
 

 

 ISSN: 2584-0495                                      Vol. 3, Issue 6, pp. 1663-1683 

                                                                                                                              

  

International Journal of Microsystems and IoT 
ISSN: (Online) Journal homepage: https://www.ijmit.org 

 

Design of RISC- V Processor using Verilog@HDL 
 
Pratyush Pranjal, Vansh Tak, Aryan Singh and Vijay Nath 

 

Cite as: Pranjal, P., Tak, V., Singh, A., & Nath, V. (2025). Design of RISC- V Processor using 

Verilog @HDL. International Journal of Microsystems and IoT, 3(6), 1663–1683. 

https://doi.org/10.5281/zenodo.18152801  
 

 
© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India 

 

 

  Published online: 25 June 2025 

 

 Submit your article to this journal: 

 

 Article views:  

 

      

 
View related articles: 

 

    

 View Crossmark data: 

 

 
 
 

https://doi.org/10.5281/zenodo.18152801       
 

 
   

        Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php  
 

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.18152801
https://doi.org/10.5281/zenodo.18152801
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29


1663 

 

International Journal of Microsystems and IoT  

Vol.3, Issue 6, pp.1663-1683; DOI: https://doi.org/10.5281/zenodo.18152801 

 

 Design of RISC- V Processor using Verilog @HDL 
 Pratyush Pranjal, Vansh Tak, Aryan Singh and Vijay Nath 

 

Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India   

 

            Keywords 
 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

RISC-V is an open-source instruction set architecture (ISA) 

that is reshaping the future of computing. First introduced by 

researchers at the University of California, Berkeley in 2010, 

RISC-V was created to be simple, modular, and efficient, 

making it suitable for a broad spectrum of applications, from 

tiny embedded systems to powerful data centres. 

 

What makes RISC-V truly stand out is its openness. Unlike 

proprietary ISAs like x86 from Intel or ARM, RISC-V is 

available under a permissive open license. This allows 

developers, whether from academia, industry, or the maker 

community, to freely implement, modify, and distribute 

RISC-V designs without worrying about licensing fees or 

legal barriers. As a result, RISC-V has sparked widespread 

interest and innovation around the world. 

 

Adhering to the Reduced Instruction Set Computing (RISC) 

principles, RISC-V emphasizes a minimal yet highly 

effective set of instructions. The base set for 32-bit systems, 

known as RV32I, includes only the most essential operations 

such as arithmetic, logic, control flow, and memory access. 

However, the architecture is designed to be extensible. 

Designers can add optional modules like: 

1. M: Integer multiplication and division 

2. A: Atomic instructions 

3. F and D: Single and double precision floating-point 

4. C: Compressed instructions to reduce code size 

5. V: Vector operations for parallel processing 

This flexibility means RISC-V cores can be customized for 

specific tasks, optimizing both performance and power usage. 

A typical RISC-V processor is composed of several key units: 

1. Instruction Fetch Unit: Loads instructions from 

memory using the program counter. 
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2. Instruction Decode Unit: Decodes the fetched 

instruction and identifies the operation and 

operands. 

3. Register File: A set of 32 general-purpose registers 

for quick data storage and retrieval. 

4. ALU (Arithmetic Logic Unit): Executes arithmetic 

and logical computations. 

5. Control Unit: Generates control signals to 

coordinate the processor’s internal operations. 

6. Memory Interface: Manages data transfer between 

the processor and external memory. 

 

More advanced RISC-V CPUs can incorporate features like 

pipelining for improved instruction throughput, out-of-order 

execution for performance gains, and even multicore 

configurations for parallel processing. Despite such 

enhancements, the base ISA remains clean, easy to 

understand, and ideal for teaching computer architecture. 

The RISC-V ecosystem continues to expand rapidly. A wide 

range of tools—including compilers, debuggers, simulators, 

and operating systems—are now available. Popular operating 

systems like Linux and Free RTOS already support RISC-

V, and community-driven projects are extending 

compatibility further every day. 

 

II. THE BASIC COMPONENTS OF A 

RISC-V PROCESSOR 

1. The Design of an Arithmetic Logic Unit 

(ALU) 
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Version 5) processor using Verilog hardware description language and the Vivado 2024.2 design suite.  
The RISC-V architecture, known for its simplicity, modularity, and open-source nature, serves as an 
ideal platform for academic research and custom processor development. The processor design follows 
a five-stage pipelined architecture, incorporating Instruction Fetch, Instruction Decode, Execute, 
Memory Access, and Write Back stages. Each module was coded in Verilog and synthesized using 
Vivado 2024.2 software, ensuring compatibility with FPGA deployment through Vitis 2024.2 software. 
The implementation emphasizes efficient data path control, hazard detection, and forwarding 
mechanisms to maintain instruction throughput and pipeline efficiency. Simulation and verification were 
conducted to ensure functional accuracy and timing performance, using testbenches that replicate typical 
instruction sequences. Results indicate that the design meets the functional requirements and is suitable 
for educational use and further extension into more complex systems. 

Arithmetic Logic Unit 

(ALU), Control Unit 

(CU), Instruction Fetch 

Unit (IFU), Register File 

(RF), Datapath (DP). 

 

https://doi.org/10.5281/zenodo.18152801


1664 

 

 

Fig 1. A complex overview showcasing the entire architecture of a basic RISC-V Processor 

 

 

 
The Arithmetic Logic Unit (ALU) is one of the most 

essential components within a computer’s Central 

Processing Unit (CPU). It handles the execution of both 

arithmetic and logical operations, forming the backbone of all 

computations carried out by the processor. The efficiency and 

speed of a CPU are heavily influenced by how well the ALU 

is designed and implemented. 

