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1. INTRODUCTION 

Hindustani Classical Music is an extensive and deeply 

codified tradition where improvisation and structure coexist 

within the framework of Raags. A Raag prescribes an 

ascending (Aroh) and descending (Avroh) sequence of notes, 

along with ornamentations, characteristic phrases (Pakad), 

and a specific emotional or temporal association. Each 

performance balances strict adherence to these rules with 

interpretive freedom, producing variations that challenge 

even seasoned listeners in precise identification. Traditional 

Raag classification relies on expert musicianship, using 

methods such as That-Raag grouping based on primary notes, 

Raag-Ragini classification based on distinguishing features, 

and Shuddha–Chayalag– Sankeerna grouping for Raags 

derived from multiple sources. While effective in pedagogy, 

such approaches are inherently subjective and time-

consuming.The rise of computational musicology and 

machine learning has opened new opportunities for 

automated Raag identification. By leveraging supervised 

learning algorithms, large-scale audio datasets can be 

analyzed systematically, enabling objective classification 

based on measurable acoustic features. Among these 

algorithms, the Random Forest classifier is particularly 

attractive for structured, high-dimensional data due to its 

robustness, interpretability, and resistance to overfitting.In 

this study, we focus on frequency-domain statistical 

descriptors extracted from high-quality studio recordings of 

Raag Yaman and Raag Malkauns, both tuned to A# for pitch 

uniformity. The objective is to demonstrate that even with 

minimal feature complexity, accurate classification can be 

achieved using ensemble learning.  

© 2025 The Author(s). Published by ISVE, Ranchi, India 

 

This work forms a foundation for expanding computational 

tools in Indian classical music research and education. 

responses at various scales. This section discusses important 

methodologies, their application, and how they have 

deepened our understanding of cellular and tissue dynamics. 

2. LITERATURE REVIEW: 

Automated music classification has been studied extensively 

via learning algorithms plus feature types along with genres. 

Support Vector Machines were used in early methods to 

recognize genres showing they handled complex musical 

patterns well. Xu et al. used SVMs for multi-layer 

architectures, and their genre categorization outperformed 

distance-based classifiers. Deep learning models including 

Convolutional Neural Networks (CNNs) along with 

Recurrent Neural Networks (RNNs) often exceed customary 

algorithms whenever trained on sufficiently large as well as 

diverse datasets especially for audio clips of long duration as 

revealed by comparative analyses such as those by Ndou et 

al. Survey studies, such as ones including Scaringella et al., 

have catalogued techniques that are for music information 

retrieval. Feature extraction methods ranging from spectral 

descriptors up to temporal dynamics are important, as those 

are the studies that highlight it. Random Forest classifiers 

have emerged as competitive alternatives because deep 

learning offers strong performance, especially for tasks with 

limited training data or high-dimensional structured inputs. 

Parmar et al. stressed that they implemented it easily and it 

was resilient to parameter tuning, while Chaudhary et al. 

demonstrated that they improved multi-class accuracy upon 

optimizing features and selectively filtering data. 

 
ABSTRACT 

Hindustani Classical Music is built upon intricate melodic structures known as Raags, each defined by 
unique tonal, temporal, and stylistic elements. Their recognition requires nuanced understanding and 
years of training, making automated classification a challenging task. This paper presents a machine 
learning framework for identifying Raag Yaman and Raag Malkauns, both standardized to A# pitch for 
consistency. Primary audio samples were recorded in a controlled studio environment, pre-processed to 
extract frequency-based statistical features (mean, median, and standard deviation), and used to train a 
Random Forest classifier. The proposed model achieved 91% accuracy in differentiating between the 
two Raags, demonstrating that simple statistical features, when paired with an ensemble learning 
approach, can yield high performance. The study contributes a reproducible, data-driven method for 
computational Raag analysis and highlights its potential in music education, digital archiving, and AI-
assisted performance evaluation. 
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Audio analysis Random Forests exist outside music genre 

uses. These applications are used in bird call identification, 

speech processing, and environmental sound recognition 

which are specialized domains.. For example, Lele et al. 

