ISSN: 2584-0495 Vol. 3, Issue 8, pp. 1715-1723

NIMIT

International Journal of International Journal of Microsystems and loT

Microsystems and IoT

ISSN: (Online) Journal homepage: https://www.ijmit.org

Al Meets Music: Machine Learning for Indian Classical Raag
Classification

Shreya S. Aigalikar, Anuradha C. Phadke, Jyoti Lele

Cite as: Aigalikar, S. S., Phadke, A. C., & Lele, J. (2025). Al Meets Music: Machine Learning for
Indian Classical Raag Classification. International Journal of Microsystems and IoT, 3(8), 1715—
1723. https://doi.org/10.5281/zenodo.18172527

8 © 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

E Published online: 05 August 2025

Eff Submit your article to this journal: =

||I| Article views:

&
h
. . &
View related articles:
2, View Crossmark data: 24

|)
CaossMirk

. https://doi.org/10.5281/zenodo.18172527

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.18172527
https://doi.org/10.5281/zenodo.18172527
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

International Journal of Microsystems and IoT

1715

| &
Vol.3, Issue 8, pp.1715-1723; DOL: . https://doi.org/10.5281/zenodo.18172527

Al Meets Music: Machine Learning for Indian |

M) Check for updates

Classical Raag Classification

Shreya S. Aigalikar, Anuradha C. Phadke, Jyoti Lele

School of Electronics and Communication, Dr. Vishwanath Karad MIT World Peace University, Pune, India

ABSTRACT

Hindustani Classical Music is built upon intricate melodic structures known as Raags, each defined by
unique tonal, temporal, and stylistic elements. Their recognition requires nuanced understanding and
years of training, making automated classification a challenging task. This paper presents a machine
learning framework for identifying Raag Yaman and Raag Malkauns, both standardized to A# pitch for

KEYWORDS

Hindustani Classical
Music, Machine Learning,
Audio Processing, Random
Forest Classifier

consistency. Primary audio samples were recorded in a controlled studio environment, pre-processed to
extract frequency-based statistical features (mean, median, and standard deviation), and used to train a
Random Forest classifier. The proposed model achieved 91% accuracy in differentiating between the
two Raags, demonstrating that simple statistical features, when paired with an ensemble learning
approach, can yield high performance. The study contributes a reproducible, data-driven method for
computational Raag analysis and highlights its potential in music education, digital archiving, and Al-

assisted performance evaluation.

1. INTRODUCTION

Hindustani Classical Music is an extensive and deeply
codified tradition where improvisation and structure coexist
within the framework of Raags. A Raag prescribes an
ascending (Aroh) and descending (Avroh) sequence of notes,
along with ornamentations, characteristic phrases (Pakad),
and a specific emotional or temporal association. Each
performance balances strict adherence to these rules with
interpretive freedom, producing variations that challenge
even seasoned listeners in precise identification. Traditional
Raag classification relies on expert musicianship, using
methods such as That-Raag grouping based on primary notes,
Raag-Ragini classification based on distinguishing features,
and Shuddha—Chayalag— Sankeerna grouping for Raags
derived from multiple sources. While effective in pedagogy,
such approaches are inherently subjective and time-
consuming.The rise of computational musicology and
machine learning has opened new opportunities for
automated Raag identification. By leveraging supervised
learning algorithms, large-scale audio datasets can be
analyzed systematically, enabling objective classification
based on measurable acoustic features. Among these
algorithms, the Random Forest classifier is particularly
attractive for structured, high-dimensional data due to its
robustness, interpretability, and resistance to overfitting.In
this study, we focus on frequency-domain statistical
descriptors extracted from high-quality studio recordings of
Raag Yaman and Raag Malkauns, both tuned to A# for pitch
uniformity. The objective is to demonstrate that even with
minimal feature complexity, accurate classification can be
achieved using ensemble learning.

© 2025 The Author(s). Published by ISVE, Ranchi, India

This work forms a foundation for expanding computational
tools in Indian classical music research and education.
responses at various scales. This section discusses important
methodologies, their application, and how they have
deepened our understanding of cellular and tissue dynamics.

