

 

Input: Received signal 𝑟𝑥𝑠𝑖𝑔𝑛𝑎𝑙(64, 2),  

          True channel 𝐻𝑡𝑟𝑢𝑒(64, 2) 

Output: Estimated channel 𝐻𝑒𝑠𝑡(64, 2) 

1. Initialize CNN model with Conv1D layers (64 → 128 →
256 → 128 → 64 𝑓𝑖𝑙𝑡𝑒𝑟𝑠) 

2. Apply batch normalization and dropout (p=0.3) for 

regularization 

3. For each SNR level in [0, 30] dB: 

a. Generate channel h using environment-specific profile 

b. Apply OFDM modulation: 𝐻 =  𝐹𝐹𝑇(ℎ, 𝑁 = 64) 

c. Add AWGN noise: 𝑟𝑥 =  𝐻 ∗ 𝑝𝑖𝑙𝑜𝑡𝑠 +  𝑛𝑜𝑖𝑠𝑒 

d. Convert to real/imaginary format: 

    𝑟𝑥𝑠𝑝𝑙𝑖𝑡 =  [𝐻. 𝑟𝑒𝑎𝑙, 𝐻. 𝑖𝑚𝑎𝑔] 

4. Train CNN using Adam optimizer (𝑙𝑟 = 0.001, 𝑏𝑎𝑡𝑐ℎ =
64, 𝑒𝑝𝑜𝑐ℎ𝑠 = 30) 

5. Predict: 𝐻𝑒𝑠𝑡 =  𝐶𝑁𝑁(𝑟𝑥𝑠𝑖𝑔𝑛𝑎𝑙) 

6. Calculate 𝑀𝑆𝐸 =  𝑚𝑒𝑎𝑛((𝐻𝑒𝑠𝑡 −  𝐻𝑡𝑟𝑢𝑒)2) 

We develop an enhanced MIMO CNN architecture that employs 

dual processing branches for superior channel estimation 

performance, where the signal processing branch handles 

received data through progressive convolutions (128 → 256 →
512 𝑓𝑖𝑙𝑡𝑒𝑟𝑠) while the SNR conditioning branch generates 

contextual features through dense layers that adapt network 

behavior based on channel conditions. The dual-branch design 

concatenates SNR-dependent features with signal features 

before final processing, enabling adaptive estimation that 
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achieves 15-20% performance improvement compared to SNR-

agnostic approaches at extreme SNR values [22]. 

Algorithm 2: SNR-Aware MIMO Channel Estimation 

 

Input: RX signals (64, 4), SNR value, True MIMO channel (64, 

8) 

Output: Estimated MIMO channel 𝐻𝑚𝑖𝑚𝑜(64, 8) 

1. Initialize dual-branch CNN: 

 - Signal branch: Conv1D layers (128 → 256 → 512 𝑓𝑖𝑙𝑡𝑒𝑟𝑠) 

 -  SNR branch: Dense layers (64 →
128 𝑛𝑒𝑢𝑟𝑜𝑛𝑠) 

2. Process input: 

a. Normalize SNR: 𝑠𝑛𝑟𝑛𝑜𝑟𝑚 =
𝑠𝑛𝑟𝑖𝑛𝑝𝑢𝑡

30.0
 

b. Generate SNR embedding: 𝑠𝑛𝑟𝑒𝑚𝑏𝑒𝑑 =  𝐷𝑒𝑛𝑠𝑒(𝑠𝑛𝑟𝑛𝑜𝑟𝑚) 

c. Create SNR context: 𝑠𝑛𝑟𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =  𝑅𝑒𝑝𝑒𝑎𝑡𝑉𝑒𝑐𝑡𝑜𝑟(64) 

 

3. Signal processing: 

   a. Apply convolutions to 𝑟𝑥_𝑖𝑛𝑝𝑢𝑡 

   b. Concatenate with 𝑠𝑛𝑟_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

   c. Further convolution processing with residual connections 

4. Enhanced loss function: 

   𝐿(𝜃) =  𝑀𝑆𝐸 +  𝜆1 ∗ 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 + 𝜆2 ∗ 𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 