converted bird audio to chromogram images for Vision 

Transformer-based classification, achieving 98% accuracy — 

an approach that inspired aspects of this work. Studies 

comparing SVM and Random Forest for audio classification 

(e.g., Ansari et al.) have shown performance variability 

depending on the nature of the acoustic features and the 

diversity of the dataset. In the context of music, feature choice 

significantly influences classification accuracy. Combining 

MIDI and raw audio features, as explored by Cataltepe et al., 

yields higher precision than using either alone, underscoring 

the role of feature engineering. Deep learning models have 

also been applied to music recommendation systems (Elbir 

and Aydin), demonstrating the versatility of AI in 

personalized content delivery. Building on these findings, our 

study investigates a Random Forest-based approach using 

minimal but discriminative statistical features from frequency 

data to classify two distinct Hindustani Raags. This focus on 

simplicity and reproducibility distinguishes our work from 

feature-heavy or deep-learning-dominant strategies, while 

still achieving competitive accuracy. Automated 

classification of Indian classical Raags remains a challenging 

task due to the intricacies and variations in their melodic 

structures. The objective of this study is to develop a machine 

learning-based system capable of accurately identifying 

Raags using extracted frequency parameters from audio data. 

This work aims to bridge the gap between traditional 

musicology and computational techniques by providing a 

reliable and data-driven approach for Raag classification. 

3. METHODOLOGY: 

 

Fig.1. Methodology 

1. Data Samples Creation 

The research presented in this work is grounded in the 

creation of a dedicated primary dataset specifically tailored 

for the task of Hindustani Classical Raag classification. Two 

Raags — Yaman and Malkauns — were chosen as the focus 

of the study due to their distinct melodic frameworks and 

tonal characteristics. For each Raag, 40 individual 

performances were recorded, giving a total of 80 samples and 

ensuring a balanced distribution between the two classes. 

To control for variations in pitch and eliminate tuning-related 

inconsistencies, every recording was standardized to the A# 

tonic. This approach ensured that the model concentrated 

exclusively on melodic progression, characteristic note 

patterns, and ornamentation, rather than being influenced by 

differences in pitch settings between performances. 

Data collection was carried out in an acoustically treated 

studio environment, which significantly reduced the 

possibility of environmental noise, echoes, or other unwanted 

acoustic artefacts. A professional-grade microphone setup 

was used to capture the recordings, providing high clarity and 

preserving subtle nuances in note articulation, dynamics, and 

timbre. The Easy Voice Recorder application was selected as 

the recording tool because of its consistent quality output and 

reliability in capturing uncompressed audio. All audio files 

were saved in the .wav format. The decision to use .wav was 

deliberate — this lossless, uncompressed format retains every 

detail of the acoustic signal, including microtonal inflections 

and dynamic contrasts, making it ideal for detailed analysis 

and feature extraction. 

The Raag identification system developed as part of this 

research allows for direct user input via audio file upload. The 

system is compatible with both .wav and .mp3 formats. Input 

files are placed into a dedicated “Audio” folder, from which 

they are automatically directed into the pre-processing 

pipeline. In this phase, the audio signal is analyzed and 

transformed into a structured, text-based representation. The 

extracted parameters include fundamental frequency 

trajectories, amplitude variations, pitch contours, note 

transitions, and other temporal descriptors. Structuring the 

data in this manner is essential, as it enables the machine 

learning model to process the audio content as a consistent 

numerical dataset, facilitating accurate and reproducible 

classification. 

By generating the dataset in-house, the study ensured total 

control over recording conditions, file quality, and the 

musical content itself. Each recording was carefully crafted to 

reflect the theoretical principles of the chosen Raag while 

incorporating natural variations present in real performances. 

This approach provided a rich, representative dataset, free 

from background noise and irrelevant artefacts, while 

containing clearly identifiable Swar (notes) and Pakad 

(signature phrases). Such attention to detail not only 

improved model training and evaluation but also supported 

better generalization when applying the classifier to new, 

unseen musical inputs. 

 

2. Pre-processing (Audio to Text Conversion) 
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The raw .wav recordings were subjected to a multi-step pre-

processing pipeline aimed at transforming the unstructured 

audio signals into a consistent, model-ready dataset. This 

stage is critical in ensuring that the machine learning model 

receives uniform, informative inputs, free from unnecessary 

noise or inconsistencies. 

Step 1 – Audio Framing: 

Each recording was divided into short, overlapping frames to 

allow for localized analysis of the signal. This segmentation 

preserved temporal dynamics, enabling the model to capture 

fine-grained changes in pitch, amplitude, and harmonic 

content over time. Frame sizes were selected to balance time 

resolution with frequency resolution, a key consideration in 

music signal processing. 