2. LITERATURE REVIEW:

Automated music classification has been studied extensively
via learning algorithms plus feature types along with genres.
Support Vector Machines were used in early methods to
recognize genres showing they handled complex musical
patterns well. Xu et al. used SVMs for multi-layer
architectures, and their genre categorization outperformed
distance-based classifiers. Deep learning models including
Convolutional Neural Networks (CNNs) along with
Recurrent Neural Networks (RNNs) often exceed customary
algorithms whenever trained on sufficiently large as well as
diverse datasets especially for audio clips of long duration as
revealed by comparative analyses such as those by Ndou et
al. Survey studies, such as ones including Scaringella et al.,
have catalogued techniques that are for music information
retrieval. Feature extraction methods ranging from spectral
descriptors up to temporal dynamics are important, as those
are the studies that highlight it. Random Forest classifiers
have emerged as competitive alternatives because deep
learning offers strong performance, especially for tasks with
limited training data or high-dimensional structured inputs.
Parmar et al. stressed that they implemented it easily and it
was resilient to parameter tuning, while Chaudhary et al.
demonstrated that they improved multi-class accuracy upon
optimizing features and selectively filtering data.

https://doi.org/10.5281/zenodo.18172527

Audio analysis Random Forests exist outside music genre
uses. These applications are used in bird call identification,
speech processing, and environmental sound recognition
which are specialized domains.. For example, Lele et al.
converted bird audio to chromogram images for Vision
Transformer-based classification, achieving 98% accuracy —
an approach that inspired aspects of this work. Studies
comparing SVM and Random Forest for audio classification
(e.g., Ansari et al.) have shown performance variability
depending on the nature of the acoustic features and the
diversity of the dataset. In the context of music, feature choice
significantly influences classification accuracy. Combining
MIDI and raw audio features, as explored by Cataltepe et al.,
yields higher precision than using either alone, underscoring
the role of feature engineering. Deep learning models have
also been applied to music recommendation systems (Elbir
and Aydin), demonstrating the versatility of Al in
personalized content delivery. Building on these findings, our
study investigates a Random Forest-based approach using
minimal but discriminative statistical features from frequency
data to classify two distinct Hindustani Raags. This focus on
simplicity and reproducibility distinguishes our work from
feature-heavy or deep-learning-dominant strategies, while
still achieving competitive accuracy. Automated
classification of Indian classical Raags remains a challenging
task due to the intricacies and variations in their melodic
structures. The objective of this study is to develop a machine
learning-based system capable of accurately identifying
Raags using extracted frequency parameters from audio data.
This work aims to bridge the gap between traditional
musicology and computational techniques by providing a
reliable and data-driven approach for Raag classification.

3. METHODOLOGY:

Audio input
from User

Frequency Extraction
Audio - Text

Random Forest
Classifier

I'raining and testing

: 8
£ Fpoe=

Fig.1. Methodology
1. Data Samples Creation

The research presented in this work is grounded in the
creation of a dedicated primary dataset specifically tailored

1716

for the task of Hindustani Classical Raag classification. Two
Raags — Yaman and Malkauns — were chosen as the focus
of the study due to their distinct melodic frameworks and
tonal characteristics. For each Raag, 40 individual
performances were recorded, giving a total of 80 samples and
ensuring a balanced distribution between the two classes.

To control for variations in pitch and eliminate tuning-related
inconsistencies, every recording was standardized to the A#
tonic. This approach ensured that the model concentrated
exclusively on melodic progression, characteristic note
patterns, and ornamentation, rather than being influenced by
differences in pitch settings between performances.

Data collection was carried out in an acoustically treated
studio environment, which significantly reduced the
possibility of environmental noise, echoes, or other unwanted
acoustic artefacts. A professional-grade microphone setup
was used to capture the recordings, providing high clarity and
preserving subtle nuances in note articulation, dynamics, and
timbre. The Easy Voice Recorder application was selected as
the recording tool because of its consistent quality output and
reliability in capturing uncompressed audio. All audio files
were saved in the .wav format. The decision to use .wav was
deliberate — this lossless, uncompressed format retains every
detail of the acoustic signal, including microtonal inflections
and dynamic contrasts, making it ideal for detailed analysis
and feature extraction.

The Raag identification system developed as part of this
research allows for direct user input via audio file upload. The
system is compatible with both .wav and .mp3 formats. Input
files are placed into a dedicated “Audio” folder, from which
they are automatically directed into the pre-processing
pipeline. In this phase, the audio signal is analyzed and
transformed into a structured, text-based representation. The
extracted parameters include fundamental frequency
trajectories, amplitude variations, pitch contours, note
transitions, and other temporal descriptors. Structuring the
data in this manner is essential, as it enables the machine
learning model to process the audio content as a consistent
numerical dataset, facilitating accurate and reproducible
classification.

