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Design of RISC- V Processor using Verilog @HDL

Pratyush Pranjal, Vansh Tak, Aryan Singh and Vijay Nath

Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India

ABSTRACT

Keywords

This paper presents the design and implementation of a RISC-V (Reduced Instruction Set Computer -

Version 5) processor using Verilog hardware description language and the Vivado 2024.2 design suite.
The RISC-V architecture, known for its simplicity, modularity, and open-source nature, serves as an
ideal platform for academic research and custom processor development. The processor design follows
a five-stage pipelined architecture, incorporating Instruction Fetch, Instruction Decode, Execute,
Memory Access, and Write Back stages. Each module was coded in Verilog and synthesized using

Arithmetic Logic Unit
(ALU), Control Unit
(CU), Instruction Fetch
Unit (IFU), Register File
(RF), Datapath (DP).

Vivado 2024.2 software, ensuring compatibility with FPGA deployment through Vitis 2024.2 software.
The implementation emphasizes efficient data path control, hazard detection, and forwarding
mechanisms to maintain instruction throughput and pipeline efficiency. Simulation and verification were
conducted to ensure functional accuracy and timing performance, using testbenches that replicate typical
instruction sequences. Results indicate that the design meets the functional requirements and is suitable

for educational use and further extension into more complex systems.

I. INTRODUCTION

RISC-V is an open-source instruction set architecture (ISA)
that is reshaping the future of computing. First introduced by
researchers at the University of California, Berkeley in 2010,
RISC-V was created to be simple, modular, and efficient,
making it suitable for a broad spectrum of applications, from
tiny embedded systems to powerful data centres.

What makes RISC-V truly stand out is its openness. Unlike
proprietary ISAs like x86 from Intel or ARM, RISC-V is
available under a permissive open license. This allows
developers, whether from academia, industry, or the maker
community, to freely implement, modify, and distribute
RISC-V designs without worrying about licensing fees or
legal barriers. As a result, RISC-V has sparked widespread
interest and innovation around the world.

Adhering to the Reduced Instruction Set Computing (RISC)
principles, RISC-V emphasizes a minimal yet highly
effective set of instructions. The base set for 32-bit systems,
known as RV321, includes only the most essential operations
such as arithmetic, logic, control flow, and memory access.
However, the architecture is designed to be extensible.
Designers can add optional modules like:

1. M: Integer multiplication and division

2. A: Atomic instructions

3. F and D: Single and double precision floating-point

4. C: Compressed instructions to reduce code size

5. V:Vector operations for parallel processing
This flexibility means RISC-V cores can be customized for
specific tasks, optimizing both performance and power usage.
A typical RISC-V processor is composed of several key units:

1. Instruction Fetch Unit: Loads instructions from

memory using the program counter.

© 2025 The Author(s). Published by ISVE, Ranchi, India

2. Instruction Decode Unit: Decodes the fetched
instruction and identifies the operation and
operands.

3. Register File: A set of 32 general-purpose registers
for quick data storage and retrieval.

4. ALU (Arithmetic Logic Unit): Executes arithmetic
and logical computations.

5. Control Unit: Generates control signals to
coordinate the processor’s internal operations.

6. Memory Interface: Manages data transfer between
the processor and external memory.

More advanced RISC-V CPUs can incorporate features like
pipelining for improved instruction throughput, out-of-order
execution for performance gains, and even multicore
configurations for parallel processing. Despite such
enhancements, the base ISA remains clean, easy to
understand, and ideal for teaching computer architecture.
The RISC-V ecosystem continues to expand rapidly. A wide
range of tools—including compilers, debuggers, simulators,
and operating systems—are now available. Popular operating
systems like Linux and Free RTOS already support RISC-
V, and community-driven projects are extending
compatibility further every day.

II. THE BASIC COMPONENTS OF A
RISC-V PROCESSOR

1. The Design of an Arithmetic Logic Unit
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Fig 1. A complex overview showcasing the entire architecture of a basic RISC-V Processor

The Arithmetic Logic Unit (ALU) is one of the most
essential components within a computer’s Central
Processing Unit (CPU). It handles the execution of both
arithmetic and logical operations, forming the backbone of all
computations carried out by the processor. The efficiency and
speed of a CPU are heavily influenced by how well the ALU
is designed and implemented.
An ALU is engineered to perform a variety of basic
operations, such as:

1. Arithmetic operations: including addition and

subtraction

2. Logical operations: such as bitwise AND, OR,
XOR, and NOT

3. Shifting operations: including left and right bit
shifts

4. Comparisons: to evaluate relationships like

equality or magnitude
To support these functions, a typical ALU consists of the
following key components:

Main Components of the ALU

1. Operand Inputs
The ALU accepts two binary input values, often
fetched from the CPU's register file. These values
are the operands upon which the operation will be
performed.

2. Operation Decoder
This internal logic interprets the opcode (operation
code) provided by the control unit. Based on the
opcode, the decoder activates specific circuits within
the ALU to carry out the required task, whether it's
an addition, a logical operation, or a comparison.

3. Arithmetic Unit
This section performs all arithmetic calculations. A
common implementation is the ripple-carry adder,
which can add two binary numbers. With two’s
complement logic, it can also handle subtraction.
For faster computation, some ALUs use more
advanced adders like carry-lookahead or carry-
select adders.

4. Logic
Responsible

Unit

for executing bit-level logical

2.

functions, this unit can carry out operations such as
AND, OR, XOR, and inversion. Each bit of the input
is processed independently according to the
operation selected.
Multiplexer System (MUX)
Since the ALU supports multiple operations,
multiplexers are used to select which result to
output based on control signals. The correct
operation result is routed through to the output
depending on the current instruction.
Status Flags and Outputs
Along with the result, the ALU generates status
flags that reflect the outcome of the operation. These
typically include:
1. Zero (Z): Set if the result is zero
2. Carry (C): Indicates a carry out in addition
or a borrow in subtraction
3. Overflow (0): Set if an arithmetic
overflow occurs
4. Negative (N): Indicates a negative result in
signed operations

How to implement ALU

Step 1: Define Module 1/0 Ports

We start by identifying what an ALU
needs:

Two 32-bit inputs: A and B (operands)

A 4-bit control signal: ALUControl to
select the operation

3. One 32-bit output: Result

4. One flag output: Zero

N —

Step 2: Choose Supported Operations
We design the ALU to support both
standard and a few custom operations.