Step 2 – Frequency and Temporal Analysis: 

For each frame, the frequency content was extracted to 

generate trajectories that represent how pitch evolves 

throughout the performance. Additionally, amplitude 

envelopes were computed to capture intensity variations, 

while temporal markers (such as onset points) provided cues 

about note boundaries and transitions. 

Step 3 – Feature Structuring and Storage: 

Once the acoustic features were computed, they were 

organized into a structured, time-series format and saved as 

plain-text files. This choice of storage format made the 

intermediate data human-readable, easy to debug, and 

compatible with a variety of analytical tools. 

Step 4 – Software Tools and Libraries: 

Feature extraction was implemented using Librosa and 

complementary Python libraries, which provided robust 

functions for spectral analysis, chroma computation, and 

statistical summarization. These tools ensured that identical 

pre-processing steps were applied to both training and testing 

datasets, eliminating inconsistencies that could lead to biased 

evaluation. 

The classification framework relies on a compact, yet 

informative set of features derived from the frequency column 

of each processed audio file. From this data, three statistical 

descriptors were computed: 

Mean Frequency: Represents the average frequency over the 

entire sample, providing a measure of the tonal center or 

overall pitch tendency. 

Standard Deviation of Frequency: Quantifies the degree of 

pitch variation, capturing how stable or dynamic the 

performance is. 

Median Frequency: Indicates the middle value of the 

frequency distribution, serving as a robust central measure 

less affected by outliers or transient deviations. 

These features, while minimal in number, were chosen for 

their interpretability and their ability to capture the core 

melodic characteristics of a Raag. The Random Forest 

Classifier leverages several key mechanisms to enhance 

classification accuracy and robustness: 

1. Bootstrapped Sampling: For each decision tree in the 

forest, a random subset of the dataset is selected with 

replacement. This ensures that each tree sees a slightly 

different training set, promoting diversity in the learned 

decision boundaries. 

 2. Random Feature Selection: At each decision node, 

only a randomly chosen subset of the available features 

(Mean, Standard Deviation, or Median) is considered for 

splitting. This prevents all trees from focusing on the same 

dominant feature and increases the ensemble’s overall 

generalization capability. 

3. Independent Tree Training: Each tree is built 

independently on its respective bootstrapped sample and 

feature subset. Some trees may rely more heavily on mean 

frequency, while others might prioritize pitch variation 

(standard deviation) or central tendency (median). 

4. Majority Voting for Classification: Once all trees 

produce their predictions (either Raag Yaman or Raag 

Malkauns), the final class label is determined through 

majority voting — the class receiving the highest number of 

votes becomes the model’s output. 

By following this pre-processing approach, the dataset 

retained the musical essence of each Raag while standardizing 

the representation for machine learning. This balance between 

musical fidelity and computational structure was essential for 

achieving reliable classification results. 

3. Training: Random Forest Classier 

Algorithm 

The training and testing of the Random Forest Classifier 

(RFC) involve multiple steps, including data preparation, 

model training, evaluation, and performance analysis. In this 

study, the classifier was trained on extracted frequency 

parameters from Raag audio samples to accurately identify 

Raags. The following sections describe the detailed 

methodology employed in the training and testing phases. 

3.1 Data Preparation and Feature Extraction: 

The dataset utilized for training the classification model was 

composed of frequency-based attributes extracted from pre-

processed audio recordings of two classical Raags: Yaman 

and Malkauns. These audio files were first transformed into 

text format, where each file represented a sequence of 

frequency values over time. These sequences were then 

converted into numerical feature vectors suitable for input 
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into machine learning algorithms. 

To derive useful and representative features, statistical 

analysis was performed on the frequency data within each 

file. Specifically, the mean, median, and standard deviation of 

the frequency values were calculated. These statistical metrics 

capture the essential characteristics of the sound profile 

associated with each Raag and were used as input features for 

training the model. Additionally, each audio sample was 

annotated with its corresponding Raag label, which was 

stored in a structured JSON file (labels.json). This file 

mapped each filename to its respective Raag, ensuring clarity 

and organization within the dataset. Prior to model training, 

the data was divided into two subsets: 40% for training the 

model and 60% for evaluating its performance (test_size = 

0.6). This data split was chosen to test the classifier’s ability 

to generalize well to new, unseen inputs and to avoid the risk 

of overfitting. 