By generating the dataset in-house, the study ensured total
control over recording conditions, file quality, and the
musical content itself. Each recording was carefully crafted to
reflect the theoretical principles of the chosen Raag while
incorporating natural variations present in real performances.
This approach provided a rich, representative dataset, free
from background noise and irrelevant artefacts, while
containing clearly identifiable Swar (notes) and Pakad
(signature phrases). Such attention to detail not only
improved model training and evaluation but also supported
better generalization when applying the classifier to new,
unseen musical inputs.

2. Pre-processing (Audio to Text Conversion)

The raw .wav recordings were subjected to a multi-step pre-
processing pipeline aimed at transforming the unstructured
audio signals into a consistent, model-ready dataset. This
stage is critical in ensuring that the machine learning model
receives uniform, informative inputs, free from unnecessary
noise or inconsistencies.

Step 1 — Audio Framing:

Each recording was divided into short, overlapping frames to
allow for localized analysis of the signal. This segmentation
preserved temporal dynamics, enabling the model to capture
fine-grained changes in pitch, amplitude, and harmonic
content over time. Frame sizes were selected to balance time
resolution with frequency resolution, a key consideration in
music signal processing.

Step 2 — Frequency and Temporal Analysis:

For each frame, the frequency content was extracted to
generate trajectories that represent how pitch evolves
throughout the performance. Additionally, amplitude
envelopes were computed to capture intensity variations,
while temporal markers (such as onset points) provided cues
about note boundaries and transitions.

Step 3 — Feature Structuring and Storage:

Once the acoustic features were computed, they were
organized into a structured, time-series format and saved as
plain-text files. This choice of storage format made the
intermediate data human-readable, easy to debug, and
compatible with a variety of analytical tools.

Step 4 — Software Tools and Libraries:

Feature extraction was implemented using Librosa and
complementary Python libraries, which provided robust
functions for spectral analysis, chroma computation, and
statistical summarization. These tools ensured that identical
pre-processing steps were applied to both training and testing
datasets, eliminating inconsistencies that could lead to biased
evaluation.

The classification framework relies on a compact, yet
informative set of features derived from the frequency column
of each processed audio file. From this data, three statistical
descriptors were computed:

Mean Frequency: Represents the average frequency over the
entire sample, providing a measure of the tonal center or
overall pitch tendency.

Standard Deviation of Frequency: Quantifies the degree of
pitch variation, capturing how stable or dynamic the
performance is.

Median Frequency: Indicates the middle value of the
frequency distribution, serving as a robust central measure

1717
less affected by outliers or transient deviations.

These features, while minimal in number, were chosen for
their interpretability and their ability to capture the core
melodic characteristics of a Raag. The Random Forest
Classifier leverages several key mechanisms to enhance
classification accuracy and robustness:

I. Bootstrapped Sampling: For each decision tree in the
forest, a random subset of the dataset is selected with
replacement. This ensures that each tree sees a slightly
different training set, promoting diversity in the learned
decision boundaries.

2. Random Feature Selection: At each decision node,
only a randomly chosen subset of the available features
(Mean, Standard Deviation, or Median) is considered for
splitting. This prevents all trees from focusing on the same
dominant feature and increases the ensemble’s overall
generalization capability.

3. Independent Tree Training: Each tree is built
independently on its respective bootstrapped sample and
feature subset. Some trees may rely more heavily on mean
frequency, while others might prioritize pitch variation
(standard deviation) or central tendency (median).

4. Majority Voting for Classification: Once all trees
produce their predictions (either Raag Yaman or Raag
Malkauns), the final class label is determined through
majority voting — the class receiving the highest number of
votes becomes the model’s output.

By following this pre-processing approach, the dataset
retained the musical essence of each Raag while standardizing
the representation for machine learning. This balance between
musical fidelity and computational structure was essential for
achieving reliable classification results.

3. Training: Random Forest Classier

Algorithm

The training and testing of the Random Forest Classifier
(RFC) involve multiple steps, including data preparation,
model training, evaluation, and performance analysis. In this
study, the classifier was trained on extracted frequency
parameters from Raag audio samples to accurately identify
Raags. The following sections describe the detailed
methodology employed in the training and testing phases.

3.1 Data Preparation and Feature Extraction:

The dataset utilized for training the classification model was
composed of frequency-based attributes extracted from pre-
processed audio recordings of two classical Raags: Yaman
and Malkauns. These audio files were first transformed into
text format, where each file represented a sequence of
frequency values over time. These sequences were then
converted into numerical feature vectors suitable for input

into machine learning algorithms.