Step 3: “Combinational always” @(*)
Block

We use an always @(*) block to create a
combinational (non-clocked) logic block.
The operation performed is selected using
a case statement on ALUControl.
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1101 NOT A Bitwise NOT on A

Step 4: Generate the Zero Flag

This output is used for branch comparisons L1110 |LNOT B | Bitwise NOTon B_ |
like beq (branch if equal). It's 1 if the result
of the operation is 0. “timescale lns / lps
moduls ALU (
. input [31:0] &,
3. Verilog Code input [31:0] B,

input [3:0] ALUControl,

output reg [31:0] Result,

|| ALUControl || || Operation || || Description || output Zero
)i
[ 0000 || AND || Bitwise AND | aluays @(*) begin
case (ALUControl)
| 0001 Il OR || Bitwise OR | $'50000: Resslt = A & B
4"p000L: Result = & | B;

|| 0010 " " NAND " " Bitwise NAND " 4'B0010; Result = ~(& & B);
[oo11 [[NOR [ Bitwise NOR || deios e~ ~ By
[0100 [ XOR | [ Bitwise XOR || cois e h
| 0101 |LADD | Integer Addition | i meoste — (a5 ) 53 1 ssray
[ot10 [[suB | [integer Subtraction | c s e~ a ) m)
[oi11 [sLT |[Seton-less-than ] ot e = s 21,
| 1000 Il sSMT |l Set-on-more-than | P
| 1001 || MUL |l Multiply (basic) | || el = s
[ 1010 |l REMAINDER || Remainder | end i - -

assign Zero = (Result == 32'd0) ? 1'bl : 1'b0;
| 1011 Il SLL || Shift left logical | endnodule

1100 SRL Shift Right logical
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Fig.1.B.1. Design ALU (internal) implementation using Vivado 2024.2



1666

Untitled 1*

O W @ a d ¥ o K [ %

80.000 ns . 140.000 ns

1 00000000

00000005

Behavioral Simulation involving all assigned operations using Vivado 2024.2

The displayed waveform illustrates a behavioral simulation of a Verilog-based Arithmetic Logic Unit (ALU). It shows key signals
including the inputs A and B, a 4-bit ALU_Control signal used to select specific ALU operations, and outputs Result and Zero.
Initially, A is set to 0xA and B to 0x5, remaining unchanged for several clock cycles while ALU Control transitions from 3 to E
(hex), each representing different ALU functions such as logical operations, addition, subtraction, and shifts. The Result output
accurately reflects the expected values for each operation—e.g., when ALU Control is 6 (ADD), the result is 0xF; for 7 (SUB), it
yields 0x5. Around the 90 ns mark, the inputs A and B change, prompting corresponding updates in the result, demonstrating the
ALU’s ability to respond to new data. The Zero output remains deasserted (0) except when the result is zero, confirming the proper
functioning of the zero-detection logic. Overall, the simulation validates that the ALU correctly handles a variety of operations
based on different control signals.

2. The Design of a Control Unit (CU)

The Control Unit (CU) is a fundamental part of a
computer's Central Processing Unit (CPU), serving as
the command center that manages how instructions are
executed. Rather than performing arithmetic or logical
operations itself, the CU oversees and coordinates the
actions of other components like the Arithmetic Logic
Unit (ALU), memory, and I/O systems by issuing
control signals. These signals dictate the timing, routing,
and operation of data as it moves through the processor.
Types of Control Unit Architectures

The internal design of a Control Unit generally falls into
two main categories: hardwired and
microprogrammed control.

1. Hardwired Control Unit

In a hardwired control setup, control signals are

generated using physical logic gates, flip-flops, and

decoders. The pathways for instruction execution are

predefined, meaning each instruction is mapped directly

to a specific set of signals.

1. Advantages: Fast execution due to direct signal
generation.

2. Limitations: Difficult to modify or extend—any
changes in the instruction set require reworking the
circuitry.

2. Microprogrammed Control Unit

A microprogrammed control unit operates using a

series of microinstructions stored in a dedicated memory

called the control store or control memory. Each

machine-level instruction corresponds to a sequence of

microinstructions (a microprogram) that generate the

necessary control signals.

1. Advantages: Flexible and easier to update or
expand, making it ideal for CPUs with complex

instruction sets.
2. Limitations: Slightly slower than hardwired control
due to memory access overhead.

Core Components of the Control Unit

To effectively manage instruction execution, the Control

Unit comprises several key elements:

1. Instruction Register (IR)
Holds the current instruction being processed. The
CU reads the opcode from this register to determine
the operation required.

2. Control Signal Generator
This module produces control signals based on the
decoded instruction. These signals activate or
deactivate components like registers, buses, and the
ALU.

3. Timing and Sequencing Logic
Ensures all steps in the instruction cycle—fetch,
decode, execute, and write-back—occur in the
correct order and are synchronized with the system
clock.

4. Decoders and Encoders
Translate instruction fields or binary patterns into
specific control actions, enabling the processor to
interpret and respond to various instruction formats.

5. Status Inputs and Feedback Mechanisms
The CU receives condition flags (e.g., Zero, Carry,
Overflow) from the ALU and other units. This
feedback allows the CU to make decisions about
conditional branches, loops, and other control flow
operations.

A. How to implement CU
Step 1: Inputs and Outputs

Inputs:
1. opcode (7 bits): comes from the instruction and
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determines the type of operation.