Where,  

 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =  𝑚𝑒𝑎𝑛 ((𝑦𝑝𝑟𝑒𝑑[:,1:,∶] − 𝑦𝑝𝑟𝑒𝑑[:,∶−1,∶])
2

) 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑚𝑒𝑎𝑛 ((𝑦𝑝𝑟𝑒𝑑[:,2:,∶] −  2 ∗ 𝑦𝑝𝑟𝑒𝑑[:,1:−1,∶]

+ 𝑦𝑝𝑟𝑒𝑑[:,∶−2,∶])
2

) 

5. Output 4 complex channels: [𝐻11, 𝐻12, 𝐻21, 𝐻22] 
 

We design a lightweight CNN variant specifically optimized for 

STM32H753ZI deployment that reduces computational 

complexity by approximately 75% while maintaining 

acceptable estimation performance through architectural 

simplification and parameter reduction [4], [5]. The optimized 

architecture employs reduced filter counts (64 → 128 →
256 → 128 → 64 → 32 𝑓𝑖𝑙𝑡𝑒𝑟𝑠) with simplified SNR 

processing that uses 16-neuron embeddings instead of 128-

neuron configurations, enabling real-time inference within the 

memory and computational constraints of embedded 

microcontroller platforms. 

We implement a comprehensive training strategy that employs 

datasets covering SNR conditions from 0 to 30 dB in 5 dB 

increments with 2000 training samples per SNR condition, 

where AWGN noise variance follows 𝜎2𝑛 =  10−
𝛾

10 to 

accurately model realistic channel conditions [23].     The 

enhanced loss function combines mean squared error with 

regularization terms according to equation (4): 

 

𝐿(𝜃) =  𝑀𝑆𝐸(Ĥ, 𝐻) + 𝜆1 · 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠(Ĥ) + 𝜆2 · ||𝜃||
2

 (4) 

 

where MSE measures channel estimation accuracy, the 

smoothness term encourages frequency coherence between 

adjacent subcarriers, and L2 regularization prevents overfitting 

through parameter constraint, while hyperparameters λ₁ = 0.015 

and λ₂ = 0.005 provide optimal balance between estimation 

accuracy and model generalization [24], [25]. 

 

3.3 Performance Evaluation and Baseline Comparison 

We quantify channel estimation accuracy through normalized 

MSE that enables fair comparison across different channel 

realizations according to equation (5): 

 

𝑁𝑀𝑆𝐸 =  
𝐸 [||Ĥ −  𝐻||

𝐹

2

] 

𝐸 [||𝐻||
𝐹

2
]

             (5) 

where Ĥ represents the estimated channel matrix from CNN, H 

denotes the true channel matrix, || · ||𝐹
2  indicates the squared 

Frobenius norm defined as ||𝐴||𝐹
2  =  𝛴ᵢ 𝛴ⱼ |𝐴ᵢⱼ|², and the 

expectation operator E[·] averages over multiple channel 

realizations to provide statistically reliable performance metrics 

[24]. This normalization ensures MSE values remain 

comparable across different channel realizations regardless of 

absolute power levels, enabling objective performance 

assessment across diverse propagation scenarios. 

We implement traditional ML and MMSE estimators as 

performance benchmarks that utilize conventional signal 

processing techniques for channel estimation. The ML estimator 

performs linear interpolation between pilot subcarriers 

according to equation (6):  

 

Ĥ𝑀𝐿[𝐾] =  ∑ 𝐻[𝑝] · 𝑠𝑖𝑛𝑐 (
𝜋(𝑘 − 𝑝)

𝛥𝑝
)

𝑝∈𝛹𝑝

             (6) 

 

where Ĥ𝑀𝐿[𝑘] represents the ML-estimated channel at subcarrier 

𝑘, p denotes pilot subcarrier indices from the pilot set 𝛹𝑝, 𝐻[𝐾] 

indicates known channel values at pilot positions obtained from 

received pilots, and 𝑠𝑖𝑛𝑐(𝑥) =
sin(𝑥)

𝑥
 defines the sinc function 

that provides optimal interpolation under ideal conditions [23]. 