To derive useful and representative features, statistical
analysis was performed on the frequency data within each
file. Specifically, the mean, median, and standard deviation of
the frequency values were calculated. These statistical metrics
capture the essential characteristics of the sound profile
associated with each Raag and were used as input features for
training the model. Additionally, each audio sample was
annotated with its corresponding Raag label, which was
stored in a structured JSON file (labels.json). This file
mapped each filename to its respective Raag, ensuring clarity
and organization within the dataset. Prior to model training,
the data was divided into two subsets: 40% for training the
model and 60% for evaluating its performance (test size =
0.6). This data split was chosen to test the classifier’s ability
to generalize well to new, unseen inputs and to avoid the risk
of overfitting.

3.2 Model Training using Random Forest Classifier

The Random Forest Classifier (RFC) is an ensemble learning
technique that constructs multiple decision trees and
aggregates their predictions to improve classification
accuracy. It reduces overfitting and enhances performance
compared to individual decision trees. Random Forest
Classifier is a powerful and widely used machine learning
algorithm that belongs to the ensemble learning family. It is
an extension of Decision Trees and works by constructing
multiple decision trees during training, merging their results
to improve accuracy and reduce overfitting.

33 Training Procedure:

The classifier was implemented using Sklen: ensemble.
Random Forest Classifier with the following
hyperparameters:

Number of Trees (n_estimators=100): The model was trained
using 100 decision trees, which provided a balance between
performance and computational efficiency.

Random State (random_state=42): A fixed random seed was
used to ensure reproducibility of results across multiple runs.

Split Criterion (Default: Gini Impurity): The decision trees
were trained using the Gini Index, which measures the
impurity of splits.

Depth of Trees (max_depth - Not Defined): The depth of each
decision tree was left unrestricted to allow the model to learn
complex patterns, though it could be adjusted to control
overfitting.

Minimum Samples for Split (min_samples split=2): The
model required at least two samples to split a node, ensuring

decision boundaries were meaningful

Minimum Samples per Leaf (min_samples_leaf=1): Each leaf

1718

node contained at least one sample, allowing the trees to
capture detailed variations.

The model was trained over 50 epochs, where it was
iteratively refined using training data. In each epoch, the
classifier was re-fitted, and its performance was evaluated on
both training and test datasets. Since Random Forest does not
have an inherent loss function like deep learning models, a
dummy loss function was defined as the error rate (1 -
accuracy). This helped the model to track how well the model
was learning over epochs.

3.4 Model Testing and Evaluation

Once trained, the model was tested on the reserved test
dataset, and its performance was assessed using the following
evaluation metrics:

Accuracy Score: The classifier achieved 91% accuracy,
which indicates a strong learning capability. Accuracy was
calculated using accuracy score(y_test, y pred), where
y_test represents the actual labels and y_pred represents the
predicted labels. The accuracy was computed using the
accuracy_score function from the sklearn. metrics module.
The formula for accuracy is:

Accuracy = Total Number of Correct Predictions/Total
number of Predictions 1)

Epoch 46: Train Acc: 1.68,
Epoch 47: Train Acc: 1.60,
Epoch 48: Train Acc: 1.68,

Epoch 49: Train Acc: 1.68, © Gk
Epoch 5@: Train Acc: 1.6, © Gk
¥ Model saved as raag classifier 1.pkl
¥ Model Accuracy: 91.11%

Fig.2. Model Training Results

Confusion Matrix: To assess the performance of the trained
Random Forest model, a confusion matrix was created to
offer a detailed breakdown of how accurately the model
classifies each Raag. This matrix serves as a valuable tool for
comparing the model's predicted labels with the actual labels,
allowing us to evaluate its performance and identify the types
of errors it makes.

The confusion matrix includes the following elements True
Positives (TP), represents the instances where the model
correctly identified a Raag. False Positives (FP), where the
model mistakenly predicted a Raag that was not present. False
Negatives (FN), where the model failed to identify a Raag that
was present. True Negatives (TN), where the model correctly
identified the absence of a Raag. By evaluating these
components, we can calculate the model's overall accuracy
and pinpoint specific areas where it is prone to making errors,
such as Raags that are more likely to be misclassified.

Heatmap Visualization: To enhance the interpretability of the
confusion matrix, a heatmap was generated using a popular
Python visualization library, seaborn. It gives a visual
representation of the confusion matrix, where different colors
are used to indicate each class of prediction. The color
intensity or shade in each cell corresponds to the number of
samples in specific category. This color-coded representation
makes it easy to identify trends and patterns. Darker shades
signify higher values, showing areas where the model was
more accurate or made more frequent misclassifications.
Lighter shades indicate lower values, highlighting instances
where errors are less common. By visualizing the confusion
matrix as a heatmap, it becomes easier to detect which Raags
the model tends to misclassify and identify any patterns or
biases that could be addressed.