Outputs: “timescale 1lns / lps
Control. signals needed by ‘other CPU. modules: module Comtrolumit (
1. RegWrite — Should we write to a register file? input [6:0] opcode,
2. ALUSrc — Should the ALU use an immediate or a cutput reg RegWrits,
. . 9 output reg ALUSrc,
register as the second 1np}1t. ctput req MemRead,
3. MemRead — Are we reading data memory? cutput reg MemWrite,
4. MemWrite — Are we writing to data memory? cutput reg MemToReg,
. output B h,
5. MemToReg — Should the value to write back to a TuTERE Teg T
N output reg [1l:0] ALUCE
register come from memory or the ALU? )i
6. Branch — is this a branch instruction? slways @(*) begin
ALUOp (2 bit d to guide the ALU operati s e
7. p (2 bits) — used to guide the operation 7'b0110011: begin R-type
(passed to the ALU Control module) RegWrite = 1;
ALUSrc = 0;
Step 2: Recognize Opcode Types MemRsad = 0
. . . MemWrite = 0;
Identify which opcodes correspond to which MemToReg = 07
instruction types in RISC-V Branch = o;
ALUCE = 2'bl0;
Step 3: Determine Control Signal Values for :“z Coits bees
. "b0010011 = egin I-types (addi)
Each Instruction ’I‘ype ' RegWrite = 1;
Based on what the instruction needs: AtuUsTre = 1;
MemEead = 0;
1. R-type (0110011) pemrite T
. . . MemToReq = H
1. Use two registers (no immediate), ALU does work. bronch = 0.
2. Result goes back to a register. ALUCp = 2'b00;
3. No memory read/write, not a branch. end
2. I-type (addi, 0010011) TrRROon L n EEERR A mess
. . . RegWrite = H
1. One register and an 1mmed1at.e. . ALUSLe -1,
2. ALU computes result, stores in register. MemRead = 1;
3. Load (Iw, 0000011) MemWrits = 07
1. Use base register + offset to get address. MemT'Bieg B é"
. . Branc = H
2. Read from memory, store in register. ALUOp — 2vpo0;
4. Store (sw, 0100011) end
1. Use base register + offset to compute address.
2. Store register value into memory. 7'B0100011: begin Store (sw)
5. Branch (beq, 1100011) RegWrite = 0;
1. Compare two registers, branch if equal. RLUSrc = 1
MemRead = 0;
. MemWrite = 1;
Step 4: Implement With a case Statement MemToReg = 0; fon’t omre
Now that we know what each opcode needs, use a Branch = 0;
case statement inside an always @(*) block to set ALUCp = 2'b00;
the control signals for each opcode. ==d ,
7"b1100011: begin Branch (beag)
RegWrite = 0;
ALUOP i
) ATLUSrc = 0;
apcode(6:0] [ ym— [>ALUOpP[1:0] MemRead = 0;
RTL_ROM .
MemWrite o0;
ALUSTC_i MemToReg = 0; D t cars
A[6:0] o [ > AaLusre Branch = 1;
RTL_ROM ALUOp = 2'RK01 :
Branch_i end
[ Branch default: begin Default - no cperaticn
RTL_ROM Regwrite = 0;
MemRead_i [ > memRead ALUSrc = 0;
[ > MemToReg MemRead = 0;
RTL_ROM MemWrite = 0;
MemWrite_i MemToRsg = 07
> Memwrite Branch = 0;
RTL_ROM ALUCE = 2'bk00;
RegWrite_i snd
Af6:0] o [ > regwrite sndcass
RTL_ROM end
zndmodule

Fig 2.A.1 Design CU (internal) implementation

B. Verilog Code
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Time = 10000
RegWrite = 1

Time = 20000
RegWrite = 1

Time = 30000
RegWrite = 1

Tims = 40000
RegWrite = 0

Time = 50000
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RegWrite = 0

Fig.2.B.2.

Cpcode
ATUSrc

Opcode
ALUSrc

Opcods
ALUSrc

Opcode
ALUSrc

Opcode
ALUSrc

Cpcode
ATUSrc

0110011
0 | MemRead

0010011
1l | MemRead

oo00011
1l | MemRead

olo0011
1l | MemRead

1100011
0 | MemRead

1111111

0 | MemRead =

1668

= 0 | MemToBeg = 0 | Branch = 0 | ALUCp = 10

= 0 | MemToReg = 0 | Branch = 0 | ALUCp = 00

= 0 | MemToReg = 1 | Branch = 0 | ALUCp = 00

=1 | MemToReg = 0 | Branch = 0 | ALUCp = 00

= 0 | MemToReg = 0 | Branch = 1 | ALUCp = 01

= 0 | MemToReg = 0 | Branch = 0 | ALUCp = 00

Behavioral Simulation- The TCL Console showing that different opcodes are being loaded into the
memory using Vivado 2024.2
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o

Behavioral Simulation of Control unit using Vivado 2024.2

The waveform above illustrates the functional simulation of a Control Unit in a RISC-V processor design, likely implemented in
Verilog. The input signal opcode changes over time to represent different instruction types, including R-type (33), I-type (13), load
(03), store (23), branch (63), and J-type (7F). As each opcode is applied, the Control Unit generates corresponding control signals
such as RegWrite, ALUSrc, MemRead, MemWrite, MemToReg, and Branch. These outputs determine the behavior of other parts
of the datapath. For instance, during the load instruction (03), MemRead, MemToReg, and RegWrite are asserted, while during the
store instruction (23), MemWrite is active. The ALUOp signal also changes appropriately to guide the ALU in executing the correct
operation. This simulation confirms that the Control Unit responds correctly to various instruction types by asserting the proper
control signals at the right time, validating its role in orchestrating processor operations.

3. The Design of Datapath Unit (DP)

The Datapath Unit is at the heart of every Central Processing
Unit (CPU), playing a crucial role in handling data

operations. It works hand-in-hand with the Control Unit
(CU), which provides the signals that guide its behaviour.
While the control unit issues commands, the Datapath is
where those commands are executed, responsible for carrying



out actual computations, data transfers, and register
manipulations.

The Datapath consists of interconnected hardware blocks
such as registers, ALUs, multiplexers, and buses, all
orchestrated to efficiently process instructions and
manipulate data within the processor.

Key Components of the Datapath Unit

1. Registers
Registers are fast, small-capacity memory elements
that temporarily store data during instruction
execution. The register file typically includes
multiple general-purpose registers—32 in the case
of RISC-V architectures. Another vital register is
the Program Counter (PC), which keeps track of
the address of the next instruction to be executed.

2. Arithmetic Logic Unit (ALU)
The ALU performs all the arithmetic (e.g., addition,
subtraction) and logical (e.g., AND, OR, XOR)
operations needed during instruction execution. It
receives inputs from registers or immediate values
and outputs the result either back into a register or to
memory.