An ALU is engineered to perform a variety of basic 

operations, such as: 

1. Arithmetic operations: including addition and 

subtraction 

2. Logical operations: such as bitwise AND, OR, 

XOR, and NOT 

3. Shifting operations: including left and right bit 

shifts 

4. Comparisons: to evaluate relationships like 

equality or magnitude 

To support these functions, a typical ALU consists of the 

following key components: 

 

 Main Components of the ALU 

1. Operand Inputs 

The ALU accepts two binary input values, often 

fetched from the CPU's register file. These values 

are the operands upon which the operation will be 

performed. 

2. Operation Decoder 

This internal logic interprets the opcode (operation 

code) provided by the control unit. Based on the 

opcode, the decoder activates specific circuits within 

the ALU to carry out the required task, whether it's 

an addition, a logical operation, or a comparison. 

3. Arithmetic Unit 

This section performs all arithmetic calculations. A 

common implementation is the ripple-carry adder, 

which can add two binary numbers. With two’s 

complement logic, it can also handle subtraction. 

For faster computation, some ALUs use more 

advanced adders like carry-lookahead or carry-

select adders. 

4. Logic Unit 

Responsible for executing bit-level logical 

functions, this unit can carry out operations such as 

AND, OR, XOR, and inversion. Each bit of the input 

is processed independently according to the 

operation selected. 

5. Multiplexer System (MUX) 

Since the ALU supports multiple operations, 

multiplexers are used to select which result to 

output based on control signals. The correct 

operation result is routed through to the output 

depending on the current instruction. 

6. Status Flags and Outputs 

Along with the result, the ALU generates status 

flags that reflect the outcome of the operation. These 

typically include: 

1. Zero (Z): Set if the result is zero 

2. Carry (C): Indicates a carry out in addition 

or a borrow in subtraction 

3. Overflow (O): Set if an arithmetic 

overflow occurs 

4. Negative (N): Indicates a negative result in 

signed operations 

 

2.  How to implement ALU  

 

Step 1: Define Module I/O Ports 

We start by identifying what an ALU 

needs: 

1. Two 32-bit inputs: A and B (operands) 

2. A 4-bit control signal: ALUControl to 

select the operation 

3. One 32-bit output: Result 

4. One flag output: Zero 

 

Step 2: Choose Supported Operations 

We design the ALU to support both 

standard and a few custom operations.  

 

Step 3: “Combinational always” @(*) 

Block 

We use an always @(*) block to create a 

combinational (non-clocked) logic block. 

The operation performed is selected using 

a case statement on ALUControl. 
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Step 4: Generate the Zero Flag 

This output is used for branch comparisons 

like beq (branch if equal). It's 1 if the result 

of the operation is 0.  

 

 

3. Verilog Code 

 

ALUControl Operation Description 

0000 AND Bitwise AND 

0001 OR Bitwise OR 

0010 NAND Bitwise NAND 

0011 NOR Bitwise NOR 

0100 XOR Bitwise XOR 

0101 ADD Integer Addition 

0110 SUB Integer Subtraction 

0111 SLT Set-on-less-than 

1000 SMT Set-on-more-than 

1001 MUL Multiply (basic) 

1010 REMAINDER Remainder 

1011 SLL Shift left logical 

1100 SRL Shift Right logical 

1101 NOT A Bitwise NOT on A 

1110 NOT B Bitwise NOT on B 

 
Fig.1.B.1.  Design ALU (internal) implementation using Vivado 2024.2 
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Fig.1.B.2.  Behavioral Simulation involving all assigned operations using Vivado 2024.2 

 

The displayed waveform illustrates a behavioral simulation of a Verilog-based Arithmetic Logic Unit (ALU). It shows key signals 

including the inputs A and B, a 4-bit ALU_Control signal used to select specific ALU operations, and outputs Result and Zero. 

Initially, A is set to 0xA and B to 0x5, remaining unchanged for several clock cycles while ALU_Control transitions from 3 to E 

(hex), each representing different ALU functions such as logical operations, addition, subtraction, and shifts. The Result output 

accurately reflects the expected values for each operation—e.g., when ALU_Control is 6 (ADD), the result is 0xF; for 7 (SUB), it 

yields 0x5. Around the 90 ns mark, the inputs A and B change, prompting corresponding updates in the result, demonstrating the 

ALU’s ability to respond to new data. The Zero output remains deasserted (0) except when the result is zero, confirming the proper 

functioning of the zero-detection logic. Overall, the simulation validates that the ALU correctly handles a variety of operations 

based on different control signals. 

 

 

 

2. The Design of a Control Unit (CU) 
 

The Control Unit (CU) is a fundamental part of a 

computer's Central Processing Unit (CPU), serving as 

the command center that manages how instructions are 

executed. Rather than performing arithmetic or logical 

operations itself, the CU oversees and coordinates the 

actions of other components like the Arithmetic Logic 

Unit (ALU), memory, and I/O systems by issuing 

control signals. These signals dictate the timing, routing, 

and operation of data as it moves through the processor. 

Types of Control Unit Architectures 

The internal design of a Control Unit generally falls into 

two main categories: hardwired and 

microprogrammed control. 

 

1. Hardwired Control Unit 

In a hardwired control setup, control signals are 

generated using physical logic gates, flip-flops, and 

decoders. The pathways for instruction execution are 

predefined, meaning each instruction is mapped directly 

to a specific set of signals. 

1. Advantages: Fast execution due to direct signal 

generation. 

2. Limitations: Difficult to modify or extend—any 

changes in the instruction set require reworking the 

circuitry. 