3.2 Model Training using Random Forest Classifier 

The Random Forest Classifier (RFC) is an ensemble learning 

technique that constructs multiple decision trees and 

aggregates their predictions to improve classification 

accuracy. It reduces overfitting and enhances performance 

compared to individual decision trees. Random Forest 

Classifier is a powerful and widely used machine learning 

algorithm that belongs to the ensemble learning family. It is 

an extension of Decision Trees and works by constructing 

multiple decision trees during training, merging their results 

to improve accuracy and reduce overfitting. 

3.3 Training Procedure:  

The classifier was implemented using Sklen: ensemble. 

Random Forest Classifier with the following 

hyperparameters: 

Number of Trees (n_estimators=100): The model was trained 

using 100 decision trees, which provided a balance between 

performance and computational efficiency. 

Random State (random_state=42): A fixed random seed was 

used to ensure reproducibility of results across multiple runs. 

Split Criterion (Default: Gini Impurity): The decision trees 

were trained using the Gini Index, which measures the 

impurity of splits. 

Depth of Trees (max_depth - Not Defined): The depth of each 

decision tree was left unrestricted to allow the model to learn 

complex patterns, though it could be adjusted to control 

overfitting. 

Minimum Samples for Split (min_samples_split=2): The 

model required at least two samples to split a node, ensuring 

decision boundaries were meaningful 

Minimum Samples per Leaf (min_samples_leaf=1): Each leaf 

node contained at least one sample, allowing the trees to 

capture detailed variations. 

The model was trained over 50 epochs, where it was 

iteratively refined using training data. In each epoch, the 

classifier was re-fitted, and its performance was evaluated on 

both training and test datasets. Since Random Forest does not 

have an inherent loss function like deep learning models, a 

dummy loss function was defined as the error rate (1 - 

accuracy). This helped the model to track how well the model 

was learning over epochs. 

3.4 Model Testing and Evaluation 

Once trained, the model was tested on the reserved test 

dataset, and its performance was assessed using the following 

evaluation metrics: 

Accuracy Score: The classifier achieved 91% accuracy, 

which indicates a strong learning capability. Accuracy was 

calculated using accuracy_score(y_test, y_pred), where 

y_test represents the actual labels and y_pred represents the 

predicted labels. The accuracy was computed using the 

accuracy_score function from the sklearn. metrics module. 

The formula for accuracy is: 

Accuracy = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠/𝑇𝑜𝑡𝑎𝑙 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠                                           (1) 

  

 Fig.2. Model Training Results 

Confusion Matrix: To assess the performance of the trained 

Random Forest model, a confusion matrix was created to 

offer a detailed breakdown of how accurately the model 

classifies each Raag. This matrix serves as a valuable tool for 

comparing the model's predicted labels with the actual labels, 

allowing us to evaluate its performance and identify the types 

of errors it makes. 

The confusion matrix includes the following elements True 

Positives (TP), represents the instances where the model 

correctly identified a Raag. False Positives (FP), where the 

model mistakenly predicted a Raag that was not present. False 

Negatives (FN), where the model failed to identify a Raag that 

was present. True Negatives (TN), where the model correctly 

identified the absence of a Raag. By evaluating these 

components, we can calculate the model's overall accuracy 

and pinpoint specific areas where it is prone to making errors, 

such as Raags that are more likely to be misclassified. 
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Heatmap Visualization: To enhance the interpretability of the 

confusion matrix, a heatmap was generated using a popular 

Python visualization library, seaborn. It gives a visual 

representation of the confusion matrix, where different colors 

are used to indicate each class of prediction. The color 

intensity or shade in each cell corresponds to the number of 

samples in specific category. This color-coded representation 

makes it easy to identify trends and patterns. Darker shades 

signify higher values, showing areas where the model was 

more accurate or made more frequent misclassifications. 

Lighter shades indicate lower values, highlighting instances 

where errors are less common. By visualizing the confusion 

matrix as a heatmap, it becomes easier to detect which Raags 

the model tends to misclassify and identify any patterns or 

biases that could be addressed. 

Interpretation: Examining both the confusion matrix and the 

heatmap provides valuable insights into the model's 

performance across different Raags. This analysis is crucial 

for identifying areas where the model may be 

underperforming or exhibiting biases, allowing for targeted 

improvements in the classification process. It also guides 

potential adjustments to the model, such as refining feature 

extraction methods, tuning hyperparameters, or exploring 

different algorithms to enhance accuracy in future iterations. 