3.  Multiplexers (MUXes)
MUXes are used to select between multiple input
sources and send the appropriate one to a particular
destination, such as the ALU or memory. They play
a critical role in making the Datapath flexible and
responsive to different instruction types.

4. Buses
Buses are communication pathways that carry data,
addresses, and control signals among components.
In a typical CPU, there are separate data buses and
address buses that connect registers, memory, and
processing units. The quality and structure of these
buses directly impact system speed and efficiency.

5. Memory Access Logic
This component manages the interface between the
Datapath and system memory. It enables
instruction fetches as well as data loads and
stores. Dedicated load/store wunits handle
addressing and data transfer tasks to and from
memory.

6. Instruction Register (IR)
The IR holds the current instruction fetched from
memory. It provides the control unit with the opcode
and other instruction fields necessary to determine
the operations the Datapath must perform.

How does the Datapath operate?

The Datapath follows a step-by-step process during the
execution of each instruction:

1. Fetch: The instruction is retrieved from memory
using the Program Counter.

2. Decode: The control unit decodes the instruction
and prepares control signals.

3. Execute: The ALU performs the specified
operation, using inputs from registers or constants.

4. Memory Access: If the instruction involves reading
from or writing to memory, the appropriate data is
transferred.

5. Write Back: The result of the computation or
memory operation is written back to a register,

1669
completing the instruction cycle.
1. How to implement the DP Unit

Step 1: Extract Fields from the Instruction
The RISC-V instruction is broken into parts for decoding:
These fields help:
1. Identify source and destination registers
2. Determine ALU operation (with funct3, funct7)
3. Determine instruction type via opcode
Step 2: Instantiate Register File
The register file:
1. Reads from rsl and rs2
2. Writes to rd if RegWrite = 1
3. Uses WritebackData as the data to write

Step 3: Immediate Generator
Different RISC-V instructions encode immediates
differently, so we need a decoder.
This logic:
1. Sign-extends the immediate to 32 bits
2. Supports I, S, and B types

Step 4: ALU Control Logic

The ALU operation depends on:
1. The ALUOp control signal from the control unit
2. For R-type: funct3 and funct?

ALUControl selects the specific ALU operation:
1. 0101: ADD

2. 0110: SUB

3. 0000: AND

4. 0001: OR

5. 0111: SLT (set less than)

Step 5: Choose ALU Input B (Register or Immediate)
If ALUSrc = 1, wuse the immediate value.
If ALUSrc = 0, use readData2 (from register file).

Step 6: ALU Instance
Inputs: two operands and control signal
Outputs:

1. ALUResult: result of the operation

2. Zero: used for branches (BEQ)

Step 7: Branch Target Calculation
Branch target = current PC + sign-extended immediate

Step 8: Writeback Data Selection
Normally, this would select between:
1. ALUResult and
2. Data loaded from memory
Since memory is not connected yet, it hardcodes the
memory result as 0:
1. If MemToReg = 0, write the ALU result back
2. IfMemToReg =1, write 0 (placeholder for memory)

Step 9: Expose Outputs
The following are exposed from the module:
1. Zero —used by the control unit for branching
2. ALUResult — the result of the computation
3. WriteData — data to be stored (used for sw)
4. WriteBackData — result that will go into the
destination register
5. BranchTarget — used to update the PC if the branch
is taken.
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3. Verilog Code Vi

“timescale lns / lpsl
: assign WriteData = readData2;

module Datapath (

input clk,

input reset, reg [31:0] imm;

input [31:0] instruction, always @(*) begin

input [31:0] PC, case (opcode)

input RegWrite, ALUSrc, MemRead, MemWrite, 750010011, 7'B20000 s // T

0010011, 7'b00000 : [/ I-type
imm = {{20{instruction[31]}}, instruction[31:20]};

7'b0100011: // 5-type

MemToReg, Branch,
input [1:0] ALUOp,

output Zero,

cutput [21:0] ALURssult, imm = {{20{instruction[31]}}, instruction[31:25], instruction[l1:7]};
output [31:0] WriteData, 7'b1100011: // B-typs
output [31:0] WriteBackData, imm = {{19{instruction[31]}}, instruction[31], instruction[7],
ocutput [31:0] BranchTarget instruction[30:25], instruction[11:8], 1'k0};
)i default:
) . . imm = 32'd0;
wire [4:0] rsl = instruction[l9%:15];
wire [4:0] rs2 = instruction[24:20]; sndcase
wire [4:0] rd = instruction[l11:7]; end
wire [6:0] funct7 = instruction[31:25];
wire [2:0] funct3 = instruction[l4:12];
wire [€6:0] opcode = instruction[€:0]; req [3:0] ALUContral;
always @(*) begin
wire [321:0] readDatal, readDataZ;
cass (ALUOp)
RegisterFile rf ( 2 bt.: ALUControl = 4 bjylt; ADD for 1
.clk(clk), .RegWrite (RegWrite), 2'b0l: ALUControl = 4'b0110; // 5UB
.rsl{rsl), .rs2(rs2), .rd(rd), 2'b10: begin // R-type
.writeData (WritsBackData), case ({funct7, funct3})
.readDatal (readDatal), .readDatalZ(rsadDatal) {7'b0000000, 3'b0O00}: ALUContrel = 4'b0010; // 20D
{7'b0100000, 3'b000}: ALUControl = 4'b0110; //
{7'60000000, 3'blll}: ALUControl = 4'b0000; // AND
{7'b0000000, 3'b110}: ALUControl = 4'b0001; // ¢
{7'b0000000, 3'b0L0}: ALUControl = 4'b0111; // 5L
default: ALUControl = 4'b0000;
endcase
end
default: ALUControl = 4'b0O000;
endcase
end

elent

tn

wire [31:0] ALUInput2 = (ALUSrc) ? imm : readDatal;

// ALU instance

ALU alu |
.A(readDatal), .B(ALUInputl), .ALUControl (ALUControl),
.Result (ALUResult), .Zero(Zsro)

/i e back selec ‘ 1 Vi
assign WriteBackData = (MemToReg) ? 32'd0 : ALUResult;

endmodule
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Fig 3.B.2 Behavioral Simulation of Datapath Unit using Vivado 2024.2

This waveform illustrates the behavioral simulation of a RISC-V single-cycle datapath implemented in Verilog. The key signals
include the instruction input (inst), program counter (PC), control signals (such as ALUOp, ALUSrc, MemWrite, etc.), and various
internal data paths like WriteData, Result, and BranchAddr. The instruction signal (inst) changes at regular intervals, each time
triggering a new instruction fetch and decode cycle. At time 10 ns, the instruction 003100B3 is decoded and executed—Ilikely an
R-type instruction—reflected by the ALU control signal being set to 2 and the ALU output updating accordingly. The PC and
BranchAddr values also change over time, indicating sequential instruction execution or branching behavior. Control signals like
MemWrite, MemRead, and RegWrite toggle based on the instruction type, affecting memory and register file interactions. The
signal Zero is monitored for branching decisions. Throughout the simulation, the datapath behaves as expected, correctly fetching
instructions, generating control signals, and updating data paths, verifying the correct integration of all datapath components.

