

 ISSN: 2584-0495 Vol. 3, Issue 6, pp. 1663-1683

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

Design of RISC- V Processor using Verilog@HDL

Pratyush Pranjal, Vansh Tak, Aryan Singh and Vijay Nath

Cite as: Pranjal, P., Tak, V., Singh, A., & Nath, V. (2025). Design of RISC- V Processor using

Verilog @HDL. International Journal of Microsystems and IoT, 3(6), 1663–1683.

https://doi.org/10.5281/zenodo.18152801

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 25 June 2025

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

https://doi.org/10.5281/zenodo.18152801

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.18152801
https://doi.org/10.5281/zenodo.18152801
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1663

International Journal of Microsystems and IoT

Vol.3, Issue 6, pp.1663-1683; DOI: https://doi.org/10.5281/zenodo.18152801

 Design of RISC- V Processor using Verilog @HDL
 Pratyush Pranjal, Vansh Tak, Aryan Singh and Vijay Nath

Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India

 Keywords

I. INTRODUCTION

RISC-V is an open-source instruction set architecture (ISA)

that is reshaping the future of computing. First introduced by

researchers at the University of California, Berkeley in 2010,

RISC-V was created to be simple, modular, and efficient,

making it suitable for a broad spectrum of applications, from

tiny embedded systems to powerful data centres.

What makes RISC-V truly stand out is its openness. Unlike

proprietary ISAs like x86 from Intel or ARM, RISC-V is

available under a permissive open license. This allows

developers, whether from academia, industry, or the maker

community, to freely implement, modify, and distribute

RISC-V designs without worrying about licensing fees or

legal barriers. As a result, RISC-V has sparked widespread

interest and innovation around the world.

Adhering to the Reduced Instruction Set Computing (RISC)

principles, RISC-V emphasizes a minimal yet highly

effective set of instructions. The base set for 32-bit systems,

known as RV32I, includes only the most essential operations

such as arithmetic, logic, control flow, and memory access.

However, the architecture is designed to be extensible.

Designers can add optional modules like:

1. M: Integer multiplication and division

2. A: Atomic instructions

3. F and D: Single and double precision floating-point

4. C: Compressed instructions to reduce code size

5. V: Vector operations for parallel processing

This flexibility means RISC-V cores can be customized for

specific tasks, optimizing both performance and power usage.

A typical RISC-V processor is composed of several key units:

1. Instruction Fetch Unit: Loads instructions from

memory using the program counter.

© 2025 The Author(s). Published by ISVE, Ranchi, India

2. Instruction Decode Unit: Decodes the fetched

instruction and identifies the operation and

operands.

3. Register File: A set of 32 general-purpose registers

for quick data storage and retrieval.

4. ALU (Arithmetic Logic Unit): Executes arithmetic

and logical computations.

5. Control Unit: Generates control signals to

coordinate the processor’s internal operations.

6. Memory Interface: Manages data transfer between

the processor and external memory.

More advanced RISC-V CPUs can incorporate features like

pipelining for improved instruction throughput, out-of-order

execution for performance gains, and even multicore

configurations for parallel processing. Despite such

enhancements, the base ISA remains clean, easy to

understand, and ideal for teaching computer architecture.

The RISC-V ecosystem continues to expand rapidly. A wide

range of tools—including compilers, debuggers, simulators,

and operating systems—are now available. Popular operating

systems like Linux and Free RTOS already support RISC-

V, and community-driven projects are extending

compatibility further every day.

II. THE BASIC COMPONENTS OF A

RISC-V PROCESSOR

1. The Design of an Arithmetic Logic Unit

(ALU)

ABSTRACT

This paper presents the design and implementation of a RISC-V (Reduced Instruction Set Computer -
Version 5) processor using Verilog hardware description language and the Vivado 2024.2 design suite.
The RISC-V architecture, known for its simplicity, modularity, and open-source nature, serves as an
ideal platform for academic research and custom processor development. The processor design follows
a five-stage pipelined architecture, incorporating Instruction Fetch, Instruction Decode, Execute,
Memory Access, and Write Back stages. Each module was coded in Verilog and synthesized using
Vivado 2024.2 software, ensuring compatibility with FPGA deployment through Vitis 2024.2 software.
The implementation emphasizes efficient data path control, hazard detection, and forwarding
mechanisms to maintain instruction throughput and pipeline efficiency. Simulation and verification were
conducted to ensure functional accuracy and timing performance, using testbenches that replicate typical
instruction sequences. Results indicate that the design meets the functional requirements and is suitable
for educational use and further extension into more complex systems.

Arithmetic Logic Unit

(ALU), Control Unit

(CU), Instruction Fetch

Unit (IFU), Register File

(RF), Datapath (DP).

https://doi.org/10.5281/zenodo.18152801

1664

Fig 1. A complex overview showcasing the entire architecture of a basic RISC-V Processor

The Arithmetic Logic Unit (ALU) is one of the most

essential components within a computer’s Central

Processing Unit (CPU). It handles the execution of both

arithmetic and logical operations, forming the backbone of all

computations carried out by the processor. The efficiency and

speed of a CPU are heavily influenced by how well the ALU

is designed and implemented.

An ALU is engineered to perform a variety of basic

operations, such as:

1. Arithmetic operations: including addition and

subtraction

2. Logical operations: such as bitwise AND, OR,

XOR, and NOT

3. Shifting operations: including left and right bit

shifts

4. Comparisons: to evaluate relationships like

equality or magnitude

To support these functions, a typical ALU consists of the

following key components:

 Main Components of the ALU

1. Operand Inputs

The ALU accepts two binary input values, often

fetched from the CPU's register file. These values

are the operands upon which the operation will be

performed.

2. Operation Decoder

This internal logic interprets the opcode (operation

code) provided by the control unit. Based on the

opcode, the decoder activates specific circuits within

the ALU to carry out the required task, whether it's

an addition, a logical operation, or a comparison.

3. Arithmetic Unit

This section performs all arithmetic calculations. A

common implementation is the ripple-carry adder,

which can add two binary numbers. With two’s

complement logic, it can also handle subtraction.

