

 ISSN: 2584-0495 Vol. 3, Issue 8, pp. 1715-1723

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

AI Meets Music: Machine Learning for Indian Classical Raag
Classification

Shreya S. Aigalikar, Anuradha C. Phadke, Jyoti Lele

Cite as: Aigalikar, S. S., Phadke, A. C., & Lele, J. (2025). AI Meets Music: Machine Learning for

Indian Classical Raag Classification. International Journal of Microsystems and IoT, 3(8), 1715–

1723. https://doi.org/10.5281/zenodo.18172527

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 05 August 2025

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

. https://doi.org/10.5281/zenodo.18172527

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.18172527
https://doi.org/10.5281/zenodo.18172527
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1715

International Journal of Microsystems and IoT

Vol.3, Issue 8, pp.1715-1723; DOI: . https://doi.org/10.5281/zenodo.18172527

 AI Meets Music: Machine Learning for Indian

Classical Raag Classification

Shreya S. Aigalikar, Anuradha C. Phadke, Jyoti Lele

School of Electronics and Communication, Dr. Vishwanath Karad MIT World Peace University, Pune, India

KEYWORDS

Hindustani Classical
Music, Machine Learning,
Audio Processing, Random
Forest Classifier

1. INTRODUCTION

Hindustani Classical Music is an extensive and deeply

codified tradition where improvisation and structure coexist

within the framework of Raags. A Raag prescribes an

ascending (Aroh) and descending (Avroh) sequence of notes,

along with ornamentations, characteristic phrases (Pakad),

and a specific emotional or temporal association. Each

performance balances strict adherence to these rules with

interpretive freedom, producing variations that challenge

even seasoned listeners in precise identification. Traditional

Raag classification relies on expert musicianship, using

methods such as That-Raag grouping based on primary notes,

Raag-Ragini classification based on distinguishing features,

and Shuddha–Chayalag– Sankeerna grouping for Raags

derived from multiple sources. While effective in pedagogy,

such approaches are inherently subjective and time-

consuming.The rise of computational musicology and

machine learning has opened new opportunities for

automated Raag identification. By leveraging supervised

learning algorithms, large-scale audio datasets can be

analyzed systematically, enabling objective classification

based on measurable acoustic features. Among these

algorithms, the Random Forest classifier is particularly

attractive for structured, high-dimensional data due to its

robustness, interpretability, and resistance to overfitting.In

this study, we focus on frequency-domain statistical

descriptors extracted from high-quality studio recordings of

Raag Yaman and Raag Malkauns, both tuned to A# for pitch

uniformity. The objective is to demonstrate that even with

minimal feature complexity, accurate classification can be

achieved using ensemble learning.

© 2025 The Author(s). Published by ISVE, Ranchi, India

This work forms a foundation for expanding computational

tools in Indian classical music research and education.

responses at various scales. This section discusses important

methodologies, their application, and how they have

deepened our understanding of cellular and tissue dynamics.

2. LITERATURE REVIEW:

Automated music classification has been studied extensively

via learning algorithms plus feature types along with genres.

Support Vector Machines were used in early methods to

recognize genres showing they handled complex musical

patterns well. Xu et al. used SVMs for multi-layer

architectures, and their genre categorization outperformed

distance-based classifiers. Deep learning models including

Convolutional Neural Networks (CNNs) along with

Recurrent Neural Networks (RNNs) often exceed customary

algorithms whenever trained on sufficiently large as well as

diverse datasets especially for audio clips of long duration as

revealed by comparative analyses such as those by Ndou et

al. Survey studies, such as ones including Scaringella et al.,

have catalogued techniques that are for music information

retrieval. Feature extraction methods ranging from spectral

descriptors up to temporal dynamics are important, as those

are the studies that highlight it. Random Forest classifiers

have emerged as competitive alternatives because deep

learning offers strong performance, especially for tasks with

limited training data or high-dimensional structured inputs.

Parmar et al. stressed that they implemented it easily and it

was resilient to parameter tuning, while Chaudhary et al.

demonstrated that they improved multi-class accuracy upon

optimizing features and selectively filtering data.