 

2. Microprogrammed Control Unit 

A microprogrammed control unit operates using a 

series of microinstructions stored in a dedicated memory 

called the control store or control memory. Each 

machine-level instruction corresponds to a sequence of 

microinstructions (a microprogram) that generate the 

necessary control signals. 

1. Advantages: Flexible and easier to update or 

expand, making it ideal for CPUs with complex 

instruction sets. 

2. Limitations: Slightly slower than hardwired control 

due to memory access overhead. 

 

Core Components of the Control Unit 

To effectively manage instruction execution, the Control 

Unit comprises several key elements: 

1. Instruction Register (IR) 

Holds the current instruction being processed. The 

CU reads the opcode from this register to determine 

the operation required. 

2. Control Signal Generator 

This module produces control signals based on the 

decoded instruction. These signals activate or 

deactivate components like registers, buses, and the 

ALU. 

3. Timing and Sequencing Logic 

Ensures all steps in the instruction cycle—fetch, 

decode, execute, and write-back—occur in the 

correct order and are synchronized with the system 

clock. 

4. Decoders and Encoders 

Translate instruction fields or binary patterns into 

specific control actions, enabling the processor to 

interpret and respond to various instruction formats. 

5. Status Inputs and Feedback Mechanisms 

The CU receives condition flags (e.g., Zero, Carry, 

Overflow) from the ALU and other units. This 

feedback allows the CU to make decisions about 

conditional branches, loops, and other control flow 

operations. 

 

A. How to implement CU 

 
      Step 1: Inputs and Outputs 

Inputs: 

1. opcode (7 bits): comes from the instruction and 
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determines the type of operation. 

Outputs: 

Control signals needed by other CPU modules: 

1. RegWrite – Should we write to a register file? 

2. ALUSrc – Should the ALU use an immediate or a 

register as the second input? 

3. MemRead – Are we reading data memory? 

4. MemWrite – Are we writing to data memory? 

5. MemToReg – Should the value to write back to a 

register come from memory or the ALU? 

6. Branch – is this a branch instruction? 

7. ALUOp (2 bits) – used to guide the ALU operation 

(passed to the ALU Control module) 

 

Step 2: Recognize Opcode Types 

Identify which opcodes correspond to which 

instruction types in RISC-V 

 

Step 3: Determine Control Signal Values for 

Each Instruction Type 

Based on what the instruction needs: 

 

1. R-type (0110011) 

1. Use two registers (no immediate), ALU does work. 

2. Result goes back to a register. 

3. No memory read/write, not a branch. 

2. I-type (addi, 0010011) 

1. One register and an immediate. 

2. ALU computes result, stores in register. 

3. Load (lw, 0000011) 

1. Use base register + offset to get address. 

2. Read from memory, store in register. 

4. Store (sw, 0100011) 

1. Use base register + offset to compute address. 

2. Store register value into memory. 

5. Branch (beq, 1100011) 

1. Compare two registers, branch if equal. 

 

 Step 4: Implement With a case Statement 

Now that we know what each opcode needs, use a 

case statement inside an always @(*) block to set 

the control signals for each opcode. 

 

 
 

 

Fig 2.A.1 Design CU (internal) implementation  

 

 

B. Verilog Code 
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Fig.2.B.2.  Behavioral Simulation- The TCL Console showing that different opcodes are being loaded into the 

memory using Vivado 2024.2 

 

 

 

 
 

Fig.2.B.2.  Behavioral Simulation of Control unit using Vivado 2024.2 

 

The waveform above illustrates the functional simulation of a Control Unit in a RISC-V processor design, likely implemented in 

Verilog. The input signal opcode changes over time to represent different instruction types, including R-type (33), I-type (13), load 

(03), store (23), branch (63), and J-type (7F). As each opcode is applied, the Control Unit generates corresponding control signals 

such as RegWrite, ALUSrc, MemRead, MemWrite, MemToReg, and Branch. These outputs determine the behavior of other parts 

of the datapath. For instance, during the load instruction (03), MemRead, MemToReg, and RegWrite are asserted, while during the 

store instruction (23), MemWrite is active. The ALUOp signal also changes appropriately to guide the ALU in executing the correct 

operation. This simulation confirms that the Control Unit responds correctly to various instruction types by asserting the proper 

control signals at the right time, validating its role in orchestrating processor operations. 

 

 

 

3. The Design of Datapath Unit (DP) 
 

The Datapath Unit is at the heart of every Central Processing 

Unit (CPU), playing a crucial role in handling data 

operations. It works hand-in-hand with the Control Unit 

(CU), which provides the signals that guide its behaviour. 

While the control unit issues commands, the Datapath is 

where those commands are executed, responsible for carrying 
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out actual computations, data transfers, and register 

manipulations. 

 

The Datapath consists of interconnected hardware blocks 

such as registers, ALUs, multiplexers, and buses, all 

orchestrated to efficiently process instructions and 

manipulate data within the processor. 

 

Key Components of the Datapath Unit 

1. Registers 

Registers are fast, small-capacity memory elements 

that temporarily store data during instruction 

execution. The register file typically includes 

multiple general-purpose registers—32 in the case 

of RISC-V architectures. Another vital register is 

the Program Counter (PC), which keeps track of 

the address of the next instruction to be executed. 

2. Arithmetic Logic Unit (ALU) 

The ALU performs all the arithmetic (e.g., addition, 

subtraction) and logical (e.g., AND, OR, XOR) 

operations needed during instruction execution. It 

receives inputs from registers or immediate values 

and outputs the result either back into a register or to 

memory. 