For faster computation, some ALUs use more

advanced adders like carry-lookahead or carry-

select adders.

4. Logic Unit

Responsible for executing bit-level logical

functions, this unit can carry out operations such as

AND, OR, XOR, and inversion. Each bit of the input

is processed independently according to the

operation selected.

5. Multiplexer System (MUX)

Since the ALU supports multiple operations,

multiplexers are used to select which result to

output based on control signals. The correct

operation result is routed through to the output

depending on the current instruction.

6. Status Flags and Outputs

Along with the result, the ALU generates status

flags that reflect the outcome of the operation. These

typically include:

1. Zero (Z): Set if the result is zero

2. Carry (C): Indicates a carry out in addition

or a borrow in subtraction

3. Overflow (O): Set if an arithmetic

overflow occurs

4. Negative (N): Indicates a negative result in

signed operations

2. How to implement ALU

Step 1: Define Module I/O Ports

We start by identifying what an ALU

needs:

1. Two 32-bit inputs: A and B (operands)

2. A 4-bit control signal: ALUControl to

select the operation

3. One 32-bit output: Result

4. One flag output: Zero

Step 2: Choose Supported Operations

We design the ALU to support both

standard and a few custom operations.

Step 3: “Combinational always” @(*)

Block

We use an always @(*) block to create a

combinational (non-clocked) logic block.

The operation performed is selected using

a case statement on ALUControl.

1665

Step 4: Generate the Zero Flag

This output is used for branch comparisons

like beq (branch if equal). It's 1 if the result

of the operation is 0.

3. Verilog Code

ALUControl Operation Description

0000 AND Bitwise AND

0001 OR Bitwise OR

0010 NAND Bitwise NAND

0011 NOR Bitwise NOR

0100 XOR Bitwise XOR

0101 ADD Integer Addition

0110 SUB Integer Subtraction

0111 SLT Set-on-less-than

1000 SMT Set-on-more-than

1001 MUL Multiply (basic)

1010 REMAINDER Remainder

1011 SLL Shift left logical

1100 SRL Shift Right logical

1101 NOT A Bitwise NOT on A

1110 NOT B Bitwise NOT on B

Fig.1.B.1. Design ALU (internal) implementation using Vivado 2024.2

1666

Fig.1.B.2. Behavioral Simulation involving all assigned operations using Vivado 2024.2

The displayed waveform illustrates a behavioral simulation of a Verilog-based Arithmetic Logic Unit (ALU). It shows key signals

including the inputs A and B, a 4-bit ALU_Control signal used to select specific ALU operations, and outputs Result and Zero.

Initially, A is set to 0xA and B to 0x5, remaining unchanged for several clock cycles while ALU_Control transitions from 3 to E

(hex), each representing different ALU functions such as logical operations, addition, subtraction, and shifts. The Result output

accurately reflects the expected values for each operation—e.g., when ALU_Control is 6 (ADD), the result is 0xF; for 7 (SUB), it

yields 0x5. Around the 90 ns mark, the inputs A and B change, prompting corresponding updates in the result, demonstrating the

ALU’s ability to respond to new data. The Zero output remains deasserted (0) except when the result is zero, confirming the proper

functioning of the zero-detection logic. Overall, the simulation validates that the ALU correctly handles a variety of operations

based on different control signals.

2. The Design of a Control Unit (CU)

The Control Unit (CU) is a fundamental part of a

computer's Central Processing Unit (CPU), serving as

the command center that manages how instructions are

executed. Rather than performing arithmetic or logical

operations itself, the CU oversees and coordinates the

actions of other components like the Arithmetic Logic

Unit (ALU), memory, and I/O systems by issuing

control signals. These signals dictate the timing, routing,

and operation of data as it moves through the processor.

Types of Control Unit Architectures

The internal design of a Control Unit generally falls into

two main categories: hardwired and

microprogrammed control.

1. Hardwired Control Unit

In a hardwired control setup, control signals are

generated using physical logic gates, flip-flops, and

decoders. The pathways for instruction execution are

predefined, meaning each instruction is mapped directly

to a specific set of signals.

1. Advantages: Fast execution due to direct signal

generation.

2. Limitations: Difficult to modify or extend—any

changes in the instruction set require reworking the

circuitry.

2. Microprogrammed Control Unit

A microprogrammed control unit operates using a

series of microinstructions stored in a dedicated memory

called the control store or control memory. Each

machine-level instruction corresponds to a sequence of

microinstructions (a microprogram) that generate the

necessary control signals.

1. Advantages: Flexible and easier to update or

expand, making it ideal for CPUs with complex

instruction sets.

2. Limitations: Slightly slower than hardwired control

due to memory access overhead.

Core Components of the Control Unit

To effectively manage instruction execution, the Control

Unit comprises several key elements:

1. Instruction Register (IR)

Holds the current instruction being processed. The

CU reads the opcode from this register to determine

the operation required.

2. Control Signal Generator

This module produces control signals based on the

decoded instruction. These signals activate or

deactivate components like registers, buses, and the

ALU.

3. Timing and Sequencing Logic

Ensures all steps in the instruction cycle—fetch,

decode, execute, and write-back—occur in the

correct order and are synchronized with the system

clock.

4. Decoders and Encoders

Translate instruction fields or binary patterns into

specific control actions, enabling the processor to

interpret and respond to various instruction formats.

5. Status Inputs and Feedback Mechanisms

The CU receives condition flags (e.g., Zero, Carry,

Overflow) from the ALU and other units. This

feedback allows the CU to make decisions about

conditional branches, loops, and other control flow

operations.

A. How to implement CU

 Step 1: Inputs and Outputs

Inputs:

1. opcode (7 bits): comes from the instruction and

1667

determines the type of operation.

Outputs:

Control signals needed by other CPU modules:

1. RegWrite – Should we write to a register file?

2. ALUSrc – Should the ALU use an immediate or a

register as the second input?

3. MemRead – Are we reading data memory?

4. MemWrite – Are we writing to data memory?

5. MemToReg – Should the value to write back to a

register come from memory or the ALU?