ABSTRACT

Hindustani Classical Music is built upon intricate melodic structures known as Raags, each defined by
unique tonal, temporal, and stylistic elements. Their recognition requires nuanced understanding and
years of training, making automated classification a challenging task. This paper presents a machine
learning framework for identifying Raag Yaman and Raag Malkauns, both standardized to A# pitch for
consistency. Primary audio samples were recorded in a controlled studio environment, pre-processed to
extract frequency-based statistical features (mean, median, and standard deviation), and used to train a
Random Forest classifier. The proposed model achieved 91% accuracy in differentiating between the
two Raags, demonstrating that simple statistical features, when paired with an ensemble learning
approach, can yield high performance. The study contributes a reproducible, data-driven method for
computational Raag analysis and highlights its potential in music education, digital archiving, and AI-
assisted performance evaluation.

https://doi.org/10.5281/zenodo.18172527

1716

Audio analysis Random Forests exist outside music genre

uses. These applications are used in bird call identification,

speech processing, and environmental sound recognition

which are specialized domains.. For example, Lele et al.

converted bird audio to chromogram images for Vision

Transformer-based classification, achieving 98% accuracy —

an approach that inspired aspects of this work. Studies

comparing SVM and Random Forest for audio classification

(e.g., Ansari et al.) have shown performance variability

depending on the nature of the acoustic features and the

diversity of the dataset. In the context of music, feature choice

significantly influences classification accuracy. Combining

MIDI and raw audio features, as explored by Cataltepe et al.,

yields higher precision than using either alone, underscoring

the role of feature engineering. Deep learning models have

also been applied to music recommendation systems (Elbir

and Aydin), demonstrating the versatility of AI in

personalized content delivery. Building on these findings, our

study investigates a Random Forest-based approach using

minimal but discriminative statistical features from frequency

data to classify two distinct Hindustani Raags. This focus on

simplicity and reproducibility distinguishes our work from

feature-heavy or deep-learning-dominant strategies, while

still achieving competitive accuracy. Automated

classification of Indian classical Raags remains a challenging

task due to the intricacies and variations in their melodic

structures. The objective of this study is to develop a machine

learning-based system capable of accurately identifying

Raags using extracted frequency parameters from audio data.

This work aims to bridge the gap between traditional

musicology and computational techniques by providing a

reliable and data-driven approach for Raag classification.

3. METHODOLOGY:

Fig.1. Methodology

1. Data Samples Creation

The research presented in this work is grounded in the

creation of a dedicated primary dataset specifically tailored

for the task of Hindustani Classical Raag classification. Two

Raags — Yaman and Malkauns — were chosen as the focus

of the study due to their distinct melodic frameworks and

tonal characteristics. For each Raag, 40 individual

performances were recorded, giving a total of 80 samples and

ensuring a balanced distribution between the two classes.

To control for variations in pitch and eliminate tuning-related

inconsistencies, every recording was standardized to the A#

tonic. This approach ensured that the model concentrated

exclusively on melodic progression, characteristic note

patterns, and ornamentation, rather than being influenced by

differences in pitch settings between performances.

Data collection was carried out in an acoustically treated

studio environment, which significantly reduced the

possibility of environmental noise, echoes, or other unwanted

acoustic artefacts. A professional-grade microphone setup

was used to capture the recordings, providing high clarity and

preserving subtle nuances in note articulation, dynamics, and

timbre. The Easy Voice Recorder application was selected as

the recording tool because of its consistent quality output and

reliability in capturing uncompressed audio. All audio files

were saved in the .wav format. The decision to use .wav was

deliberate — this lossless, uncompressed format retains every

detail of the acoustic signal, including microtonal inflections

and dynamic contrasts, making it ideal for detailed analysis

and feature extraction.

The Raag identification system developed as part of this

research allows for direct user input via audio file upload. The

system is compatible with both .wav and .mp3 formats. Input

files are placed into a dedicated “Audio” folder, from which

they are automatically directed into the pre-processing

pipeline. In this phase, the audio signal is analyzed and

transformed into a structured, text-based representation. The

extracted parameters include fundamental frequency

trajectories, amplitude variations, pitch contours, note

transitions, and other temporal descriptors. Structuring the

data in this manner is essential, as it enables the machine

learning model to process the audio content as a consistent

numerical dataset, facilitating accurate and reproducible

classification.

By generating the dataset in-house, the study ensured total

control over recording conditions, file quality, and the

musical content itself. Each recording was carefully crafted to

reflect the theoretical principles of the chosen Raag while

incorporating natural variations present in real performances.

This approach provided a rich, representative dataset, free

from background noise and irrelevant artefacts, while

containing clearly identifiable Swar (notes) and Pakad

(signature phrases). Such attention to detail not only

improved model training and evaluation but also supported

better generalization when applying the classifier to new,

unseen musical inputs.