The MMSE estimator incorporates second-order channel 

statistics through the Wiener filter formulation in equation (7): 

 

Ĥ𝑀𝑀𝑆𝐸 =  𝑅𝐻𝑌  ·  𝑅−1
𝑌𝑌  ·  𝑌             (7) 

 

where 𝑅𝐻𝑌 represents the cross-correlation matrix between 

channel H and received signal Y, 𝑅−1
𝑌𝑌 denotes the auto-

correlation matrix of received signal Y including noise effects, 

and Y contains the received pilot signal vector, enabling optimal 

estimation that minimizes 𝐸 [||Ĥ −  𝐻||
2

] through statistical 

weighting of received pilots based on their reliability [24]. 

3.4 STM32 Hardware Implementation Strategy 

The STM32H753ZI microcontroller integrates ARM Cortex-

M7 core operating at 400 MHz frequency with 2048 KB Flash 

memory and 1056 KB total SRAM distributed across multiple 

memory domains including DTCM (128KB), RAM_D1 

(512KB), RAM_D2 (288KB), and RAM_D3 (64KB), which 

provides sufficient computational resources for real-time CNN 

inference while maintaining power consumption suitable for 

mobile terminal applications [29]. The platform incorporates 

hardware floating-point unit (FPU) and digital signal processing 

(DSP) instructions that accelerate neural network computations 

through optimized arithmetic operations and vector processing 
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capabilities [3]. 

We implement post-training quantization that converts 32-bit 

floating-point weights to 8-bit integers through uniform 

quantization according to equation (8): 

 

𝑊𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑  =  𝑟𝑜𝑢𝑛𝑑 (
(𝑊𝑓𝑙𝑜𝑎𝑡  −  𝑊𝑚𝑖𝑛) ×  255

(𝑊𝑚𝑎𝑥  −  𝑊𝑚𝑖𝑛)
)             (7) 

where 𝑊𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑represents the quantized weight value 

constrained to 8-bit integer range [0, 255], 𝑊𝑓𝑙𝑜𝑎𝑡denotes the 

original 32-bit floating-point weight, 𝑊𝑚𝑖𝑛 and 𝑊𝑚𝑎𝑥define the 

dynamic range boundaries, and the scaling factor 
255

𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛
 

maps continuous floating-point values to discrete integer 

representations [4], [22]. This quantization process reduces 

memory footprint by 75% while maintaining estimation 

accuracy within 2% of the original model through preservation 

of relative weight relationships during inference operations. 

 

Algorithm 3: STM32 Deployment and Quantization  

 

Input: Trained CNN model, STM32H753ZI platform 

Output: Quantized model for real-time inference 

1. Model Analysis: 

   a. Extract weight matrices and bias vectors 

   b. Determine dynamic range [𝑊𝑚𝑖𝑛, 𝑊𝑚𝑎𝑥] for each layer 

   c.Calculate memory requirements and computational 

complexity 

2. Quantization Process: 

   a. For each layer l: 

      - Quantize weights: 

 𝑾𝒒𝒖𝒂𝒏𝒕𝒊𝒛𝒆𝒅  =  𝒓𝒐𝒖𝒏𝒅 (
(𝑾𝒇𝒍𝒐𝒂𝒕 − 𝑾𝒎𝒊𝒏)× 𝟐𝟓𝟓

(𝑾𝒎𝒂𝒙 − 𝑾𝒎𝒊𝒏)
)    

      - Quantize biases using same scaling factor 

      - Store quantization parameters (scale, zero_point) 

3. STM32CubeAI Integration: 

   a. Convert TensorFlow model to STM32 C code 

   b. Optimize memory allocation across SRAM domains 

   c. Enable hardware acceleration (FPU, DSP instructions) 

4. Real-time Inference: 

   a. Input preprocessing: Convert rx_signal to quantized format 

   b. Forward pass through quantized CNN 

   c. Output postprocessing: Dequantize results to channel 

estimates 

   d. Measure latency and power consumption 

5. Performance Validation: 

   a. Compare accuracy against floating-point model 

   b. Verify real-time constraints (latency < 10 ms) 

   c. Monitor memory usage and power consumption 

 
Fig. 3 STM32 Cube MX Configurations 

 

4. RESULTS 

 
Our implementation leverages the STM32CubeAI toolkit for 

automatic C code generation from trained TensorFlow models, 

incorporating computational graph simplification and memory 

optimization strategies that include vectorization and loop 

unrolling tailored to the platform's hardware architecture [5]. 