6. Branch – is this a branch instruction?

7. ALUOp (2 bits) – used to guide the ALU operation

(passed to the ALU Control module)

Step 2: Recognize Opcode Types

Identify which opcodes correspond to which

instruction types in RISC-V

Step 3: Determine Control Signal Values for

Each Instruction Type

Based on what the instruction needs:

1. R-type (0110011)

1. Use two registers (no immediate), ALU does work.

2. Result goes back to a register.

3. No memory read/write, not a branch.

2. I-type (addi, 0010011)

1. One register and an immediate.

2. ALU computes result, stores in register.

3. Load (lw, 0000011)

1. Use base register + offset to get address.

2. Read from memory, store in register.

4. Store (sw, 0100011)

1. Use base register + offset to compute address.

2. Store register value into memory.

5. Branch (beq, 1100011)

1. Compare two registers, branch if equal.

 Step 4: Implement With a case Statement

Now that we know what each opcode needs, use a

case statement inside an always @(*) block to set

the control signals for each opcode.

Fig 2.A.1 Design CU (internal) implementation

B. Verilog Code

1668

Fig.2.B.2. Behavioral Simulation- The TCL Console showing that different opcodes are being loaded into the

memory using Vivado 2024.2

Fig.2.B.2. Behavioral Simulation of Control unit using Vivado 2024.2

The waveform above illustrates the functional simulation of a Control Unit in a RISC-V processor design, likely implemented in

Verilog. The input signal opcode changes over time to represent different instruction types, including R-type (33), I-type (13), load

(03), store (23), branch (63), and J-type (7F). As each opcode is applied, the Control Unit generates corresponding control signals

such as RegWrite, ALUSrc, MemRead, MemWrite, MemToReg, and Branch. These outputs determine the behavior of other parts

of the datapath. For instance, during the load instruction (03), MemRead, MemToReg, and RegWrite are asserted, while during the

store instruction (23), MemWrite is active. The ALUOp signal also changes appropriately to guide the ALU in executing the correct

operation. This simulation confirms that the Control Unit responds correctly to various instruction types by asserting the proper

control signals at the right time, validating its role in orchestrating processor operations.

3. The Design of Datapath Unit (DP)

The Datapath Unit is at the heart of every Central Processing

Unit (CPU), playing a crucial role in handling data

operations. It works hand-in-hand with the Control Unit

(CU), which provides the signals that guide its behaviour.

While the control unit issues commands, the Datapath is

where those commands are executed, responsible for carrying

1669

out actual computations, data transfers, and register

manipulations.

The Datapath consists of interconnected hardware blocks

such as registers, ALUs, multiplexers, and buses, all

orchestrated to efficiently process instructions and

manipulate data within the processor.

Key Components of the Datapath Unit

1. Registers

Registers are fast, small-capacity memory elements

that temporarily store data during instruction

execution. The register file typically includes

multiple general-purpose registers—32 in the case

of RISC-V architectures. Another vital register is

the Program Counter (PC), which keeps track of

the address of the next instruction to be executed.

2. Arithmetic Logic Unit (ALU)

The ALU performs all the arithmetic (e.g., addition,

subtraction) and logical (e.g., AND, OR, XOR)

operations needed during instruction execution. It

receives inputs from registers or immediate values

and outputs the result either back into a register or to

memory.

3. Multiplexers (MUXes)

MUXes are used to select between multiple input

sources and send the appropriate one to a particular

destination, such as the ALU or memory. They play

a critical role in making the Datapath flexible and

responsive to different instruction types.

4. Buses

Buses are communication pathways that carry data,

addresses, and control signals among components.

In a typical CPU, there are separate data buses and

address buses that connect registers, memory, and

processing units. The quality and structure of these

buses directly impact system speed and efficiency.

5. Memory Access Logic

This component manages the interface between the

Datapath and system memory. It enables

instruction fetches as well as data loads and

stores. Dedicated load/store units handle

addressing and data transfer tasks to and from

memory.

6. Instruction Register (IR)

The IR holds the current instruction fetched from

memory. It provides the control unit with the opcode

and other instruction fields necessary to determine

the operations the Datapath must perform.

How does the Datapath operate?

The Datapath follows a step-by-step process during the

execution of each instruction:

1. Fetch: The instruction is retrieved from memory

using the Program Counter.

2. Decode: The control unit decodes the instruction

and prepares control signals.

3. Execute: The ALU performs the specified

operation, using inputs from registers or constants.

4. Memory Access: If the instruction involves reading

from or writing to memory, the appropriate data is

transferred.

5. Write Back: The result of the computation or

memory operation is written back to a register,

completing the instruction cycle.

1. How to implement the DP Unit

Step 1: Extract Fields from the Instruction

The RISC-V instruction is broken into parts for decoding:

 These fields help:

1. Identify source and destination registers

2. Determine ALU operation (with funct3, funct7)

3. Determine instruction type via opcode

Step 2: Instantiate Register File

The register file:

1. Reads from rs1 and rs2

2. Writes to rd if RegWrite = 1

3. Uses WritebackData as the data to write

Step 3: Immediate Generator

Different RISC-V instructions encode immediates

differently, so we need a decoder.

 This logic:

1. Sign-extends the immediate to 32 bits

2. Supports I, S, and B types

Step 4: ALU Control Logic

The ALU operation depends on:

1. The ALUOp control signal from the control unit

2. For R-type: funct3 and funct7

 ALUControl selects the specific ALU operation:

1. 0101: ADD

2. 0110: SUB

3. 0000: AND

4. 0001: OR

5. 0111: SLT (set less than)

Step 5: Choose ALU Input B (Register or Immediate)

 If ALUSrc = 1, use the immediate value.

 If ALUSrc = 0, use readData2 (from register file).

Step 6: ALU Instance

 Inputs: two operands and control signal

 Outputs:

1. ALUResult: result of the operation

2. Zero: used for branches (BEQ)

Step 7: Branch Target Calculation

 Branch target = current PC + sign-extended immediate

Step 8: Writeback Data Selection

 Normally, this would select between:

1. ALUResult and

2. Data loaded from memory

 Since memory is not connected yet, it hardcodes the

memory result as 0:

1. If MemToReg = 0, write the ALU result back

2. If MemToReg = 1, write 0 (placeholder for memory)

Step 9: Expose Outputs

The following are exposed from the module:

1. Zero – used by the control unit for branching

2. ALUResult – the result of the computation

3. WriteData – data to be stored (used for sw)

4. WriteBackData – result that will go into the

destination register

5. BranchTarget – used to update the PC if the branch

is taken.