Interpretation: Examining both the confusion matrix and the
heatmap provides valuable insights into the model's
performance across different Raags. This analysis is crucial
for identifying areas where the model may be
underperforming or exhibiting biases, allowing for targeted
improvements in the classification process. It also guides
potential adjustments to the model, such as refining feature
extraction methods, tuning hyperparameters, or exploring
different algorithms to enhance accuracy in future iterations.

Confusion Matrix

20
1
15
-10
3
5

Malkcauns Tarnan
Predicted Label

Plalcauns

True Label

Yaman

Fig.3 Confusion Matrix

To better understand the learning behavior of the model, the
following plots were generated. The plots are generated on
the basis of epochs for the training. One epoch indicates that
the complete training dataset is passed through the model
learning algorithm. It plays vital role to understand how a
machine extract information and learns from the data
provided. It helps to adjust the weights and biases for the
training enhancing the accuracy and gradual reduction in
errors. Here these graphs give an idea of how the accuracy
and loss parameters changes per epoch.

Training vs. Testing Accuracy Graph: It is important to
differentiate the training and testing data to avoid overfitting.
The datasets are loaded in three steps, Supply (allocate data
to the model), Declare (Conversion of data to model suitable

1719

format), Run (put the model for testing). Plotted accuracy
over 50 epochs to visualize performance improvements.
Showed how well the model generalized to unseen data.
Training vs. Testing Loss Graph: Since Random Forest does
not compute loss directly, error rate (1 - accuracy) was used
as a substitute for loss. The loss graph helped identify
potential overfitting issues. ‘If the training error is very low
but the testing error is significantly higher, it indicates that the
model is fitting the training data too closely and not
generalizing well to unseen data; a classic sign of overfitting’
[16]. On the other hand, if both training and testing errors are
high, it may indicate underfitting, suggesting the model is too
simple or insufficiently trained.

Train vs Test Accuracy
100

.98

096 — Train Atcuracy

Accuracy

= Test Acouracy
0.94
092
o 10 20 £] a0 50
Epochs
Fig. 4 (a) Accuracy Graph for Train vs. Test
Train vs Test Loss
008
006
[= Tain Loss
L 0.04 Test Loss
oo2
E‘ '..(Z.[X 4()\.
Epachs

Fig.4 (b) Loss Graph for Train vs. Test

4. Testing Process for Raag Classification
Model:

The trained Random Forest Classifier (RFC) was tested using
new audio samples, which were pre-processed into text files
containing extracted frequency parameters. This section
details the testing pipeline, including feature extraction,
model loading, and prediction steps.
In the first step in the testing pipeline involved processing the
new audio samples. Each audio file was pre- processed to
extract relevant frequency parameters, which were stored in
text files. The features extracted from the audio signals were
consistent with those used during the training phase to
maintain compatibility. These features typically include
statistical measures such as the mean frequency, standard

deviation, and median frequency, which were computed for
each audio sample.

Once the features were extracted, the trained Random Forest
Classifier (RFC) model was loaded into memory. The model,
which had been previously trained on a labeled dataset, was
serialized and saved for later use. During testing, the saved
model was loaded into the pipeline to make predictions based
on the new test data. This

dynamics), and ABM (agent-based modelling). These
approaches are essential to study the mechanical response of
tissues, single cells, and extracellular substances under
different stimuli. Prendergast [1] investigates the effects of
mechanical loading on tissue formation by employing finite
element Modelling to simulate stress-induced growth. Mak et
al. [2] reveal the force of multiscale integration by coupling
molecular dynamics with tissue-level mechanics to better
understand cellular responses considered as a whole.

Tepole [3] presents a methodology based on systems
biomechanics for Modelling wound healing, emphasizing the
complexities of mechanical-biochemical feedback in
regenerating tissues.Considering bone mechanobiology by in
silico Modelling, Giorgi et al. [4] provide some insights into
the prediction of fracture healing and osteo-
interventions.Rajagopal et al. [5] delve into the mechanical
deformation of individual cells, utilizing computational tools
to assess cytoskeletal behavior under stress. Their models
help in understanding mechanosensitivity and cell signalling
pathways.