3. Multiplexers (MUXes) 

MUXes are used to select between multiple input 

sources and send the appropriate one to a particular 

destination, such as the ALU or memory. They play 

a critical role in making the Datapath flexible and 

responsive to different instruction types. 

4. Buses 

Buses are communication pathways that carry data, 

addresses, and control signals among components. 

In a typical CPU, there are separate data buses and 

address buses that connect registers, memory, and 

processing units. The quality and structure of these 

buses directly impact system speed and efficiency. 

5. Memory Access Logic 

This component manages the interface between the 

Datapath and system memory. It enables 

instruction fetches as well as data loads and 

stores. Dedicated load/store units handle 

addressing and data transfer tasks to and from 

memory. 

6. Instruction Register (IR) 

The IR holds the current instruction fetched from 

memory. It provides the control unit with the opcode 

and other instruction fields necessary to determine 

the operations the Datapath must perform. 

 

How does the Datapath operate? 

 

The Datapath follows a step-by-step process during the 

execution of each instruction: 

 

1. Fetch: The instruction is retrieved from memory 

using the Program Counter. 

2. Decode: The control unit decodes the instruction 

and prepares control signals. 

3. Execute: The ALU performs the specified 

operation, using inputs from registers or constants. 

4. Memory Access: If the instruction involves reading 

from or writing to memory, the appropriate data is 

transferred. 

5. Write Back: The result of the computation or 

memory operation is written back to a register, 

completing the instruction cycle. 

 

1.  How to implement the DP Unit 
 

Step 1: Extract Fields from the Instruction 

The RISC-V instruction is broken into parts for decoding: 

 These fields help: 

1. Identify source and destination registers 

2. Determine ALU operation (with funct3, funct7) 

3. Determine instruction type via opcode 

Step 2: Instantiate Register File 

The register file: 

1. Reads from rs1 and rs2 

2. Writes to rd if RegWrite = 1 

3. Uses WritebackData as the data to write 

 

Step 3: Immediate Generator 

Different RISC-V instructions encode immediates 

differently, so we need a decoder. 

 This logic: 

1. Sign-extends the immediate to 32 bits 

2. Supports I, S, and B types 

 

Step 4: ALU Control Logic 

The ALU operation depends on: 

1. The ALUOp control signal from the control unit 

2. For R-type: funct3 and funct7 

 ALUControl selects the specific ALU operation: 

1. 0101: ADD 

2. 0110: SUB 

3. 0000: AND 

4. 0001: OR 

5. 0111: SLT (set less than) 

 

Step 5: Choose ALU Input B (Register or Immediate) 

 If ALUSrc = 1, use the immediate value. 

 If ALUSrc = 0, use readData2 (from register file). 

 

Step 6: ALU Instance 

 Inputs: two operands and control signal 

 Outputs: 

1. ALUResult: result of the operation 

2. Zero: used for branches (BEQ) 

 

Step 7: Branch Target Calculation 

 Branch target = current PC + sign-extended immediate 

 

Step 8: Writeback Data Selection 

 Normally, this would select between: 

1. ALUResult and 

2. Data loaded from memory 

 Since memory is not connected yet, it hardcodes the 

memory result as 0: 

1. If MemToReg = 0, write the ALU result back 

2. If MemToReg = 1, write 0 (placeholder for memory) 

 

Step 9: Expose Outputs 

The following are exposed from the module: 

1. Zero – used by the control unit for branching 

2. ALUResult – the result of the computation 

3. WriteData – data to be stored (used for sw) 

4. WriteBackData – result that will go into the 

destination register 

5. BranchTarget – used to update the PC if the branch 

is taken. 

 



1670 

 

3.  Verilog Code 
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Fig 3.B.1 Design Datapath Unit (internal) implementation using Vivado 2024.2 

 

 
 

Fig 3.B.2 Behavioral Simulation of Datapath Unit using Vivado 2024.2 

 

This waveform illustrates the behavioral simulation of a RISC-V single-cycle datapath implemented in Verilog. The key signals 

include the instruction input (inst), program counter (PC), control signals (such as ALUOp, ALUSrc, MemWrite, etc.), and various 

internal data paths like WriteData, Result, and BranchAddr. The instruction signal (inst) changes at regular intervals, each time 

triggering a new instruction fetch and decode cycle. At time 10 ns, the instruction 003100B3 is decoded and executed—likely an 

R-type instruction—reflected by the ALU control signal being set to 2 and the ALU output updating accordingly. The PC and 

BranchAddr values also change over time, indicating sequential instruction execution or branching behavior. Control signals like 

MemWrite, MemRead, and RegWrite toggle based on the instruction type, affecting memory and register file interactions. The 

signal Zero is monitored for branching decisions. Throughout the simulation, the datapath behaves as expected, correctly fetching 

instructions, generating control signals, and updating data paths, verifying the correct integration of all datapath components. 

 

 

 

 

4. The design of Register File (RF) 
 

The Register File Unit is an essential subsystem 

within a CPU, serving as a small, ultra-fast memory 

bank used for holding data and temporary results 

during the execution of instructions. This unit 

provides immediate access to operands needed for 

computation and to destinations for storing 

processed results. It is especially critical in RISC-

based architectures, like RISC-V, where 
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instruction execution relies heavily on register-

based operations. 

 

In a typical RISC-V design, the register file contains 

32 general-purpose registers, each being either 32 

bits (RV32) or 64 bits (RV64) wide, depending on 

the architecture. Notably, register x0 is a constant 

zero register—it's hardwired to always return 0, no 

matter what is written to it. 