 
 

Fig.3 Confusion Matrix 

 

To better understand the learning behavior of the model, the 

following plots were generated. The plots are generated on 

the basis of epochs for the training. One epoch indicates that 

the complete training dataset is passed through the model 

learning algorithm. It plays vital role to understand how a 

machine extract information and learns from the data 

provided. It helps to adjust the weights and biases for the 

training enhancing the accuracy and gradual reduction in 

errors. Here these graphs give an idea of how the accuracy 

and loss parameters changes per epoch. 

Training vs. Testing Accuracy Graph: It is important to 

differentiate the training and testing data to avoid overfitting. 

The datasets are loaded in three steps, Supply (allocate data 

to the model), Declare (Conversion of data to model suitable 

format), Run (put the model for testing). Plotted accuracy 

over 50 epochs to visualize performance improvements. 

Showed how well the model generalized to unseen data. 

Training vs. Testing Loss Graph: Since Random Forest does 

not compute loss directly, error rate (1 - accuracy) was used 

as a substitute for loss. The loss graph helped identify 

potential overfitting issues. ‘If the training error is very low 

but the testing error is significantly higher, it indicates that the 

model is fitting the training data too closely and not 

generalizing well to unseen data; a classic sign of overfitting’ 

[16]. On the other hand, if both training and testing errors are 

high, it may indicate underfitting, suggesting the model is too 

simple or insufficiently trained. 

 

Fig. 4 (a) Accuracy Graph for Train vs. Test  

 

 

Fig.4 (b) Loss Graph for Train vs. Test 

 

4. Testing Process for Raag Classification 

Model: 
The trained Random Forest Classifier (RFC) was tested using 

new audio samples, which were pre-processed into text files 

containing extracted frequency parameters. This section 

details the testing pipeline, including feature extraction, 

model loading, and prediction steps. 

In the first step in the testing pipeline involved processing the 

new audio samples. Each audio file was pre- processed to 

extract relevant frequency parameters, which were stored in 

text files. The features extracted from the audio signals were 

consistent with those used during the training phase to 

maintain compatibility. These features typically include 

statistical measures such as the mean frequency, standard 
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deviation, and median frequency, which were computed for 

each audio sample. 

Once the features were extracted, the trained Random Forest 

Classifier (RFC) model was loaded into memory. The model, 

which had been previously trained on a labeled dataset, was 

serialized and saved for later use. During testing, the saved 

model was loaded into the pipeline to make predictions based 

on the new test data. This 

dynamics), and ABM (agent-based modelling). These 

approaches are essential to study the mechanical response of 

tissues, single cells, and extracellular substances under 

different stimuli. Prendergast [1] investigates the effects of 

mechanical loading on tissue formation by employing finite 

element Modelling to simulate stress-induced growth. Mak et 

al. [2] reveal the force of multiscale integration by coupling 

molecular dynamics with tissue-level mechanics to better 

understand cellular responses considered as a whole. 

 

Tepole [3] presents a methodology based on systems 

biomechanics for Modelling wound healing, emphasizing the 

complexities of mechanical-biochemical feedback in 

regenerating tissues.Considering bone mechanobiology by in 

silico Modelling, Giorgi et al. [4] provide some insights into 

the prediction of fracture healing and osteo-

interventions.Rajagopal et al. [5] delve into the mechanical 

deformation of individual cells, utilizing computational tools 

to assess cytoskeletal behavior under stress. Their models 

help in understanding mechanosensitivity and cell signalling 

pathways. 

 

Newer advances build on these prior technics and 

frameworks. Brown et al. [6] use computational models to 

explore cardiac development and investigate the role of 

mechanical cues in shaping morphogenesis and in congenital 

heart disease. Boaretti et al. [7] advance the perspective on 

multicellular in silico models in studying coordinated cellular 

mechanisms in bone reModelling. Dolan et al. [8] present a 

summary of a suite of techniques—force microscopy, image-

based Modelling—used to explore mechanotransduction at 

various spatial scales. 

Together, these studies demonstrate how computational 

Modelling has transformed mechanobiology. Through 

simulating mechanical environments with great accuracy, 

they facilitate linking experimental data to theory and 

promoting developments in personalized medicine, 

regenerative therapies, and target-specific intervention 

design. With mechanobiology increasingly interfacing with 

artificial intelligence and high-throughput data analytics, 

these tools will find increasingly more use in biomedical 

exploration. 

ensures that the model remains consistent with its training 

parameters. 