1670

3. Verilog Code

1671

Fig 3.B.1 Design Datapath Unit (internal) implementation using Vivado 2024.2

Fig 3.B.2 Behavioral Simulation of Datapath Unit using Vivado 2024.2

This waveform illustrates the behavioral simulation of a RISC-V single-cycle datapath implemented in Verilog. The key signals

include the instruction input (inst), program counter (PC), control signals (such as ALUOp, ALUSrc, MemWrite, etc.), and various

internal data paths like WriteData, Result, and BranchAddr. The instruction signal (inst) changes at regular intervals, each time

triggering a new instruction fetch and decode cycle. At time 10 ns, the instruction 003100B3 is decoded and executed—likely an

R-type instruction—reflected by the ALU control signal being set to 2 and the ALU output updating accordingly. The PC and

BranchAddr values also change over time, indicating sequential instruction execution or branching behavior. Control signals like

MemWrite, MemRead, and RegWrite toggle based on the instruction type, affecting memory and register file interactions. The

signal Zero is monitored for branching decisions. Throughout the simulation, the datapath behaves as expected, correctly fetching

instructions, generating control signals, and updating data paths, verifying the correct integration of all datapath components.

4. The design of Register File (RF)

The Register File Unit is an essential subsystem

within a CPU, serving as a small, ultra-fast memory

bank used for holding data and temporary results

during the execution of instructions. This unit

provides immediate access to operands needed for

computation and to destinations for storing

processed results. It is especially critical in RISC-

based architectures, like RISC-V, where

1672

instruction execution relies heavily on register-

based operations.

In a typical RISC-V design, the register file contains

32 general-purpose registers, each being either 32

bits (RV32) or 64 bits (RV64) wide, depending on

the architecture. Notably, register x0 is a constant

zero register—it's hardwired to always return 0, no

matter what is written to it.

 Key Components of the Register File

1. Read Ports (Dual-Ported Read Access):

The unit features two independent read ports,

allowing simultaneous access to two different

registers. This is crucial for most arithmetic and

logic instructions that require two operands.

2. Write Port:

There is a single write port through which results

from the ALU or memory are written back into a

destination register.

3. Address Decoding Logic:

Each read or write operation involves specifying the

register index. Decoders convert these indices into

select lines that enable the corresponding register for

read or write.

 How the Register File Unit Works

Here’s a step-by-step breakdown of the typical

operation of a register file:

1. Instruction Decode Phase

When a machine instruction is fetched from

memory, the Control Unit decodes it. Part of this

decoding involves identifying the register

addresses—usually two sources (rs1, rs2) and one

destination (rd).

2. Addressing Registers

The register indices from the instruction are fed into

the register file. These indices determine which

registers should be read from (for operands) and

which should be written to (for the result).

3. Reading Operand Data

The two read ports provide data simultaneously

from the specified registers. For instance, in an

instruction like ADD x5, x1, x2, the values from

registers x1 and x2 are read and sent to the ALU.

4. Writing Results

After processing is complete (typically in the ALU),

the result is routed back to the register file and

written into the destination register (x5 in this

example) through the write port.

5. Clock Synchronization

All operations are synchronized with the CPU

clock, ensuring precise timing for data transfer.

Reading usually happens in the same clock cycle,

while writing occurs on the rising edge of the clock,

ensuring stability and avoiding race conditions.

1. How to implement the Register File

Step 1. Module Declaration

1. clk: Clock signal used to trigger writing to the

register file.

2. RegWrite: A control signal indicating whether a

write should occur.

3. rs1 and rs2: 5-bit inputs representing addresses of

source registers to read.

4. rd: 5-bit input representing the destination register to

write to.

5. writeData: 32-bit data that will be written to the

register if enabled.

6. readData1 and readData2: Outputs for the data read

from rs1 and rs2.

Step 2. Register Array Declaration

1. This creates an array of 32 registers (registers[0] to

registers[31]), each 32 bits wide.

2. These registers store the actual values used during

program execution.

3. This is the physical storage of the register file.

Step 3. Asynchronous Read Logic

1. This block handles reading from the register file.

2. It performs asynchronous reads, meaning the data

is immediately available when the input address

(rs1, rs2) changes, no clock needed.

3. If the source register is 0, it outputs 0 regardless of

what's stored; this follows RISC-V’s rule that

register x0 is always zero and cannot be modified.

4. Otherwise, it fetches the data from the register array

using the index rs1 or rs2.

Step 4. Synchronous Write Logic

1. This always block is triggered only on the rising

edge of the clock.

2. Inside the block, a write operation is performed only

if RegWrite is high (write enabled) and the

destination register rd is not zero.

3. This protects register 0 from being modified, as

required by RISC-V.

4. If allowed, writeData is stored into the register at

index rd.

2. Verilog code

1673

Fig 4.B.1 Design Register File Unit (internal) implementation using Vivado 2024.2

Fig 4.B.2 Behavioral Simulation of Register File Unit showing different values that are written or read into/from the register file

memory using Vivado 2024.2

This waveform displays the behavioral simulation of a Register File module, a critical component of a RISC-V processor, designed

to store and provide quick access to operand values. The key inputs include read and write register addresses (rs1, rs2, rd), the write

enable signal (RegWrite), and the data to be written (write_data). The outputs read_data1 and read_data2 reflect the contents of the

specified source registers. Initially, registers contain default values. At around 10 ns, a write operation is triggered: RegWrite is

enabled, the destination register rd is set to 1, and the value 0xA5A5A5A5 is written. This is confirmed by read_data1 reflecting the

new value when rs1 selects register 1. Later, another write stores 0x12345678 into register 2, and again, the corresponding read port

shows the updated value. These write and read cycles confirm that the register file correctly handles data storage and retrieval,

conditioned on clock edges and write-enable logic. Overall, this simulation validates the correct functionality of simultaneous

register reads and conditional writes in the Register File module.