 

 Key Components of the Register File 

1. Read Ports (Dual-Ported Read Access): 

The unit features two independent read ports, 

allowing simultaneous access to two different 

registers. This is crucial for most arithmetic and 

logic instructions that require two operands. 

2. Write Port: 

There is a single write port through which results 

from the ALU or memory are written back into a 

destination register. 

3. Address Decoding Logic: 

Each read or write operation involves specifying the 

register index. Decoders convert these indices into 

select lines that enable the corresponding register for 

read or write. 

 

 How the Register File Unit Works 

 

Here’s a step-by-step breakdown of the typical 

operation of a register file: 

 

1. Instruction Decode Phase 

When a machine instruction is fetched from 

memory, the Control Unit decodes it. Part of this 

decoding involves identifying the register 

addresses—usually two sources (rs1, rs2) and one 

destination (rd). 

2. Addressing Registers 

The register indices from the instruction are fed into 

the register file. These indices determine which 

registers should be read from (for operands) and 

which should be written to (for the result). 

3. Reading Operand Data 

The two read ports provide data simultaneously 

from the specified registers. For instance, in an 

instruction like ADD x5, x1, x2, the values from 

registers x1 and x2 are read and sent to the ALU. 

4. Writing Results 

After processing is complete (typically in the ALU), 

the result is routed back to the register file and 

written into the destination register (x5 in this 

example) through the write port. 

5. Clock Synchronization 

All operations are synchronized with the CPU 

clock, ensuring precise timing for data transfer. 

Reading usually happens in the same clock cycle, 

while writing occurs on the rising edge of the clock, 

ensuring stability and avoiding race conditions. 

 

 

1. How to implement the Register File 

 
Step 1. Module Declaration 

1. clk: Clock signal used to trigger writing to the 

register file. 

2. RegWrite: A control signal indicating whether a 

write should occur. 

3. rs1 and rs2: 5-bit inputs representing addresses of 

source registers to read. 

4. rd: 5-bit input representing the destination register to 

write to. 

5. writeData: 32-bit data that will be written to the 

register if enabled. 

6. readData1 and readData2: Outputs for the data read 

from rs1 and rs2. 

 

Step 2. Register Array Declaration 

1. This creates an array of 32 registers (registers[0] to 

registers[31]), each 32 bits wide. 

2. These registers store the actual values used during 

program execution. 

3. This is the physical storage of the register file. 

 

Step 3. Asynchronous Read Logic 

1. This block handles reading from the register file. 

2. It performs asynchronous reads, meaning the data 

is immediately available when the input address 

(rs1, rs2) changes, no clock needed. 

3. If the source register is 0, it outputs 0 regardless of 

what's stored; this follows RISC-V’s rule that 

register x0 is always zero and cannot be modified. 

4. Otherwise, it fetches the data from the register array 

using the index rs1 or rs2. 

 

Step 4. Synchronous Write Logic 

1. This always block is triggered only on the rising 

edge of the clock. 

2. Inside the block, a write operation is performed only 

if RegWrite is high (write enabled) and the 

destination register rd is not zero. 

3. This protects register 0 from being modified, as 

required by RISC-V. 

4. If allowed, writeData is stored into the register at 

index rd. 

 

 

2. Verilog code 
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Fig 4.B.1 Design Register File Unit (internal) implementation using Vivado 2024.2 

 

 

 

 

 
 
Fig 4.B.2 Behavioral Simulation of Register File Unit showing different values that are written or read into/from the register file 

memory using Vivado 2024.2 

 

This waveform displays the behavioral simulation of a Register File module, a critical component of a RISC-V processor, designed 

to store and provide quick access to operand values. The key inputs include read and write register addresses (rs1, rs2, rd), the write 

enable signal (RegWrite), and the data to be written (write_data). The outputs read_data1 and read_data2 reflect the contents of the 

specified source registers. Initially, registers contain default values. At around 10 ns, a write operation is triggered: RegWrite is 

enabled, the destination register rd is set to 1, and the value 0xA5A5A5A5 is written. This is confirmed by read_data1 reflecting the 

new value when rs1 selects register 1. Later, another write stores 0x12345678 into register 2, and again, the corresponding read port 

shows the updated value. These write and read cycles confirm that the register file correctly handles data storage and retrieval, 

conditioned on clock edges and write-enable logic. Overall, this simulation validates the correct functionality of simultaneous 

register reads and conditional writes in the Register File module. 

 

 

 

 

 
5. The design of Instruction Fetch Unit (IFU) 

 
The Instruction Fetch Unit (IFU) is the first and one of the 

most critical stages in the CPU’s instruction processing 

pipeline. Its main task is to fetch instructions from memory 

in the correct sequence, ensuring that the processor executes 

programs accurately and efficiently. Acting as the entry point 

to the execution cycle, the IFU lays the groundwork for 

subsequent decoding and execution. 
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Core Components of the IFU 

1. Program Counter (PC) 

The Program Counter is a special-purpose register 

that holds the memory address of the next 

instruction to be executed. After each fetch, the PC 

is normally incremented to point to the next 

instruction. In the case of a jump or branch, the PC 

is updated with a new target address. 

2. Instruction Memory 

This memory unit (which could be an instruction 

cache or ROM) stores the machine code of the 

program. The IFU uses the current PC value to 

retrieve an instruction from this memory. 

3. PC Adder (PC + 4) 

Since each instruction in most RISC architectures, 

including RISC-V, is 4 bytes long, the IFU includes 

an adder that calculates the next sequential PC value 

as PC + 4. This allows the IFU to prepare for 

fetching the next instruction unless a control 

instruction dictates otherwise. 