Newer advances build on these prior technics and
frameworks. Brown et al. [6] use computational models to
explore cardiac development and investigate the role of
mechanical cues in shaping morphogenesis and in congenital
heart disease. Boaretti et al. [7] advance the perspective on
multicellular in silico models in studying coordinated cellular
mechanisms in bone reModelling. Dolan et al. [8] present a
summary of a suite of techniques—force microscopy, image-
based Modelling—used to explore mechanotransduction at
various spatial scales.

Together, these studies demonstrate how computational
Modelling has transformed mechanobiology. Through
simulating mechanical environments with great accuracy,
they facilitate linking experimental data to theory and
promoting developments in personalized medicine,
regenerative therapies, and target-specific intervention
design. With mechanobiology increasingly interfacing with
artificial intelligence and high-throughput data analytics,
these tools will find increasingly more use in biomedical
exploration.

ensures that the model remains consistent with its training
parameters.

With the extracted features and the loaded model, the final
step was to pass the feature vectors from the test data into the
RFC. The model then processed the feature vectors and
generated predictions regarding the class or category of the
audio samples. The RFC leverages the decision trees that
were created during the training phase to assess the test data
and output the predicted class label.

Each new audio sample was processed through this pipeline,

1720

allowing for efficient and automated predictions. This
approach ensures that the classifier could be reliably applied
to unseen data, providing consistent results in real- world
scenarios.

4.1 Loading the Trained Model

Before testing new audio samples, the previously trained
Random Forest model was loaded from a saved file using the
joblib.load() function. The model had been serialized and
saved as raag_classifier 1.pkl during the training phase. By
using this method, the model could be quickly and efficiently
reloaded without the need for retraining, ensuring both time
and computational efficiency. The joblib.load() function was
used to deserialize the model from the file, restoring its
internal structure, including the trained decision trees and
their corresponding parameters. This process re-establishes
the Random Forest Classifier (RFC) in its previous state,
making it ready for use in making predictions on new data.
By using the saved model, we ensure that the classification
system is both reusable and consistent. This method
eliminates the need for redundant training, allowing
predictions to be made directly from the test data. It also
ensures that the classifier remains aligned with the original
training setup, preserving its performance without any
modifications or adjustments to the model. This approach
streamlines the prediction process, making it more efficient
and practical for real-world deployment.

4.2 Processing New Test Data

The test dataset comprises audio recordings that have been
processed using the same feature extraction and
transformation pipeline as the training data, ensuring
consistency in input format and structure. These audio files
are first converted into text format and saved within a specific
directory labeled Test Text.

Each of these text files encapsulates frequency-related
attributes derived from the original audio, such as pitch
variations and note dynamics, which serve as inputs to the
classifier. Before classification, every test file undergoes a
series of validation steps to ensure the integrity and reliability
of the data being passed into the model:

File Reading Check: Each file is loaded using the
pandas.read_csv() function. This step checks whether the file
is readable and properly formatted. In cases where a file fails
to load due to encoding issues, corruption, or improper
formatting it is excluded from further processing to maintain
the robustness of the pipeline.

Column Presence Verification: A crucial check is performed
to confirm the existence of the "Frequency (Hz)" column
within each file. This column contains the core data required
for generating meaningful statistical features (e.g., mean,
standard deviation). If this column is missing, the file is
automatically skipped to avoid feeding incomplete or
incorrect data to the machine learning model.

By enforcing these validation steps, the pipeline ensures that
only high-quality, well-structured test data is used in the
evaluation phase, thereby enhancing the reliability and
accuracy of the raag classification results.

4.3 Feature Extraction for Prediction

To maintain consistency with the training phase, the same set
of statistical features was extracted from the frequency data
to ensure that the model receives comparable input during
both training and testing. Specifically, the following
statistical measures were used:

Mean Frequency (np.mean(frequencies)): This measure
represents the average of the frequency values, providing a
central point around which the frequencies are distributed. It
is a fundamental metric for understanding the general
tendency or "center" of the frequency distribution.

Standard Deviation (np.std(frequencies)): This value
quantifies the extent of variation or dispersion within the
frequency data. A higher standard deviation indicates a wider
spread of frequencies, while a lower value suggests that the
frequencies are more concentrated around the mean.

Median Frequency (np.median(frequencies)): The median
serves as a robust alternative to the mean, offering a central
value that is less sensitive to outliers. It divides the frequency
data into two equal halves, making it especially useful when
there are extreme values that could skew the mean.