5. The design of Instruction Fetch Unit (IFU)

The Instruction Fetch Unit (IFU) is the first and one of the

most critical stages in the CPU’s instruction processing

pipeline. Its main task is to fetch instructions from memory

in the correct sequence, ensuring that the processor executes

programs accurately and efficiently. Acting as the entry point

to the execution cycle, the IFU lays the groundwork for

subsequent decoding and execution.

1674

Core Components of the IFU

1. Program Counter (PC)

The Program Counter is a special-purpose register

that holds the memory address of the next

instruction to be executed. After each fetch, the PC

is normally incremented to point to the next

instruction. In the case of a jump or branch, the PC

is updated with a new target address.

2. Instruction Memory

This memory unit (which could be an instruction

cache or ROM) stores the machine code of the

program. The IFU uses the current PC value to

retrieve an instruction from this memory.

3. PC Adder (PC + 4)

Since each instruction in most RISC architectures,

including RISC-V, is 4 bytes long, the IFU includes

an adder that calculates the next sequential PC value

as PC + 4. This allows the IFU to prepare for

fetching the next instruction unless a control

instruction dictates otherwise.

4. Multiplexer (MUX)

The MUX is used to select the next PC value. If a

branch or jump occurs, the MUX chooses between

the regular PC + 4 and a branch/jump target

address. This decision is based on control signals

generated by the control unit or branch logic.

5. Branch Target Calculator (optional)

In case of conditional or unconditional branches, this

unit computes the target address by adding an

immediate offset to the current PC. This target

address becomes the new input to the PC if the

branch is taken.

 How the Instruction Fetch Unit Operates

The IFU performs the following sequence of actions

in each cycle:

Fetch the Instruction:

The current PC value is used to access the

instruction memory.

The instruction located at that address is fetched and

passed to the Instruction Decode Unit.

Update the PC:

If the instruction is not a jump or branch, the PC is

simply updated to PC + 4.

If the instruction alters control flow, the PC is

updated using the branch or jump target address,

selected via the MUX.

1. How to implement IFU

1. Module Declaration and Ports

1. clk: Clock signal — used to trigger PC updates.

2. reset: Active-high reset signal to reinitialize PC to 0.

3. branch: Control signal — if high, the PC jumps to

branchAddr.

4. branchAddr: The target address if a branch is taken.

5. PC: The current program counter (register).

6. instruction: The current instruction fetched from

memory.

2. Instruction Memory Declaration

1. This creates an array of 256 32-bit instruction slots,

simulating a small instruction memory.

2. Each index stores a full 32-bit machine instruction

(like RISC-V instructions).

3. This is a simple read-only instruction memory,

hardcoded in the next step.

3. Initializing Instruction Memory

1. Using the initial block, the memory is preloaded

with five sample RISC-V instructions.

2. These are encoded as 32-bit hex values.

3. For simulation purposes, this model has a basic

instruction program hardcoded into memory.

4. Instruction Fetch Logic (Combinational)

1. The instruction is selected using PC[9:2]:

1. Since RISC-V instructions are 4 bytes (32

bits) wide, we use bits [9:2] of PC for word-

aligned access.

2. This divides the PC by 4 (i.e., PC >> 2) to

index into the instruction memory.

2. This read is asynchronous — the instruction is

immediately available when PC changes.

5. Program Counter Update (Synchronous

Block)

1. This is a clocked always block that updates the PC

on the rising edge of the clock or reset.

2. Reset logic: If reset is high, PC is set to 0 (starting

address).

3. Branch logic: If branch is true, the PC is updated to

branchAddr.

4. Default behavior: If no branch or reset, PC is

incremented by 4 to fetch the next sequential

instruction.

2. Verilog code

1675

Fig 5.B.1 Design Instruction Fetch Unit (internal) implementation using Vivado 2024.2

Fig 4.B.2 Behavioral Simulation of Instruction Fetch Unit showing different binary instructions that are loaded into the instruction

[31:0] register using Vivado 2024.2

This waveform illustrates the simulation of an Instruction Fetch Unit (IFU), a core part of a RISC-V processor responsible for

fetching instructions from memory. The main signals include the clock (clk), reset, branch control signals, program counter

(PC_out), and the fetched instruction (inst). Initially, the reset is low, allowing the IFU to begin normal operation. The PC_out

signal increments by 4 every clock cycle, indicating that the processor is fetching instructions sequentially from memory, which is

the expected behavior in a non-branching scenario. Each new instruction is loaded into the inst signal, showing correct memory

access. Around 60 ns, the branch signal becomes high, and branch_addr is loaded with the value 0x10. As a result, the PC_out is

updated accordingly, demonstrating the IFU’s ability to handle branch redirection. After this, sequential execution resumes. This

simulation confirms that the IFU properly increments the program counter, fetches the correct instruction from memory, and

successfully redirects control flow when a branch occurs.

III. The Design of Processor

CENTRAL PROCESSING UNIT (CPU)

The Central Processing Unit (CPU) is the core of

any computing system, responsible for carrying out

instructions and handling computational tasks. When

built around the RISC-V architecture, the CPU

benefits from a streamlined, efficient design focused

on simplicity, scalability, and modularity. RISC-V is

an open-source instruction set architecture (ISA) that

is both customizable and extensible, making it ideal

for a wide range of applications from embedded

devices to high-performance computing.

CPU Architecture

A typical RISC-V CPU uses a pipelined architecture.

This approach breaks down instruction execution into

distinct stages, allowing multiple instructions to be

processed simultaneously but at different stages. The major

stages of this pipeline are:

1. Instruction Fetch (IF): Retrieves the next

instruction from MeM, using the Program

1676

Counter (PC) to determine the address.

2. Instruction Decode (ID): Decodes the fetched

instruction and identifies which registers are

needed for execution.

3. Execute (EX):

The arithmetic or logical operation (such as

addition, subtraction, or comparison) is carried out

during this stage.

4. MeM Access (MEM): This stage deals with

reading from or writing to MeM when required

(for load/store operations).

5. Write Back (WB): The results of the executed

instruction are written back into the CPU’s register

file.