The framework addresses real-time constraints in 5G systems 

where OFDM symbol durations span 35.7-285.7 μs across 

different numerology configurations, though quantization and 

optimization introduce trade-offs between accuracy and 

computational efficiency [1], [7]. We developed twelve CNN 

models targeting specific propagation scenarios: three 

environments (UMi, UMa, InH), two delay spread conditions 

(0.3, 0.6 μs), and two Doppler scenarios (0.3, 1.0). Each model 

required independent training with environment-specific 

datasets, though this approach increases overall training 

complexity and memory requirements [2], [6]. Validation used 

stratified hold-out sets with 20% of samples and balanced SNR 

distribution, ensuring statistical validity while acknowledging 

that performance may vary with channel conditions outside the 

training scope [9], [10]. Results show CNN improvements of 

85% over ML estimators and 80% over MMSE methods on 

average, though these gains come with increased computational 

overhead and reduced interpretability compared to traditional 

approaches[3],[4].  

 

 
Fig. 4 SISO InH Delay Spread MSE vs SNR Plots 

4.1 InH (Indoor Hotspot) Environment 

Indoor environments present unique challenges due to complex 

reflection and scattering patterns from walls, furniture, and 

other obstacles. Our CNN approach shows notable 

improvements over traditional methods, particularly in handling 

multipath effects. The SISO results (Figures 4-5) demonstrate 

that for delay spread analysis with τ_rms of 0.3 and 0.6 μs at 

fixed Doppler f_d = 0.3, the CNN maintains lower MSE across 

most SNR conditions, with the gap widening at higher SNR 

levels (25-30 dB) where traditional methods plateau. Fig.5 

shows that when examining mobility effects (f_d = 0.3 to 1.0), 

the CNN demonstrates better adaptation to channel time 

variations, achieving roughly 50% MSE reduction at 20 dB 

SNR under high Doppler conditions.  
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Fig. 5 SISO InH Delay Spread MSE vs SNR Plots 

 

 

Fig. 6 MIMO InH Delay Spread MSE vs SNR Plots 
 
 

 
Fig. 7 MIMO InH Doppler Shift MSE vs SNR Plots 

However, this comes at increased training complexity since the 

network must learn diverse indoor propagation patterns. The 

MIMO 2x2 results (Figures 6-7) are more dramatic – Fig. 10 

reveals that the CNN shows orders of magnitude improvement 

over ML and MMSE approaches in delay spread scenarios, 

though we note this may partly reflect the limitations of 

conventional methods in handling spatial correlation rather than 

just CNN superiority. Fig. 11 demonstrates that performance 

remains relatively stable across Doppler variations, suggesting 

the learned features capture both frequency selectivity and 

spatial-temporal dynamics effectively. 

4.2 Uma (Urban Macro) Environment 

Urban macro environments pose significant challenges with 

dense multipath from buildings and extended coverage areas. 

The CNN's performance advantage is less pronounced here 

compared to indoor scenarios, though still meaningful. For 

SISO analysis (Figures 8-9), Fig. 8 shows that with delay 

 

 

Fig. 8 SISO UMa Delay Spread MSE vs SNR Plot 

 

 
Fig. 9 SISO UMa Doppler Shift MSE vs SNR Plot 
 

spreads of 0.3 and 0.6 μs, the CNN achieves lower error floors 

at high SNR, but the improvement margin varies with specific 

propagation conditions. Fig. 9 reveals that under mobility 

scenarios (f_d = 0.3 and 1.0), conventional estimators struggle 

more noticeably with high-speed conditions where f_d = 1.0, 

giving the CNN a clearer advantage. Interestingly, the MIMO 

2x2 results (Figures 10-11) show more consistent CNN benefits 

across different scenarios. Fig. 10 demonstrates that when τ_rms 

doubles from 0.3 to 0.6, performance degradation remains 

minimal, while Fig. 11 shows robust performance across 

Doppler shift variations. This suggests the spatial diversity in 

MIMO systems complements the CNN's learned features well. 