These extracted statistical features were compiled into a
feature vector, which was then reshaped into a one-
dimensional array. This reshaping ensures that the data format
aligns with the input requirements of the trained model,
enabling smooth integration of the test data with the model’s
expected structure. By maintaining this consistent approach,
the model can evaluate the test data in the same manner as the
training data, ensuring valid and reliable predictions.

4.4 Raag Prediction using Random Forest Classifier:

After extracting the relevant features and forming the feature
vector from each test sample, this vector is fed into the
previously trained Random Forest classifier using the
clf.predict(feature_vector) method. The classifier, having
already learned the distinguishing patterns and statistical
traits of each raag during the training phase, analyzes the input
and determines the most likely raag associated with the
feature set.

The prediction result is a raag label corresponding to the input
sample, which reflects the classifier’s interpretation based on
the learned characteristics of the training data. This output is
then recorded or displayed for each test sample, effectively
completing the classification process.

4.5 Results and Output Interpretation

For every test sample processed, the model prints a predicted
Raag label along with the corresponding filename. In addition
to displaying the predicted Raag alongside the filename, this
output format makes it straightforward to verify the model's
performance on individual test samples. This provides an

Predicted Raag for Textl.txt: Yaman
Predicted Raag for Text2.txt: Malkauns

Predicted Raag for Text3.txt: Yaman
Predicted Raag for Text4.txt: Malkauns

Fig. 5 Testing Results for various Samples

1721

easy-to-interpret classification output for new audio samples.
The structured output follows this format given in fig 5:

Each prediction reflects the classifier’s interpretation of the
input frequency features derived from the corresponding
audio segment. This structured feedback is especially helpful
during evaluation, as it allows for easy comparison with
ground truth labels and facilitates error analysis.

Consistent and accurate predictions like those shown in the
figure help demonstrate the effectiveness of the model in
distinguishing between Raag Yaman and Raag Malkauns.
Furthermore, this type of output can be seamlessly extended
to real-time applications, such as music identification systems
or digital Raag learning tools, where interpretability is
essential.

5. CONCLUSION:

This study demonstrates that frequency-based statistical
features, when paired with a Random Forest Classifier, can
effectively distinguish between Raag Yaman and Raag
Malkauns with an accuracy of 91%. Despite the complexity
of Hindustani Classical Raags, the results indicate that a
minimal feature set, if carefully selected, can yield robust
classification performance without requiring deep neural
networks or large datasets.

The proposed approach benefits from the interpretability and
low computational cost of ensemble learning, making it
suitable for integration into music education tools, digital
archiving systems, and real-time performance analysis
platforms. By standardizing all recordings to a single pitch
(A#), the model avoids confounding tonal variations,
focusing purely on melodic and structural features.

Future work will address current limitations by:

Expanding the dataset to include multiple Raags across
diverse pitch settings and instruments.

Incorporating pitch-independent representations to enhance
generalization.

Exploring temporal and spectral features for finer-grained
analysis.

Comparing RFC performance with deep learning
architectures such as CNNs and RNNs.

Through these enhancements, the system can evolve into a
comprehensive Al-assisted platform for Hindustani music
analysis, bridging the gap between computational methods
and traditional musicology.

6. FUTURE SCOPE:

Despite the promising results obtained in this study, several
limitations must be acknowledged to provide a
comprehensive view of the work. Firstly, the scope of the
study was deliberately confined to a specific pitch range,
which, while beneficial for controlled experimentation,
restricts the model’s ability to generalize across diverse vocal
or instrumental registers. This may limit its applicability in
real-world scenarios where pitch can vary significantly
between artists, instruments, and performance styles.

Secondly, the number of Raags included in the classification
task was limited, focusing only on Raag Yaman and Raag
Malkauns. While this helped in building a focused and well-
and richness of Hindustani classical music, which consists of

hundreds of Raags, each with subtle and unique
characteristics. Expanding the dataset to include a broader
range of Raags would significantly enhance the robustness
and generalizability of the model.

Future research can build upon this foundational work by
incorporating a larger and more diverse set of Raags,
introducing variations in tempo, rhythm, and performance
style. Additionally, improvements in audio pre- processing
techniques, such as advanced noise reduction algorithms,
dynamic range compression, and harmonic separation, can
help refine feature extraction from raw audio inputs.

Another vital area for enhancement is the integration of Swar
(note) identification, which plays a key role in characterizing
Raags. By identifying the exact notes and their patterns, the
model could achieve a deeper understanding of melodic
structure. Moreover, developing pitch-independent
classification techniques would allow the model to accurately
identify Raags regardless of the tonic scale used by the
performer, making it more versatile across different vocal and
instrumental renditions.