Key Components and Their Options

The RISC-V CPU is designed to be simple yet highly

effective, with the following key elements:

operations such as addition, subtraction, bitwise logical

operations (AND, OR), and comparisons.

1. Data MeM:

This is accessed during the MEM stage to

load or store data as needed by the

instruction.

2. Control Logic:

The control unit orchestrates the entire CPU

operation by generating signals that guide

each stage of the pipeline. It also manages

branch operations, sometimes using a

branch prediction unit to optimize

performance.

RISC-V Modularity

The RISC-V architecture is highly modular,

supporting a base integer instruction set (such as

RV32I, RV64I, or RV128I) that defines the

fundamental operations. Additionally, RISC-V

supports optional extensions that add more

capabilities to the architecture:

1. M Extension:

Adds support for multiplication and division

operations.

2. F and D Extensions: Provide support for

floating-point operations, with F for single-

precision and D for double-precision.

3. C Extension:

Introduces compressed instruction formats to

improve code density and reduce MeM usage.

This modular design makes RISC-V flexible,

enabling tailored CPU implementations for specific

applications, whether it's a low-power embedded

system or a high-performance processor.

How It Operates

When a program is executed, the RISC-V CPU

follows a cycle of steps:

1. The CPU fetches the instruction from

MeM using the PC.

2. The instructions a r e then decoded to

identify the operation and the involved

operands.

3. The required operation is executed by the ALU

or through a MeM access if needed.

4. The result is then written back to the

appropriate register.

Finally, the PC is updated to point to the next instruction,

and the cycle repeats.

1. How to implement the Processor

1. Module Declaration

1. The processor takes a clock (clk) and an active-high

reset (reset) input.

2. No inputs/outputs for external memory yet — it's

focused on core internal operation.

2. Internal Wire Declarations

PC: Program Counter value fetched from the IFU.

1. instruction: The 32-bit machine instruction is

fetched from instruction memory.

2. These are control signals generated by the Control

Unit based on the instruction opcode:

1. RegWrite: Enable register write.

2. ALUSrc: Select ALU input source.

3. MemRead / MemWrite: Control memory

access (to be used in future).

4. MemToReg: Select whether ALU result or

memory data is written back.

5. Branch: Indicates if the instruction is a

branch.

6. ALUOp: Tells ALU what operation to

perform.

1. Zero: ALU sets this flag if the result is zero (for

conditional branches).

2. ALUResult: Output of ALU calculation.

3. WriteData: Data to be written to memory (if

MemWrite enabled).

4. WriteBackData: Data to be written back to the

register file.

5. BranchTarget: Target address for branch

instructions.

3. Instruction Fetch Unit (IFU)

1. The IFU fetches the instruction at address PC from

1677

instruction memory.

2. If a branch is taken (Branch & Zero is true), it jumps

to BranchTarget.

3. Otherwise, it continues fetching sequential

instructions (PC + 4).

4. Control Unit (CU)

1. Extracts the opcode field from the instruction (bits

6:0).

2. Passes this opcode to the ControlUnit, which

generates the appropriate control signals.

3. The control logic determines how the datapath

behaves.

5. Datapath Integration

1. The Datapath module handles the core execution,

including:

1. Register reads and writes

2. ALU operations

3. Branch address computation

4. Selecting inputs based on control signals

2. It receives all necessary control signals and returns

outputs like Zero, ALUResult, and the next

BranchTarget.

Fig 6.A.1 Processor Architecture (Source: GitHub)

2. Verilog Code

1678

Fig 6.B.1 The (compressed) architecture of the Processor using Vivado 2024.2

Fig 6.B.2 Schematic showing all the components connected in a basic RISC-V Processor

1679

Fig 6.B.3 Behavioral Simulation of the entire processor in Vivado 2024.2, showing different signals as inputs and values as per

the data from the memory/immediate value.

This waveform illustrates a comprehensive simulation of a RISC-V processor's full CPU executing an instruction cycle. Key signals

include the instruction (instruction), program counter (PC), control signals (like RegWrite, ALUSrc, MemRead, MemWrite, etc.),

ALU result (ALUResult), register addresses (rs1, rs2, rd), and data lines. Around the 1,100 ns mark, the instruction 0x00000033 is

loaded and decoded. This corresponds to an R-type instruction, verified by the opcode 0110011. The control unit activates relevant

signals: RegWrite is high, ALUSrc is low (selecting register input for ALU), and ALUOp is set to 10, indicating a function-based

ALU operation. The source register values (readData1, readData2) are read and used by the ALU to compute the result, which is

0xF in this case. The result is written back to the destination register as indicated by WriteBackData. The branching and memory-

related controls (Branch, MemRead, MemWrite, MemToReg) remain inactive, confirming this is a computation-only instruction.

The simulation successfully demonstrates the correct sequencing of fetching, decoding, execution, and write-back stages within a

single-cycle processor architecture, confirming functional integration of the ALU, control unit, register file, and memory interface.

IV. PROJECT INVOLVING THE USE OF

RISC-V PROCESSOR

Smart Irrigation System Using RISC-V Processor

In recent years, the integration of embedded systems with

agriculture has opened new horizons for smart farming

solutions. One such innovation is the smart irrigation

system, which uses environmental data to optimize water

usage in farming. A particularly efficient and open-source

approach to building such systems is by using a RISC-V

processor. RISC-V’s modularity, flexibility, and low power

consumption make it ideal for embedded agricultural

applications.

Why Smart Irrigation?

Traditional irrigation techniques often result in excessive

water usage, uneven watering, and dependence on manual

intervention. With climate change and water scarcity

becoming critical global issues, there's a growing demand for

intelligent systems that conserve resources while improving

crop yields. Smart irrigation systems monitor parameters

such as soil moisture, temperature, and humidity to

determine optimal watering schedules. They reduce human

error, save water, and support sustainable farming practices.

Role of RISC-V in Smart Irrigation

RISC-V is an open-source Instruction Set Architecture (ISA)

that offers significant advantages for embedded and IoT

applications. Unlike proprietary ISAs, RISC-V allows

developers to customize and optimize the processor for

specific tasks, such as sensor data acquisition and control

logic in irrigation systems. This flexibility leads to power-

efficient and cost-effective solutions tailored for agricultural

environments.