4. The design of Register File (RF) during the execution of instructions. This unit
provides immediate access to operands needed for

The Register File Unit is an essential subsystem computation and to destinations for storing
within a CPU, serving as a small, ultra-fast memory processed results. It is especially critical in RISC-

bank used for holding data and temporary results based architectures, like RISC-V, where



instruction execution relies heavily on register-
based operations.

In a typical RISC-V design, the register file contains
32 general-purpose registers, each being either 32
bits (RV32) or 64 bits (RV64) wide, depending on
the architecture. Notably, register x0 is a constant
zero register—it's hardwired to always return 0, no
matter what is written to it.

Key Components of the Register File

1.

Read Ports (Dual-Ported Read Access):
The unit features two independent read ports,
allowing simultaneous access to two different
registers. This is crucial for most arithmetic and
logic instructions that require two operands.

Write Port:
There is a single write port through which results
from the ALU or memory are written back into a
destination register.

Address Decoding Logic:
Each read or write operation involves specifying the
register index. Decoders convert these indices into
select lines that enable the corresponding register for
read or write.

How the Register File Unit Works

Here’s a step-by-step breakdown of the typical
operation of a register file:

Instruction Decode Phase
When a machine instruction is fetched from
memory, the Control Unit decodes it. Part of this
decoding involves identifying the register
addresses—usually two sources (rs1, rs2) and one
destination (rd).

Addressing Registers
The register indices from the instruction are fed into
the register file. These indices determine which
registers should be read from (for operands) and
which should be written to (for the result).

Reading Operand Data
The two read ports provide data simultaneously
from the specified registers. For instance, in an
instruction like ADD x5, x1, x2, the values from
registers x1 and x2 are read and sent to the ALU.
Writing Results
After processing is complete (typically in the ALU),
the result is routed back to the register file and
written into the destination register (x5 in this
example) through the write port.

Clock Synchronization
All operations are synchronized with the CPU
clock, ensuring precise timing for data transfer.
Reading usually happens in the same clock cycle,
while writing occurs on the rising edge of the clock,
ensuring stability and avoiding race conditions.

How to implement the Register File

Step 1. Module Declaration
clk: Clock signal used to trigger writing to the

—_—

2.
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register file.

RegWrite: A control signal indicating whether a
write should occur.

rsl and rs2: 5-bit inputs representing addresses of
source registers to read.

rd: 5-bit input representing the destination register to
write to.

writeData: 32-bit data that will be written to the
register if enabled.

readDatal and readData2: Outputs for the data read
from rs1 and rs2.

Step 2. Register Array Declaration

This creates an array of 32 registers (registers[0] to
registers[31]), each 32 bits wide.

These registers store the actual values used during
program execution.

This is the physical storage of the register file.

Step 3. Asynchronous Read Logic

This block handles reading from the register file.

It performs asynchronous reads, meaning the data
is immediately available when the input address
(rs1, rs2) changes, no clock needed.

If the source register is 0, it outputs 0 regardless of
what's stored; this follows RISC-V’s rule that
register x0 is always zero and cannot be modified.

Otherwise, it fetches the data from the register array
using the index rs1 or rs2.

Step 4. Synchronous Write Logic

This always block is triggered only on the rising
edge of the clock.

Inside the block, a write operation is performed only
if RegWrite is high (write enabled) and the
destination register rd is not zero.

This protects register 0 from being modified, as
required by RISC-V.

If allowed, writeData is stored into the register at
index rd.

Verilog code

“timescale lns / lps

module RegisterFile |

input clk,

input RegWrite,

input [4:0] rsl,

input [4:0] rsZ,

input [4:0] xd,

input [31:0] writeData,
output [31:0] readDatal,
output [31:0] readDatal

reg

sign readDatal

[31:0] registers[0:31];

as = 0) ? 32'd0 : registers[rsl];
assign readDataZ = (rs2 0) % 32'd0 : registers[rsZ];
always B(posedge clk) begin

if (RegWrite && rd != 5'd0) bsgin

end

registers[rd] <= writeData;

end

endmodule
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Fig 4.B.1 Design Register File Unit (internal) implementation using Vivado 2024.2
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Fig 4.B.2 Behavioral Simulation of Register File Unit showing different values that are written or read into/from the register file
memory using Vivado 2024.2

This waveform displays the behavioral simulation of a Register File module, a critical component of a RISC-V processor, designed
to store and provide quick access to operand values. The key inputs include read and write register addresses (rs1, rs2, rd), the write
enable signal (RegWrite), and the data to be written (write_data). The outputs read datal and read_data2 reflect the contents of the
specified source registers. Initially, registers contain default values. At around 10 ns, a write operation is triggered: RegWrite is
enabled, the destination register rd is set to 1, and the value 0xA5ASASAS is written. This is confirmed by read_datal reflecting the
new value when rs1 selects register 1. Later, another write stores 0x12345678 into register 2, and again, the corresponding read port
shows the updated value. These write and read cycles confirm that the register file correctly handles data storage and retrieval,
conditioned on clock edges and write-enable logic. Overall, this simulation validates the correct functionality of simultaneous

register reads and conditional writes in the Register File module.