With the extracted features and the loaded model, the final 

step was to pass the feature vectors from the test data into the 

RFC. The model then processed the feature vectors and 

generated predictions regarding the class or category of the 

audio samples. The RFC leverages the decision trees that 

were created during the training phase to assess the test data 

and output the predicted class label. 

Each new audio sample was processed through this pipeline, 

allowing for efficient and automated predictions. This 

approach ensures that the classifier could be reliably applied 

to unseen data, providing consistent results in real- world 

scenarios. 

 

4.1 Loading the Trained Model 

Before testing new audio samples, the previously trained 

Random Forest model was loaded from a saved file using the 

joblib.load() function. The model had been serialized and 

saved as raag_classifier_1.pkl during the training phase. By 

using this method, the model could be quickly and efficiently 

reloaded without the need for retraining, ensuring both time 

and computational efficiency. The joblib.load() function was 

used to deserialize the model from the file, restoring its 

internal structure, including the trained decision trees and 

their corresponding parameters. This process re-establishes 

the Random Forest Classifier (RFC) in its previous state, 

making it ready for use in making predictions on new data. 

By using the saved model, we ensure that the classification 

system is both reusable and consistent. This method 

eliminates the need for redundant training, allowing 

predictions to be made directly from the test data. It also 

ensures that the classifier remains aligned with the original 

training setup, preserving its performance without any 

modifications or adjustments to the model. This approach 

streamlines the prediction process, making it more efficient 

and practical for real-world deployment. 

 

4.2 Processing New Test Data 

The test dataset comprises audio recordings that have been 

processed using the same feature extraction and 

transformation pipeline as the training data, ensuring 

consistency in input format and structure. These audio files 

are first converted into text format and saved within a specific 

directory labeled Test_Text. 

Each of these text files encapsulates frequency-related 

attributes derived from the original audio, such as pitch 

variations and note dynamics, which serve as inputs to the 

classifier. Before classification, every test file undergoes a 

series of validation steps to ensure the integrity and reliability 

of the data being passed into the model: 

File Reading Check: Each file is loaded using the 

pandas.read_csv() function. This step checks whether the file 

is readable and properly formatted. In cases where a file fails 

to load due to encoding issues, corruption, or improper 

formatting it is excluded from further processing to maintain 

the robustness of the pipeline. 

 

Column Presence Verification: A crucial check is performed 

to confirm the existence of the "Frequency (Hz)" column 

within each file. This column contains the core data required 

for generating meaningful statistical features (e.g., mean, 

standard deviation). If this column is missing, the file is 

automatically skipped to avoid feeding incomplete or 

incorrect data to the machine learning model. 

By enforcing these validation steps, the pipeline ensures that 

only high-quality, well-structured test data is used in the 

evaluation phase, thereby enhancing the reliability and 

accuracy of the raag classification results. 

 

4.3 Feature Extraction for Prediction 
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To maintain consistency with the training phase, the same set 

of statistical features was extracted from the frequency data 

to ensure that the model receives comparable input during 

both training and testing. Specifically, the following 

statistical measures were used: 

 

 Mean Frequency (np.mean(frequencies)): This measure 

represents the average of the frequency values, providing a 

central point around which the frequencies are distributed. It 

is a fundamental metric for understanding the general 

tendency or "center" of the frequency distribution. 

 

Standard Deviation (np.std(frequencies)): This value 

quantifies the extent of variation or dispersion within the 

frequency data. A higher standard deviation indicates a wider 

spread of frequencies, while a lower value suggests that the 

frequencies are more concentrated around the mean. 

Median Frequency (np.median(frequencies)): The median 

serves as a robust alternative to the mean, offering a central 

value that is less sensitive to outliers. It divides the frequency 

data into two equal halves, making it especially useful when 

there are extreme values that could skew the mean. 

These extracted statistical features were compiled into a 

feature vector, which was then reshaped into a one- 

dimensional array. This reshaping ensures that the data format 

aligns with the input requirements of the trained model, 

enabling smooth integration of the test data with the model’s 

expected structure. By maintaining this consistent approach, 

the model can evaluate the test data in the same manner as the 

training data, ensuring valid and reliable predictions. 

 

4.4 Raag Prediction using Random Forest Classifier: 

After extracting the relevant features and forming the feature 

vector from each test sample, this vector is fed into the 

previously trained Random Forest classifier using the 

clf.predict(feature_vector) method. The classifier, having 

already learned the distinguishing patterns and statistical 

traits of each raag during the training phase, analyzes the input 

and determines the most likely raag associated with the 

feature set. 