4. Multiplexer (MUX) 

The MUX is used to select the next PC value. If a 

branch or jump occurs, the MUX chooses between 

the regular PC + 4 and a branch/jump target 

address. This decision is based on control signals 

generated by the control unit or branch logic. 

5. Branch Target Calculator (optional) 

In case of conditional or unconditional branches, this 

unit computes the target address by adding an 

immediate offset to the current PC. This target 

address becomes the new input to the PC if the 

branch is taken. 

 

 

 How the Instruction Fetch Unit Operates 

The IFU performs the following sequence of actions 

in each cycle: 

 

Fetch the Instruction: 

The current PC value is used to access the 

instruction memory. 

The instruction located at that address is fetched and 

passed to the Instruction Decode Unit. 

 

Update the PC: 

If the instruction is not a jump or branch, the PC is 

simply updated to PC + 4. 

 

If the instruction alters control flow, the PC is 

updated using the branch or jump target address, 

selected via the MUX. 

 

1. How to implement IFU 

 
1. Module Declaration and Ports 

 

1. clk: Clock signal — used to trigger PC updates. 

2. reset: Active-high reset signal to reinitialize PC to 0. 

3. branch: Control signal — if high, the PC jumps to 

branchAddr. 

4. branchAddr: The target address if a branch is taken. 

5. PC: The current program counter (register). 

6. instruction: The current instruction fetched from 

memory. 

 

2. Instruction Memory Declaration 

 

1. This creates an array of 256 32-bit instruction slots, 

simulating a small instruction memory. 

2. Each index stores a full 32-bit machine instruction 

(like RISC-V instructions). 

3. This is a simple read-only instruction memory, 

hardcoded in the next step. 

 

3. Initializing Instruction Memory 

 

1. Using the initial block, the memory is preloaded 

with five sample RISC-V instructions. 

2. These are encoded as 32-bit hex values. 

3. For simulation purposes, this model has a basic 

instruction program hardcoded into memory. 

 

4. Instruction Fetch Logic (Combinational) 

1. The instruction is selected using PC[9:2]: 

1. Since RISC-V instructions are 4 bytes (32 

bits) wide, we use bits [9:2] of PC for word-

aligned access. 

2. This divides the PC by 4 (i.e., PC >> 2) to 

index into the instruction memory. 

2. This read is asynchronous — the instruction is 

immediately available when PC changes. 

 

5. Program Counter Update (Synchronous 

Block) 

1. This is a clocked always block that updates the PC 

on the rising edge of the clock or reset. 

2. Reset logic: If reset is high, PC is set to 0 (starting 

address). 

3. Branch logic: If branch is true, the PC is updated to 

branchAddr. 

4. Default behavior: If no branch or reset, PC is 

incremented by 4 to fetch the next sequential 

instruction. 

 

2. Verilog code 
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Fig 5.B.1 Design Instruction Fetch Unit (internal) implementation using Vivado 2024.2 

 

 

 

 
 
Fig 4.B.2 Behavioral Simulation of Instruction Fetch Unit showing different binary instructions that are loaded into the instruction 

[31:0] register using Vivado 2024.2 

 

 
This waveform illustrates the simulation of an Instruction Fetch Unit (IFU), a core part of a RISC-V processor responsible for 

fetching instructions from memory. The main signals include the clock (clk), reset, branch control signals, program counter 

(PC_out), and the fetched instruction (inst). Initially, the reset is low, allowing the IFU to begin normal operation. The PC_out 

signal increments by 4 every clock cycle, indicating that the processor is fetching instructions sequentially from memory, which is 

the expected behavior in a non-branching scenario. Each new instruction is loaded into the inst signal, showing correct memory 

access. Around 60 ns, the branch signal becomes high, and branch_addr is loaded with the value 0x10. As a result, the PC_out is 

updated accordingly, demonstrating the IFU’s ability to handle branch redirection. After this, sequential execution resumes. This 

simulation confirms that the IFU properly increments the program counter, fetches the correct instruction from memory, and 

successfully redirects control flow when a branch occurs. 

 

 

 

 

III. The Design of Processor 

CENTRAL PROCESSING UNIT (CPU) 

The Central Processing Unit (CPU) is the core of 

any computing system, responsible for carrying out 

instructions and handling computational tasks. When 

built around the RISC-V architecture, the CPU 

benefits from a streamlined, efficient design focused 

on simplicity, scalability, and modularity. RISC-V is 

an open-source instruction set architecture (ISA) that 

is both customizable and extensible, making it ideal 

for a wide range of applications from embedded 

devices to high-performance computing. 

CPU Architecture 

A typical RISC-V CPU uses a pipelined architecture. 

This approach breaks down instruction execution into 

distinct stages, allowing multiple instructions to be 

processed simultaneously but at different stages. The major 

stages of this pipeline are: 

1. Instruction Fetch (IF): Retrieves the next 

instruction from MeM, using the Program 
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Counter (PC) to determine the address. 

2. Instruction Decode (ID): Decodes the fetched 

instruction and identifies which registers are 

needed for execution. 

3.   Execute (EX): 

The arithmetic or logical operation (such as 

addition, subtraction, or comparison) is carried out 

during this stage. 

4. MeM Access (MEM): This stage deals with 

reading from or writing to MeM when required 

(for load/store operations). 

5. Write Back (WB): The results of the executed 

instruction are written back into the CPU’s register 

file. 

Key Components and Their Options 

The RISC-V CPU is designed to be simple yet highly 

effective, with the following key elements: 

operations such as addition, subtraction, bitwise logical 

operations (AND, OR), and comparisons. 

1. Data MeM: 

This is accessed during the MEM stage to 

load or store data as needed by the 

instruction. 