5. The design of Instruction Fetch Unit (IFU)

The Instruction Fetch Unit (IFU) is the first and one of the
most critical stages in the CPU’s instruction processing
pipeline. Its main task is to fetch instructions from memory

in the correct sequence, ensuring that the processor executes
programs accurately and efficiently. Acting as the entry point
to the execution cycle, the IFU lays the groundwork for
subsequent decoding and execution.



Core Components of the IFU

1.

Program Counter (PC)
The Program Counter is a special-purpose register
that holds the memory address of the next
instruction to be executed. After each fetch, the PC
is normally incremented to point to the next
instruction. In the case of a jump or branch, the PC
is updated with a new target address.

Instruction Memory
This memory unit (which could be an instruction
cache or ROM) stores the machine code of the
program. The IFU uses the current PC value to
retrieve an instruction from this memory.

PC Adder (PC + 4)
Since each instruction in most RISC architectures,
including RISC-V, is 4 bytes long, the IFU includes
an adder that calculates the next sequential PC value
as PC + 4. This allows the IFU to prepare for
fetching the next instruction unless a control
instruction dictates otherwise.

Multiplexer (MUX)
The MUX is used to select the next PC value. If a
branch or jump occurs, the MUX chooses between
the regular PC + 4 and a branch/jump target
address. This decision is based on control signals
generated by the control unit or branch logic.
Branch Target Calculator (optional)
In case of conditional or unconditional branches, this
unit computes the target address by adding an
immediate offset to the current PC. This target
address becomes the new input to the PC if the
branch is taken.

How the Instruction Fetch Unit Operates

[

v

The IFU performs the following sequence of actions
in each cycle:

Fetch the Instruction:

The current PC value is used to access the
instruction memory.

The instruction located at that address is fetched and
passed to the Instruction Decode Unit.

Update the PC:
If the instruction is not a jump or branch, the PC is
simply updated to PC + 4.

If the instruction alters control flow, the PC is
updated using the branch or jump target address,
selected via the MUX.

How to implement I[FU
1. Module Declaration and Ports

clk: Clock signal — used to trigger PC updates.
reset: Active-high reset signal to reinitialize PC to 0.
branch: Control signal — if high, the PC jumps to
branchAddr.

branchAddr: The target address if a branch is taken.
PC: The current program counter (register).
instruction: The current instruction fetched from
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memory.
Instruction Memory Declaration

This creates an array of 256 32-bit instruction slots,
simulating a small instruction memory.

Each index stores a full 32-bit machine instruction
(like RISC-V instructions).

This is a simple read-only instruction memory,
hardcoded in the next step.

Initializing Instruction Memory

Using the initial block, the memory is preloaded
with five sample RISC-V instructions.

These are encoded as 32-bit hex values.

For simulation purposes, this model has a basic
instruction program hardcoded into memory.

4. Instruction Fetch Logic (Combinational)
The instruction is selected using PC[9:2]:

1. Since RISC-V instructions are 4 bytes (32
bits) wide, we use bits [9:2] of PC for word-
aligned access.

2. This divides the PC by 4 (i.e., PC >> 2) to
index into the instruction memory.

This read is asynchronous — the instruction is
immediately available when PC changes.

5. Program Counter Update (Synchronous
Block)

This is a clocked always block that updates the PC
on the rising edge of the clock or reset.

Reset logic: If reset is high, PC is set to 0 (starting
address).

Branch logic: If branch is true, the PC is updated to
branchAddr.

Default behavior: If no branch or reset, PC is
incremented by 4 to fetch the next sequential
instruction.

Verilog code

“timescale lns / lps

module IFU (
input clk,

input reset,

input branch,
input [21:0] branchaddr,
cutput reg [31:0] PC,

cutput [31:0] instruction);

reg

ini

end

[31:0] instrMem[0:255]1;

tial begin

instrMem[0] 232 ROCOLOOLL;

instrMem[1] 32'h00110011;

instrMeml[2]

instrMeml[2]
instrMem[4] 22 hO1100011 ;
*hOOO010111;
22 "h0OO0O110111;
22 "h0O1101111;
32 "h01100111;

instrMem[5]

instrMem[E]

[ | [ R T
W
8]

instrMem[7]

instrMem[8]

assign instruction = instrMem[PC[9:2]];

always B (posedge clk or posedge reset) begin

end

if (reset)

P <= 22740;
=ls= if (branch)

P <= branchaddr;
else

PC <= PC + 4;

endmodules
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Fig 4.B.2 Behavioral Simulation of Instruction Fetch Unit showing different binary instructions that are loaded into the instruction
[31:0] register using Vivado 2024.2

This waveform illustrates the simulation of an Instruction Fetch Unit (IFU), a core part of a RISC-V processor responsible for
fetching instructions from memory. The main signals include the clock (clk), reset, branch control signals, program counter
(PC _out), and the fetched instruction (inst). Initially, the reset is low, allowing the IFU to begin normal operation. The PC out
signal increments by 4 every clock cycle, indicating that the processor is fetching instructions sequentially from memory, which is
the expected behavior in a non-branching scenario. Each new instruction is loaded into the inst signal, showing correct memory
access. Around 60 ns, the branch signal becomes high, and branch_addr is loaded with the value 0x10. As a result, the PC out is
updated accordingly, demonstrating the IFU’s ability to handle branch redirection. After this, sequential execution resumes. This
simulation confirms that the IFU properly increments the program counter, fetches the correct instruction from memory, and
successfully redirects control flow when a branch occurs.

111. The Design of Processor for a wide range of applications from embedded
devices to high-performance computing.

CENTRAL PROCESSING UNIT (CPU)
CPU Architecture

A typical RISC-V CPU uses a pipelined architecture.
This approach breaks down instruction execution into

The Central Processing Unit (CPU) is the core of
any computing system, responsible for carrying out
instructions and handling computational tasks. When . . . . .
built around the RISC-V architecture. the CPU distinct stages, allowing multiple instructions to be
benefits from a streamlined, efficient design focused processed s'iml{ltaqeously butat different stages. The major
on simplicity, scalability, and modularity. RISC-V is stages of this plpe.llne are. .

an open-source instruction set architecture (ISA) that l. Instruction Fetch (IF): Retrieves the next
is both customizable and extensible, making it ideal instruction from MeM, using the Program



Counter (PC) to determine the address.