Overall, this study lays the groundwork for more
sophisticated systems capable of capturing the intricate
nuances of Hindustani classical music, paving the way for
applications in music education, archival research, and real-
time music analysis.

1722

REFERANCES:

1.

2.

10.

11.

12.

13.

14.

15.

Author: Dr. Vidyadhar Oke, ‘22 Shrutis and
melodium”, Sanskar Prakashan, 201 1th edition.
Author: Acharya S. N. Ratanjankar, “Aesthetic Aspects
of India’s Musical heritage”, Sanskar Prakashan, first
edition Feb 1992.

Changsheng Xu, N. C. Maddage, Xi Shao, Fang Cao, Qi
Tian. “Music genre classification using Support Vector
Machines”, IEEE International Conference in Acoustic,
Speech and Signal Processing (ICASSP’03), 2003.
Ndiatenda Ndou, Ritesh Ajoodha, Ashwini Jadhav.
“Music Genre Classification: A Review of Deep-
Learning anf Traditional Machine-Learning
Approaches’, IEEE International 10T, Electronics and
Ma=echatronics Conference IEMTRONICS), 2021.

N. Scaringella, G. Zola, D. Mlynek. “Automatic Genre
Classification of music content: a survey”, IEEE Signal
Processing Magzine (Vol:23, Iss:2), 2006.

Aakash Parmar, Rakesh Katariya, Vatsal Patel. “A
Review on random Forest: An Ensemble Classifier”,
International Conference on Intelligence Data
Communication Technologies and Internet of Things
(ICICI), 2018.

M. Pal. “Random Forest classifier for remote sensing
classification”, International Journal of Remote Sensing
(Vol:26), 2005.

Archana Chaudhary, Savita Kolhe, Raj Kamal. “An
Improved random forest classifier for multi-class
classification”, Information Processing in Agriculture,
Elsevier, (Vol:3, Iss:4) 2016.

Md. Rifat Ansari, Sadia Alam Timpa, Jannat Ara
Ferdouse Raya, Mohammad N. Murshed. “Comparison
between Support Vector Machine and Random Forest
for Audio Classification”, International Conference on
Electronics, = Communications and Information
Technology (ICECIT), 2021.

Baoxun Xu, Xiufeng Guo, Yumming Ye, Jiefeng Cheng.
“An Improved Random Forest Classifier for Text
Categorization”, Journal of Computers (Vol:7 Iss:12)
Academy Publisher, 2012.

Zehra Cataltepe, Yusuf Yaslan and Adullah Sonmez.
“Music Genre Classification using MIDI and Audio
Features”, EURASIP Journal on Advances in Signal
Processing, Volume 2007, Hindawi Publishing
Corporation, Article ID: 36409

A. Elbir and N. Aydin. “Music Genre Classification and
Music Recommendation by using Deep Learning”,
Institution of Engineering and Technology Wiley Online
Library, 2025.

Michael Haggblade, Yang Hong, Kenny Kao. “Music
Genre Classification”.
https://cs229.stanford.edu/proj2011/HaggbladeHongKao-
MusicGenreClassification.pdf

Juhan Nam, Keunwoo Chol, Jongpil Lee, Szu-Yu Chou,
Yi-Hsuan Yang. “Deep learning for audio-based music
classification and Tagging: Teaching computers to
distinguish Rock from Bach”, IEEE Signal Processing
magazine (Volume 36, Issue 1), 2019

Jyoti Lele, Naman Palliwal, Sahil Rajurkar, Vibor
Tomar and Anuradha C Phadke, “Comparison of image

https://cs229.stanford.edu/proj2011/HaggbladeHongKao-MusicGenreClassification.pdf
https://cs229.stanford.edu/proj2011/HaggbladeHongKao-MusicGenreClassification.pdf

16.

11.

based and audio-based techniques for Bird-species
Identification”, Ed. Intelligent Systems and
Applications in Computer Vision, CRC Press- Taylor
Francis Publication, 2023, PP. 9-1 to 9-10 pages, Book
ISBN9781003453406

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, Alex
Aiken. “Improving the Accuracy, Scalability and
Performance of Graph Neural Networks with Roc”,
Proceedings of Machine Learning and Systems (MLSys
2020).

Zehra Cataltepe, Yusuf Yaslan and Adullah Sonmez.
“Music Genre Classification using MIDI and Audio
Features”, EURASIP Journal on Advances in Signal
Processing, Volume 2007, Hindawi Publishing
Corporation, Article ID: 36409

1723