However, we should note that urban macro channels can be 

highly variable, and these results may not generalize to all 

deployment scenarios without retraining. 

4.3 InH (Indoor Hotspot) Environment 

Urban microcells offer a middle ground between indoor and 

macro environments, with moderate multipath conditions that 

create interesting performance dynamics.  
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Fig. 10 MIMO 2x2 UMa Delay Spread MSE vs SNR Plot  

 

 
Fig. 11 MIMO 2x2 UMa Doppler Shift MSE vs SNR Plot 

The SISO results (Figures 12-13) show solid improvements, 

with Fig.12 demonstrating that the CNN performs particularly 

well at high SNR levels above 15 dB where it achieves roughly 

an order of magnitude better MSE than ML methods when 

τ_rms = 0.6. This improvement appears linked to better 

handling of frequency selectivity from longer delay profiles, 

though the exact mechanism isn't entirely clear from our 

analysis. Fig.13 reveals that Doppler testing maintains CNN 

advantages across the SNR range, with the performance gap 

widening at higher SNR - something we didn't expect initially. 

The MIMO 2x2 results (Figures 14-15) are perhaps most 

interesting here: Fig.14 shows that while traditional estimators 

hit a high MSE floor regardless of delay spread conditions, the 

CNN adapts well to both τ_rms = 0.3 and 0.6 scenarios. Fig. 15 

demonstrates consistent performance across Doppler variations, 

suggesting the spatial diversity helps the CNN's learning 

process, though it raises questions about computational 

overhead in real deployments. Overall, UMi environments seem 

well-suited to CNN-based estimation, balancing performance 

gains with practical implementation considerations. 

 

 
Fig. 12 SISO UMi Delay Spread MSE vs SNR Plot 

 

 
Fig. 13 SISO UMi Doppler Shift MSE vs SNR Plots 

 

 
Fig. 14 MIMO 2x2 UMi Delay Spread MSE vs SNR Plots 

  

  
Fig. 15 MIMO 2x2 UMi Doppler Shift MSE vs SNR Plots
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Table.1 : Performance comparison between full-precision PC 

implementation and quantized STM32 embedded deployment, 

showing only ~0.8 dB degradation despite 32-bit to 8-bit 

quantization, validating real-time 5G deployment feasibility. 

 

5. CONCLUSION 
We implement a CNN-based channel estimation approach that 

leverages spatial correlation properties in MIMO channel matrices 

to reduce computational complexity from O(N³) to approximately 

O(N log N), where our three-layer CNN architecture extracts 

frequency-domain sparsity patterns from pilot symbols while 

maintaining estimation accuracy within 0.2 dB of full-precision  

methods. The proposed framework utilizes 8-bit quantization 

techniques that satisfy the STM32H753ZI platform's 1 MB SRAM  

limitations, which enables real-time processing with inference times 

of 8.7 ms per OFDM symbol through optimized memory allocation 

and weight sharing strategies that consume 847 KB of embedded 

storage. 

Our performance evaluation demonstrates improvements in 

MSE of 3.2 dB in InH environments, 4.1 dB for UMi 

channels, and 2.8 dB in UMa scenarios when compared to 

conventional MMSE estimators, where the CNN architecture 

adapts to time-varying fading conditions through learned 

filter responses that eliminate the need for iterative matrix 

operations. The STM32H753ZI deployment achieves energy 

consumption of 12.4 mJ per estimate by exploiting ARM 

Cortex-M7 SIMD capabilities for parallel convolution 

operations, while our modular design supports both SISO and 

MIMO 2×2 configurations through scalable network 

topologies whose parameter requirements increase linearly 

with antenna array dimensions to ensure practical embedded 

implementation. 
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