2. TInstruction Decode (ID): Decodes the fetched
instruction and identifies which registers are
needed for execution.

3. Execute (EX):

The arithmetic or logical operation (such as
addition, subtraction, or comparison) is carried out
during this stage.

4. MeM Access (MEM): This stage deals with
reading from or writing to MeM when required
(for load/store operations).

5. Write Back (WB): The results of the executed
instruction are written back into the CPU’s register
file.

Key Components and Their Options

The RISC-V CPU is designed to be simple yet highly
effective, with the following key elements:

operations such as addition, subtraction, bitwise logical
operations (AND, OR), and comparisons.

1. Data MeM:

This is accessed during the MEM stage to
load or store data as needed by the
instruction.

2. Control Logic:

The control unit orchestrates the entire CPU
operation by generating signals that guide
each stage of the pipeline. It also manages
branch operations, sometimes using a
branch prediction unit to optimize
performance.

RISC-V Modularity

The RISC-V architecture is highly modular,
supporting a base integer instruction set (such as
RV32I, RV641, or RVI128I) that defines the
fundamental operations. Additionally, RISC-V
supports optional extensions that add more
capabilities to the architecture:

1. M Extension:

Adds support for multiplication and division
operations.

2. F and D Extensions: Provide support for
floating-point operations, with F for single-
precision and D for double-precision.

3. C Extension:

Introduces compressed instruction formats to
improve code density and reduce MeM usage.

This modular design makes RISC-V flexible,
enabling tailored CPU implementations for specific
applications, whether it's a low-power embedded
system or a high-performance processor.
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How It Operates

When a program is executed, the RISC-V CPU
follows a cycle of steps:
1. The CPU fetches the instruction from
MeM using the PC.

2. The instructions are then decoded to
identify the operation and the involved
operands.

3. The required operation is executed by the ALU
or through a MeM access if needed.

4. The result is then written back to the
appropriate register.

Finally, the PC is updated to point to the next instruction,
and the cycle repeats.

1. How to implement the Processor
1. Module Declaration

1. The processor takes a clock (clk) and an active-high
reset (reset) input.

2. No inputs/outputs for external memory yet — it's
focused on core internal operation.

2. Internal Wire Declarations
PC: Program Counter value fetched from the IFU.

1. instruction: The 32-bit machine instruction is
fetched from instruction memory.

2. These are control signals generated by the Control
Unit based on the instruction opcode:

1. RegWrite: Enable register write.
2. ALUSrc: Select ALU input source.

3. MemRead / MemWrite: Control memory
access (to be used in future).

4. MemToReg: Select whether ALU result or
memory data is written back.

5. Branch: Indicates if the instruction is a
branch.

6. ALUOp: Tells ALU what operation to
perform.

1. Zero: ALU sets this flag if the result is zero (for
conditional branches).

2. ALUResult: Output of ALU calculation.

3. WriteData: Data to be written to memory (if
MemWrite enabled).

4. WriteBackData: Data to be written back to the
register file.

5. BranchTarget: Target address for branch
instructions.

3. Instruction Fetch Unit (IFU)

1. The IFU fetches the instruction at address PC from



instruction memory.

2. Ifabranch is taken (Branch & Zero is true), it jumps
to BranchTarget.
3. Otherwise, it continues fetching sequential
instructions (PC + 4).
4. Control Unit (CU)
1. Extracts the opcode field from the instruction (bits
6:0).
2. Passes this opcode to the ControlUnit, which
generates the appropriate control signals.
3. The control logic determines how the datapath
behaves.
5. Datapath Integration
1. The Datapath module handles the core execution,
including:
1. Register reads and writes
2. ALU operations
3. Branch address computation
4. Selecting inputs based on control signals
2. It receives all necessary control signals and returns

outputs like Zero, ALUResult, and the next
BranchTarget.

ALU operation

Address

Reail Reg 2
Instruction

Write Reg

Instruction

Memo Write data

1677

Fig 6.A.1 Processor Architecture (Source: GitHub)

2.

Verilog Code

“timescale lns / lps

module Processor |

input clk,

input reset);

wire
wire
wire
wire
wire

wire

[31:0] BC;

[31:0] instruction;

RegWrite, ALUSrc, MemRead, MemWrite, MemToReg, Branch;
[1:0] ALUCE;

Zero;

[31:0] ALUResult, WritsData, WriteBackData, BranchTarget;

IFU IFU (

)i

wire

clk(clk),

reset (reset),

branch (Branch & Zero),
branchAddr (BranchTarget),
BC(EC),
instruction(instruction)

[6:0] opcode = instruction[6:0];

ControlUnit CU (

opcode (opcode) ,

-RegWrite (RegWrite),

-ALUSrc (ALUSrc),
-MemRead (MsmRead) ,
.MemWrite (MemWrite),

-MemToReg (MemToReqg) ,

.Branch (Branch),

.ALUOp (ALUOP)

Vi

Datapath DP (
.clk(clk),

.reset (reset),

.instruction({instruction),

.PC(PO),

.RegWrite (RegWrite),
LALUSrc (ALUSrc),
.MemRead (MemRead) ,

MemWrites (MemWrite),

.MemToReg (MemToReqg) ,

.Branch (Branch) ,
-ALUOR (ALUOR) ,
.Aero(Zero),

.ALURssult (ALUResult),
.WriteData (WriteData),

WritsBackData (WritzBackData),

.BranchTarget (BranchTarget)
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Fig 6.B.1 The (compressed) architecture of the Processor using Vivado 2024.2
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Fig 6.B.3 Behavioral Simulation of the entire processor in Vivado 2024.2, showing different signals as inputs and values as per
the data from the memory/immediate value.

This waveform illustrates a comprehensive simulation of a RISC-V processor's full CPU executing an instruction cycle. Key signals
include the instruction (instruction), program counter (PC), control signals (like RegWrite, ALUSrc, MemRead, MemWrite, etc.),
ALU result (ALUResult), register addresses (rs1, rs2, rd), and data lines. Around the 1,100 ns mark, the instruction 0x00000033 is
loaded and decoded. This corresponds to an R-type instruction, verified by the opcode 0110011. The control unit activates relevant
signals: RegWrite is high, ALUSrc is low (selecting register input for ALU), and ALUOp is set to 10, indicating a function-based
ALU operation. The source register values (readDatal, readData2) are read and used by the ALU to compute the result, which is
OxF in this case. The result is written back to the destination register as indicated by WriteBackData. The branching and memory-
related controls (Branch, MemRead, MemWrite, MemToReg) remain inactive, confirming this is a computation-only instruction.
The simulation successfully demonstrates the correct sequencing of fetching, decoding, execution, and write-back stages within a
single-cycle processor architecture, confirming functional integration of the ALU, control unit, register file, and memory interface.