In a smart irrigation setup, a RISC-V-based microcontroller

can be programmed to interface with a variety of sensors,

such as soil moisture probes, temperature sensors, and light

1680

detectors. The processor continuously reads data from these

sensors and processes it to determine when and how much

to irrigate. Additionally, it can communicate with actuators

like solenoid valves to control the flow of water.

System Architecture

The typical architecture of a RISC-V-based smart irrigation

system includes:

1. Sensor Module: Gathers real-time environmental

data.

2. RISC-V Processor Unit: Serves as the brain of

the system, executing control algorithms based on

sensor inputs.

3. Communication Module: Supports wireless

communication (e.g., LoRa, Wi-Fi, or Zigbee) for

remote monitoring and control.

4. Actuator Module: Controls pumps or valves for

water distribution.

5. Power Management Unit: Often powered by

solar panels, enhancing sustainability in rural

areas.

How to implement the design?

This module simulates a smart irrigation system that:

1. Uses a soil moisture sensor

2. Contains a RISC-V processor instance

3. Uses control logic to activate an irrigation pump

based on moisture levels

Header and Inputs/Outputs

1. clk: System clock (controls timing of all logic).

2. reset: Resets the system to a known starting state.

3. irrigationPump: Output signal that controls the

irrigation pump (1 = ON, 0 = OFF).

 Sensor Simulation and Threshold Logic

1. sensorValue: The current reading from the

simulated soil moisture sensor.

2. threshold: A constant value. If the sensorValue is

less than this, the soil is considered dry and the

system should turn on the pump.

Signals for Future Processor Integration

These are placeholders or future expansion for interaction

with the custom RISC-V processor:

1. instrOut: Instruction being fetched.

2. aluResult: ALU computation result.

3. writeBack: Data to be written back to registers.

4. PC: Program counter.

5. pumpSignal: Optional signal for processor to

control pump (not yet connected here).

 Simulated Soil Moisture Sensor

1. On reset: starts at 500 (moist).

2. Every clock cycle: value decreases by 1,

simulating drying soil.

3. When it falls below the threshold (400), the system

should trigger irrigation..

 Custom Processor (Placeholder)

You're instantiating a custom RISC-V processor module

named Processor.

1. Memory-map sensor and actuator addresses

2. Let the processor make the irrigation decision

 Decision Logic (External to Processor)

1. On reset: turns off the pump.

2. Every clock cycle:

1. If soil moisture (sensorValue) is less than

400, it activates the pump.

2. Otherwise, keeps it off

1681

Fig 2. Schematic showing the design of the irrigation system working alongside the RISC-V Processor

Fig 3. Behavioral Simulation of the Smart Irrigation System

This waveform illustrates the behavior of an automated irrigation control system that activates an irrigation pump based on soil

moisture readings. The sensor Value and soil Sensor signals represent real-time moisture levels, while the threshold signal defines

the minimum acceptable moisture level. At the start of the observed window, both sensor readings are at 300, which is below the

threshold of 400. As a result, the pump Signal is set to 1, indicating the pump is turned on, and the irrigation Pump output is asserted

to activate irrigation. This shows the system correctly detects dry soil and responds by enabling water flow. Later in the simulation,

both the sensor and threshold values rise to 500 and 400 respectively, showing updated conditions. When the soil moisture surpasses

the threshold, the pump Signal drops to 0, turning off the pump, which is visible by the deactivation of the irrigation Pump signal.

The rest of the signals, such as RegWrite, ALU SRC, and others, are not directly involved in this control logic and remain constant.

This simulation verifies that the system correctly evaluates soil conditions and autonomously manages irrigation based on dynamic

sensor inputs.

1682

REFERENCES

1. RVCoreP: An optimized RISC-V soft processor of

five-stage pipelining- by Miyazaki et al., proposes

RVCoreP—a Verilog-implemented softcore with

pipelined branch prediction, ALU, and data

alignment optimizations achieving ~30% higher

performance over VexRiscv on FPGA platforms.

https://www.reddit.com/r/RISCV/comments/10l9th

i/designing_a_risc_v_microprocessor_in_verilog_a

s_undergrad_project

2. Design and Analysis of RISC V Processor

Architecture- by Subhashini et al., presents a 32-bit

RISC-V CPU using a hardwired control unit and

five-stage pipeline, implemented in Verilog and

evaluated in terms of latency, throughput, and

resource utilization.

https://matjournals.net/engineering/index.php/JoM

MR/article/view/460

3. Research and design of low-power,

high-performance processor based on RISC-V ISA-

(IOP 2022), introduces a 3-stage pipelined RV32IM

core with static branch prediction optimized for

embedded IoT, achieving ~2.38 CoreMark/MHz

efficiency.

https://iopscience.iop.org/article/10.1088/1742-

6596/2221/1/012008

4. RISC-V based virtual prototype: An extensible and

configurable platform for the system-level-

describes a SystemC/TLM-based VP including a

32/64-bit RISC-V core, multi-core support, interrupt

controllers, OS compatibility (FreeRTOS/Zephyr),

and peripheral models — aimed at early software

and system design space exploration.

https://www.sciencedirect.com/science/article/abs/p

ii/S1383762120300503

5. Survey of Verification of RISC-V Processors-

(Journal of Electronic Testing, 2025) gives a

comprehensive overview of verification

methodologies for RISC-V implementations,

comparing strategies across academic and industrial

cores.

https://link.springer.com/article/10.1007/s10836-

025-06169-3

6. BRISC-V: An Open-Source Architecture Design

Space Exploration Toolbox- (arXiv 2019)

introduces a highly parameterized, modular RTL

framework (in synthesizable Verilog) for exploring

everything from simple single-cycle cores to multi-

core SoCs, caches, memory hierarchies, and

network-on-chip topologies. Ideal for quickly

prototyping and customizing RISC-V architectures.

https://arxiv.org/abs/1908.09992

7. Implementation of RISC-V Processor

Authors: P. Saiprathyusha and C. Chandrasekhar

(Sri Venkateswara College of Engineering, Tirupati)