2. Control Logic: 

The control unit orchestrates the entire CPU 

operation by generating signals that guide 

each stage of the pipeline. It also manages 

branch operations, sometimes using a 

branch prediction unit to optimize 

performance. 

 

RISC-V Modularity 

The RISC-V architecture is highly modular, 

supporting a base integer instruction set (such as 

RV32I, RV64I, or RV128I) that defines the 

fundamental operations. Additionally, RISC-V 

supports optional extensions that add more 

capabilities to the architecture: 

1. M Extension:  

Adds support for multiplication and division 

operations. 

2. F and D Extensions: Provide support for 

floating-point operations, with F for single-

precision and D for double-precision. 

3. C Extension: 

Introduces compressed instruction formats to 

improve code density and reduce MeM usage. 

This modular design makes RISC-V flexible, 

enabling tailored CPU implementations for specific 

applications, whether it's a low-power embedded 

system or a high-performance processor. 

 

How It Operates 

When a program is executed, the RISC-V CPU 

follows a cycle of steps: 

1. The CPU fetches the instruction from 

MeM using the PC. 

2. The instructions  a r e  then decoded to 

identify the operation and the involved 

operands. 

3. The required operation is executed by the ALU 

or through a MeM access if needed. 

4. The result is then written back to the 

appropriate register. 

Finally, the PC is updated to point to the next instruction, 

and the cycle repeats. 

1. How to implement the Processor 

1. Module Declaration 

1. The processor takes a clock (clk) and an active-high 

reset (reset) input. 

2. No inputs/outputs for external memory yet — it's 

focused on core internal operation. 

2. Internal Wire Declarations 

PC: Program Counter value fetched from the IFU. 

1. instruction: The 32-bit machine instruction is 

fetched from instruction memory. 

2. These are control signals generated by the Control 

Unit based on the instruction opcode: 

1. RegWrite: Enable register write. 

2. ALUSrc: Select ALU input source. 

3. MemRead / MemWrite: Control memory 

access (to be used in future). 

4. MemToReg: Select whether ALU result or 

memory data is written back. 

5. Branch: Indicates if the instruction is a 

branch. 

6. ALUOp: Tells ALU what operation to 

perform. 

1. Zero: ALU sets this flag if the result is zero (for 

conditional branches). 

2. ALUResult: Output of ALU calculation. 

3. WriteData: Data to be written to memory (if 

MemWrite enabled). 

4. WriteBackData: Data to be written back to the 

register file. 

5. BranchTarget: Target address for branch 

instructions. 

3. Instruction Fetch Unit (IFU) 

1. The IFU fetches the instruction at address PC from 
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instruction memory. 

2. If a branch is taken (Branch & Zero is true), it jumps 

to BranchTarget. 

3. Otherwise, it continues fetching sequential 

instructions (PC + 4). 

4. Control Unit (CU) 

1. Extracts the opcode field from the instruction (bits 

6:0). 

2. Passes this opcode to the ControlUnit, which 

generates the appropriate control signals. 

3. The control logic determines how the datapath 

behaves. 

5. Datapath Integration 

1. The Datapath module handles the core execution, 

including: 

1. Register reads and writes 

2. ALU operations 

3. Branch address computation 

4. Selecting inputs based on control signals 

2. It receives all necessary control signals and returns 

outputs like Zero, ALUResult, and the next 

BranchTarget. 

 

 

Fig 6.A.1 Processor Architecture (Source: GitHub) 

 

2. Verilog Code 
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Fig 6.B.1 The (compressed) architecture of the Processor using Vivado 2024.2 

 

 

Fig 6.B.2 Schematic showing all the components connected in a basic RISC-V Processor 
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Fig 6.B.3 Behavioral Simulation of the entire processor in Vivado 2024.2, showing different signals as inputs and values as per 

the data from the memory/immediate value. 

This waveform illustrates a comprehensive simulation of a RISC-V processor's full CPU executing an instruction cycle. Key signals 

include the instruction (instruction), program counter (PC), control signals (like RegWrite, ALUSrc, MemRead, MemWrite, etc.), 

ALU result (ALUResult), register addresses (rs1, rs2, rd), and data lines. Around the 1,100 ns mark, the instruction 0x00000033 is 

loaded and decoded. This corresponds to an R-type instruction, verified by the opcode 0110011. The control unit activates relevant 

signals: RegWrite is high, ALUSrc is low (selecting register input for ALU), and ALUOp is set to 10, indicating a function-based 

ALU operation. The source register values (readData1, readData2) are read and used by the ALU to compute the result, which is 

0xF in this case. The result is written back to the destination register as indicated by WriteBackData. The branching and memory-

related controls (Branch, MemRead, MemWrite, MemToReg) remain inactive, confirming this is a computation-only instruction. 

The simulation successfully demonstrates the correct sequencing of fetching, decoding, execution, and write-back stages within a 

single-cycle processor architecture, confirming functional integration of the ALU, control unit, register file, and memory interface. 

 

 

IV. PROJECT INVOLVING THE USE OF 

RISC-V PROCESSOR 

Smart Irrigation System Using RISC-V Processor 

In recent years, the integration of embedded systems with 

agriculture has opened new horizons for smart farming 

solutions. One such innovation is the smart irrigation 

system, which uses environmental data to optimize water 

usage in farming. A particularly efficient and open-source 

approach to building such systems is by using a RISC-V 

processor. RISC-V’s modularity, flexibility, and low power 

consumption make it ideal for embedded agricultural 

applications. 

Why Smart Irrigation? 