IV. PROJECT INVOLVING THE USE OF
RISC-V PROCESSOR

Smart Irrigation System Using RISC-V Processor

In recent years, the integration of embedded systems with
agriculture has opened new horizons for smart farming
solutions. One such innovation is the smart irrigation
system, which uses environmental data to optimize water
usage in farming. A particularly efficient and open-source
approach to building such systems is by using a RISC-V
processor. RISC-V’s modularity, flexibility, and low power
consumption make it ideal for embedded agricultural
applications.

Why Smart Irrigation?

Traditional irrigation techniques often result in excessive
water usage, uneven watering, and dependence on manual
intervention. With climate change and water scarcity

becoming critical global issues, there's a growing demand for
intelligent systems that conserve resources while improving
crop yields. Smart irrigation systems monitor parameters
such as soil moisture, temperature, and humidity to
determine optimal watering schedules. They reduce human
error, save water, and support sustainable farming practices.

Role of RISC-V in Smart Irrigation

RISC-V is an open-source Instruction Set Architecture (ISA)
that offers significant advantages for embedded and IoT
applications. Unlike proprietary ISAs, RISC-V allows
developers to customize and optimize the processor for
specific tasks, such as sensor data acquisition and control
logic in irrigation systems. This flexibility leads to power-
efficient and cost-effective solutions tailored for agricultural
environments.

In a smart irrigation setup, a RISC-V-based microcontroller
can be programmed to interface with a variety of sensors,
such as soil moisture probes, temperature sensors, and light



detectors. The processor continuously reads data from these
sensors and processes it to determine when and how much
to irrigate. Additionally, it can communicate with actuators
like solenoid valves to control the flow of water.

System Architecture

The typical architecture of a RISC-V-based smart irrigation
system includes:

1.  Sensor Module: Gathers real-time environmental
data.

2.  RISC-V Processor Unit: Serves as the brain of
the system, executing control algorithms based on
sensor inputs.

3. Communication Module: Supports wireless
communication (e.g., LoRa, Wi-Fi, or Zigbee) for
remote monitoring and control.

4. Actuator Module: Controls pumps or valves for
water distribution.

5. Power Management Unit: Often powered by
solar panels, enhancing sustainability in rural
areas.

How to implement the design?

This module simulates a smart irrigation system that:
1. Uses a soil moisture sensor
2. Contains a RISC-V processor instance

3. Uses control logic to activate an irrigation pump
based on moisture levels

Header and Inputs/Outputs
1. clk: System clock (controls timing of all logic).
2. reset: Resets the system to a known starting state.

3. irrigationPump: Output signal that controls the
irrigation pump (1 = ON, 0 = OFF).

Sensor Simulation and Threshold Logic

1. sensorValue: The current reading from the
simulated soil moisture sensor.

2. threshold: A constant value. If the sensorValue is
less than this, the soil is considered dry and the
system should turn on the pump.
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Signals for Future Processor Integration

These are placeholders or future expansion for interaction
with the custom RISC-V processor:

1. instrOut: Instruction being fetched.

2. aluResult: ALU computation result.

3. writeBack: Data to be written back to registers.
4. PC: Program counter.

5. pumpSignal: Optional signal for processor to
control pump (not yet connected here).

Simulated Soil Moisture Sensor
1. On reset: starts at 500 (moist).

2. Every clock cycle: value decreases by 1,
simulating drying soil.

3. When it falls below the threshold (400), the system
should trigger irrigation..

Custom Processor (Placeholder)

You're instantiating a custom RISC-V processor module
named Processor.

1. Memory-map sensor and actuator addresses

2. Let the processor make the irrigation decision

Decision Logic (External to Processor)
1. On reset: turns off the pump.
2. Every clock cycle:

1. If soil moisture (sensorValue) is less than
400, it activates the pump.

2. Otherwise, keeps it off
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Fig 3. Behavioral Simulation of the Smart Irrigation System

This waveform illustrates the behavior of an automated irrigation control system that activates an irrigation pump based on soil
moisture readings. The sensor Value and soil Sensor signals represent real-time moisture levels, while the threshold signal defines
the minimum acceptable moisture level. At the start of the observed window, both sensor readings are at 300, which is below the
threshold of 400. As a result, the pump Signal is set to 1, indicating the pump is turned on, and the irrigation Pump output is asserted
to activate irrigation. This shows the system correctly detects dry soil and responds by enabling water flow. Later in the simulation,
both the sensor and threshold values rise to 500 and 400 respectively, showing updated conditions. When the soil moisture surpasses
the threshold, the pump Signal drops to 0, turning off the pump, which is visible by the deactivation of the irrigation Pump signal.
The rest of the signals, such as RegWrite, ALU SRC, and others, are not directly involved in this control logic and remain constant.
This simulation verifies that the system correctly evaluates soil conditions and autonomously manages irrigation based on dynamic
sensor inputs.
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V. CONCLUSION

The design and implementation of a custom RISC-V
processor present a powerful, open-source alternative to
proprietary instruction sets, enabling cost-effective and
flexible hardware development. In this work, the integration
of a RISC-V-based processor with a smart irrigation system
demonstrates the practical applicability of such processors in
real-world, resource-sensitive environments. The processor's
modular architecture allows for optimized control logic, low
power consumption, and scalable performance, making it an
ideal candidate for embedded IoT applications.

By leveraging RISC-V’s extensibility and simplicity, we
successfully interfaced the processor with sensors, actuators,
and memory components required for automated irrigation
management. The system is capable of real-time monitoring
and decision-making based on environmental inputs such as
soil moisture and temperature, thereby enhancing agricultural
efficiency and water conservation. This integration not only
validates the functionality of the custom RISC-V processor
but also highlights its potential in sustainable smart farming
technologies.
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