Published February 2025 in ITM Web of

Conferences

Focuses on an optimized pipelined RISC-V

processor design aimed at high throughput and

energy efficiency. The architecture supports

dynamic instruction scheduling, cache optimization,

and domain-specific extensions (AI, crypto, signal

processing). Designed and tested via Verilog/VHDL

and FPGA implementation.

https://www.researchgate.net/publication/38917434

4_Implementation_of_RISC-V_Processor

8. PERI: A Posit-Enabled RISC-V Core

Authors: Sugandha Tiwari, Neel Gala, Chester

Rebeiro, V. Kamakoti (IIT Madras)

Published August 2019 on arXiv

This work integrates a Posit arithmetic unit into a

SHAKTI C-class RISC-V core. It demonstrates how

to support Posit (a modern numerical format) via

custom RISC-V extensions, offering trade-offs in

precision and range, and reports FPGA

implementation metrics (~100 MHz operation) on

Xilinx Artix-7 hardware.

https://arxiv.org/abs/1908.01466

9. The SHAKTI microprocessor project (IIT Madras

RISE group) is a flagship effort funded under India's

DIR-V program. It has produced multiple RISC-V

CPU variants (E-, C-, I-, M-class) using

Bluespec/SystemVerilog, with silicon tape-outs on

22 nm (Intel) and 180 nm (ISRO Semi-Conductor

Lab) nodes.

https://en.wikipedia.org/wiki/SHAKTI_%28microp

rocessor%29

10. VEGA Microprocessors, developed by C-DAC

under the India Microprocessor Development

Programme, is a portfolio of RISC-V processors

targeting IoT, edge, networking, smart NICs,

hearing-aids, and future multi-core HPC designs.

Estimations include dual-core VEGA in 2023 and

Octa-core variants in the mid-2020s.

https://en.wikipedia.org/wiki/VEGA_Microprocess

ors

https://www.reddit.com/r/RISCV/comments/10l9thi/designing_a_risc_v_microprocessor_in_verilog_as_undergrad_project
https://www.reddit.com/r/RISCV/comments/10l9thi/designing_a_risc_v_microprocessor_in_verilog_as_undergrad_project
https://www.reddit.com/r/RISCV/comments/10l9thi/designing_a_risc_v_microprocessor_in_verilog_as_undergrad_project
https://matjournals.net/engineering/index.php/JoMMR/article/view/460
https://matjournals.net/engineering/index.php/JoMMR/article/view/460
https://iopscience.iop.org/article/10.1088/1742-6596/2221/1/012008
https://iopscience.iop.org/article/10.1088/1742-6596/2221/1/012008
https://www.sciencedirect.com/science/article/abs/pii/S1383762120300503
https://www.sciencedirect.com/science/article/abs/pii/S1383762120300503
https://link.springer.com/article/10.1007/s10836-025-06169-3
https://link.springer.com/article/10.1007/s10836-025-06169-3
https://arxiv.org/abs/1908.09992
https://www.researchgate.net/publication/389174344_Implementation_of_RISC-V_Processor
https://www.researchgate.net/publication/389174344_Implementation_of_RISC-V_Processor
https://arxiv.org/abs/1908.01466
https://en.wikipedia.org/wiki/SHAKTI_%28microprocessor%29
https://en.wikipedia.org/wiki/SHAKTI_%28microprocessor%29
https://en.wikipedia.org/wiki/VEGA_Microprocessors
https://en.wikipedia.org/wiki/VEGA_Microprocessors

1683

V. CONCLUSION

The design and implementation of a custom RISC-V

processor present a powerful, open-source alternative to

proprietary instruction sets, enabling cost-effective and

flexible hardware development. In this work, the integration

of a RISC-V-based processor with a smart irrigation system

demonstrates the practical applicability of such processors in

real-world, resource-sensitive environments. The processor's

modular architecture allows for optimized control logic, low

power consumption, and scalable performance, making it an

ideal candidate for embedded IoT applications.

By leveraging RISC-V’s extensibility and simplicity, we

successfully interfaced the processor with sensors, actuators,

and memory components required for automated irrigation

management. The system is capable of real-time monitoring

and decision-making based on environmental inputs such as

soil moisture and temperature, thereby enhancing agricultural

efficiency and water conservation. This integration not only

validates the functionality of the custom RISC-V processor

but also highlights its potential in sustainable smart farming

technologies.

AUTHORS:
Pratyush Pranjal is currently

pursuing his Graduate degree in the

department of Electronics and

Communication Engineering from Birla

Institute of Technology, Mesra, Ranchi -

835215

Corresponding author

Email: btech10024.22@bitmesra.ac.in

Vansh Tak is currently pursuing his

Graduate degree in the department of

Electronics and Communication

Engineering from Birla Institute of

Technology, Mesra, Ranchi – 835215.

Corresponding author

Email: btech10018.22@bitmesra.ac.in

Aryan Singh is currently

pursuing his Graduate degree in the

department of Electrical and

Electronics Engineering from Birla

Institute of Technology, Mesra, Ranchi

- 835215

Corresponding author

Email: btech10019.22@bitmesra.ac.in

Dr. Vijay Nath received his BSc

degree in Physics from DDU

University Gorakhpur, India in 1998

and PG Diploma in Computer

Networking from MMM University of

Technology Gorakhpur, (UP) India in

 1999 and an MSc in Electronics from

DDU University Gorakhpur, India, in

2001. He received his PhD in Electronics from Dr. Ram

Manohar Lohiya Avadh University Ayodhya (UP), in

collaboration with CEERI Pilani (Raj), India, in 2008. His

areas of interest include ultra-low-power temperature sensors

for missile applications, microelectronics engineering,

mixed-signal design, application-specific integrated circuit

design, embedded system design, cardiac pacemakers, the

Internet of Things, artificial intelligence and machine

learning, and computational intelligence.

Email: vijaynath@bitmesra.ac.in

mailto:btech10024.22@bitmesra.ac.in
mailto:btech10018.22@bitmesra.ac.in
mailto:btech10019.22@bitmesra.ac.in
mailto:vijaynath@bitmesra.ac.in