The prediction result is a raag label corresponding to the input 

sample, which reflects the classifier’s interpretation based on 

the learned characteristics of the training data. This output is 

then recorded or displayed for each test sample, effectively 

completing the classification process. 

 

4.5 Results and Output Interpretation 

For every test sample processed, the model prints a predicted 

Raag label along with the corresponding filename. In addition 

to displaying the predicted Raag alongside the filename, this 

output format makes it straightforward to verify the model's 

performance on individual test samples. This provides an  

 

Fig. 5 Testing Results for various Samples 

easy-to-interpret classification output for new audio samples. 

The structured output follows this format given in fig 5: 

 

Each prediction reflects the classifier’s interpretation of the 

input frequency features derived from the corresponding 

audio segment. This structured feedback is especially helpful 

during evaluation, as it allows for easy comparison with 

ground truth labels and facilitates error analysis. 

Consistent and accurate predictions like those shown in the 

figure help demonstrate the effectiveness of the model in 

distinguishing between Raag Yaman and Raag Malkauns. 

Furthermore, this type of output can be seamlessly extended 

to real-time applications, such as music identification systems 

or digital Raag learning tools, where interpretability is 

essential. 

 

5. CONCLUSION: 

 
This study demonstrates that frequency-based statistical 

features, when paired with a Random Forest Classifier, can 

effectively distinguish between Raag Yaman and Raag 

Malkauns with an accuracy of 91%. Despite the complexity 

of Hindustani Classical Raags, the results indicate that a 

minimal feature set, if carefully selected, can yield robust 

classification performance without requiring deep neural 

networks or large datasets. 

The proposed approach benefits from the interpretability and 

low computational cost of ensemble learning, making it 

suitable for integration into music education tools, digital 

archiving systems, and real-time performance analysis 

platforms. By standardizing all recordings to a single pitch 

(A#), the model avoids confounding tonal variations, 

focusing purely on melodic and structural features. 

Future work will address current limitations by: 

Expanding the dataset to include multiple Raags across 

diverse pitch settings and instruments. 

Incorporating pitch-independent representations to enhance 

generalization. 

Exploring temporal and spectral features for finer-grained 

analysis. 

Comparing RFC performance with deep learning 

architectures such as CNNs and RNNs. 

Through these enhancements, the system can evolve into a 

comprehensive AI-assisted platform for Hindustani music 

analysis, bridging the gap between computational methods 

and traditional musicology. 

 

6. FUTURE SCOPE: 
Despite the promising results obtained in this study, several 

limitations must be acknowledged to provide a 

comprehensive view of the work. Firstly, the scope of the 

study was deliberately confined to a specific pitch range, 

which, while beneficial for controlled experimentation, 

restricts the model’s ability to generalize across diverse vocal 

or instrumental registers. This may limit its applicability in 

real-world scenarios where pitch can vary significantly 

between artists, instruments, and performance styles. 

Secondly, the number of Raags included in the classification 

task was limited, focusing only on Raag Yaman and Raag 

Malkauns. While this helped in building a focused and well- 

and richness of Hindustani classical music, which consists of 



1722 

 
hundreds of Raags, each with subtle and unique 

characteristics. Expanding the dataset to include a broader 

range of Raags would significantly enhance the robustness 

and generalizability of the model. 

Future research can build upon this foundational work by 

incorporating a larger and more diverse set of Raags, 

introducing variations in tempo, rhythm, and performance 

style. Additionally, improvements in audio pre- processing 

techniques, such as advanced noise reduction algorithms, 

dynamic range compression, and harmonic separation, can 

help refine feature extraction from raw audio inputs. 

Another vital area for enhancement is the integration of Swar 

(note) identification, which plays a key role in characterizing 

Raags. By identifying the exact notes and their patterns, the 

model could achieve a deeper understanding of melodic 

structure. Moreover, developing pitch-independent 

classification techniques would allow the model to accurately 

identify Raags regardless of the tonic scale used by the 

performer, making it more versatile across different vocal and 

instrumental renditions. 

Overall, this study lays the groundwork for more 

sophisticated systems capable of capturing the intricate 

nuances of Hindustani classical music, paving the way for 

applications in music education, archival research, and real- 

time music analysis. 
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