Traditional irrigation techniques often result in excessive 

water usage, uneven watering, and dependence on manual 

intervention. With climate change and water scarcity 

becoming critical global issues, there's a growing demand for 

intelligent systems that conserve resources while improving 

crop yields. Smart irrigation systems monitor parameters 

such as soil moisture, temperature, and humidity to 

determine optimal watering schedules. They reduce human 

error, save water, and support sustainable farming practices. 

Role of RISC-V in Smart Irrigation 

RISC-V is an open-source Instruction Set Architecture (ISA) 

that offers significant advantages for embedded and IoT 

applications. Unlike proprietary ISAs, RISC-V allows 

developers to customize and optimize the processor for 

specific tasks, such as sensor data acquisition and control 

logic in irrigation systems. This flexibility leads to power-

efficient and cost-effective solutions tailored for agricultural 

environments. 

In a smart irrigation setup, a RISC-V-based microcontroller 

can be programmed to interface with a variety of sensors, 

such as soil moisture probes, temperature sensors, and light 



1680 

 
detectors. The processor continuously reads data from these 

sensors and processes it to determine when and how much 

to irrigate. Additionally, it can communicate with actuators 

like solenoid valves to control the flow of water. 

System Architecture 

The typical architecture of a RISC-V-based smart irrigation 

system includes: 

1. Sensor Module: Gathers real-time environmental 

data. 

2. RISC-V Processor Unit: Serves as the brain of 

the system, executing control algorithms based on 

sensor inputs. 

3. Communication Module: Supports wireless 

communication (e.g., LoRa, Wi-Fi, or Zigbee) for 

remote monitoring and control. 

4. Actuator Module: Controls pumps or valves for 

water distribution. 

5. Power Management Unit: Often powered by 

solar panels, enhancing sustainability in rural 

areas. 

How to implement the design? 

This module simulates a smart irrigation system that: 

1. Uses a soil moisture sensor 

2. Contains a RISC-V processor instance 

3. Uses control logic to activate an irrigation pump 

based on moisture levels 

Header and Inputs/Outputs 

1. clk: System clock (controls timing of all logic). 

2. reset: Resets the system to a known starting state. 

3. irrigationPump: Output signal that controls the 

irrigation pump (1 = ON, 0 = OFF). 

 Sensor Simulation and Threshold Logic 

1. sensorValue: The current reading from the 

simulated soil moisture sensor. 

2. threshold: A constant value. If the sensorValue is 

less than this, the soil is considered dry and the 

system should turn on the pump. 

Signals for Future Processor Integration 

These are placeholders or future expansion for interaction 

with the custom RISC-V processor: 

1. instrOut: Instruction being fetched. 

2. aluResult: ALU computation result. 

3. writeBack: Data to be written back to registers. 

4. PC: Program counter. 

5. pumpSignal: Optional signal for processor to 

control pump (not yet connected here). 

 Simulated Soil Moisture Sensor 

1. On reset: starts at 500 (moist). 

2. Every clock cycle: value decreases by 1, 

simulating drying soil. 

3. When it falls below the threshold (400), the system 

should trigger irrigation.. 

 Custom Processor (Placeholder) 

You're instantiating a custom RISC-V processor module 

named Processor. 

1. Memory-map sensor and actuator addresses 

2. Let the processor make the irrigation decision 

 

 

 Decision Logic (External to Processor) 

1. On reset: turns off the pump. 

2. Every clock cycle: 

1. If soil moisture (sensorValue) is less than 

400, it activates the pump. 

2. Otherwise, keeps it off 
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Fig 2. Schematic showing the design of the irrigation system working alongside the RISC-V Processor 

 

 

 

 

Fig 3. Behavioral Simulation of the Smart Irrigation System 

 

This waveform illustrates the behavior of an automated irrigation control system that activates an irrigation pump based on soil 

moisture readings. The sensor Value and soil Sensor signals represent real-time moisture levels, while the threshold signal defines 

the minimum acceptable moisture level. At the start of the observed window, both sensor readings are at 300, which is below the 

threshold of 400. As a result, the pump Signal is set to 1, indicating the pump is turned on, and the irrigation Pump output is asserted 

to activate irrigation. This shows the system correctly detects dry soil and responds by enabling water flow. Later in the simulation, 

both the sensor and threshold values rise to 500 and 400 respectively, showing updated conditions. When the soil moisture surpasses 

the threshold, the pump Signal drops to 0, turning off the pump, which is visible by the deactivation of the irrigation Pump signal. 

The rest of the signals, such as RegWrite, ALU SRC, and others, are not directly involved in this control logic and remain constant. 

This simulation verifies that the system correctly evaluates soil conditions and autonomously manages irrigation based on dynamic 

sensor inputs. 
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V. CONCLUSION 

The design and implementation of a custom RISC-V 

processor present a powerful, open-source alternative to 

proprietary instruction sets, enabling cost-effective and 

flexible hardware development. In this work, the integration 

of a RISC-V-based processor with a smart irrigation system 

demonstrates the practical applicability of such processors in 

real-world, resource-sensitive environments. The processor's 

modular architecture allows for optimized control logic, low 

power consumption, and scalable performance, making it an 

ideal candidate for embedded IoT applications. 

By leveraging RISC-V’s extensibility and simplicity, we 

successfully interfaced the processor with sensors, actuators, 

and memory components required for automated irrigation 

management. The system is capable of real-time monitoring 

and decision-making based on environmental inputs such as 

soil moisture and temperature, thereby enhancing agricultural 

efficiency and water conservation. This integration not only 

validates the functionality of the custom RISC-V processor 

but also highlights its potential in sustainable smart farming 

technologies. 
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