2. Pre-processing (Audio to Text Conversion)

1717

The raw .wav recordings were subjected to a multi-step pre-

processing pipeline aimed at transforming the unstructured

audio signals into a consistent, model-ready dataset. This

stage is critical in ensuring that the machine learning model

receives uniform, informative inputs, free from unnecessary

noise or inconsistencies.

Step 1 – Audio Framing:

Each recording was divided into short, overlapping frames to

allow for localized analysis of the signal. This segmentation

preserved temporal dynamics, enabling the model to capture

fine-grained changes in pitch, amplitude, and harmonic

content over time. Frame sizes were selected to balance time

resolution with frequency resolution, a key consideration in

music signal processing.

Step 2 – Frequency and Temporal Analysis:

For each frame, the frequency content was extracted to

generate trajectories that represent how pitch evolves

throughout the performance. Additionally, amplitude

envelopes were computed to capture intensity variations,

while temporal markers (such as onset points) provided cues

about note boundaries and transitions.

Step 3 – Feature Structuring and Storage:

Once the acoustic features were computed, they were

organized into a structured, time-series format and saved as

plain-text files. This choice of storage format made the

intermediate data human-readable, easy to debug, and

compatible with a variety of analytical tools.

Step 4 – Software Tools and Libraries:

Feature extraction was implemented using Librosa and

complementary Python libraries, which provided robust

functions for spectral analysis, chroma computation, and

statistical summarization. These tools ensured that identical

pre-processing steps were applied to both training and testing

datasets, eliminating inconsistencies that could lead to biased

evaluation.

The classification framework relies on a compact, yet

informative set of features derived from the frequency column

of each processed audio file. From this data, three statistical

descriptors were computed:

Mean Frequency: Represents the average frequency over the

entire sample, providing a measure of the tonal center or

overall pitch tendency.

Standard Deviation of Frequency: Quantifies the degree of

pitch variation, capturing how stable or dynamic the

performance is.

Median Frequency: Indicates the middle value of the

frequency distribution, serving as a robust central measure

less affected by outliers or transient deviations.

These features, while minimal in number, were chosen for

their interpretability and their ability to capture the core

melodic characteristics of a Raag. The Random Forest

Classifier leverages several key mechanisms to enhance

classification accuracy and robustness:

1. Bootstrapped Sampling: For each decision tree in the

forest, a random subset of the dataset is selected with

replacement. This ensures that each tree sees a slightly

different training set, promoting diversity in the learned

decision boundaries.

 2. Random Feature Selection: At each decision node,

only a randomly chosen subset of the available features

(Mean, Standard Deviation, or Median) is considered for

splitting. This prevents all trees from focusing on the same

dominant feature and increases the ensemble’s overall

generalization capability.

3. Independent Tree Training: Each tree is built

independently on its respective bootstrapped sample and

feature subset. Some trees may rely more heavily on mean

frequency, while others might prioritize pitch variation

(standard deviation) or central tendency (median).

4. Majority Voting for Classification: Once all trees

produce their predictions (either Raag Yaman or Raag

Malkauns), the final class label is determined through

majority voting — the class receiving the highest number of

votes becomes the model’s output.

By following this pre-processing approach, the dataset

retained the musical essence of each Raag while standardizing

the representation for machine learning. This balance between

musical fidelity and computational structure was essential for

achieving reliable classification results.

3. Training: Random Forest Classier

Algorithm

The training and testing of the Random Forest Classifier

(RFC) involve multiple steps, including data preparation,

model training, evaluation, and performance analysis. In this

study, the classifier was trained on extracted frequency

parameters from Raag audio samples to accurately identify

Raags. The following sections describe the detailed

methodology employed in the training and testing phases.

3.1 Data Preparation and Feature Extraction:

The dataset utilized for training the classification model was

composed of frequency-based attributes extracted from pre-

processed audio recordings of two classical Raags: Yaman

and Malkauns. These audio files were first transformed into

text format, where each file represented a sequence of

frequency values over time. These sequences were then

converted into numerical feature vectors suitable for input

1718

into machine learning algorithms.

To derive useful and representative features, statistical

analysis was performed on the frequency data within each

file. Specifically, the mean, median, and standard deviation of

the frequency values were calculated. These statistical metrics

capture the essential characteristics of the sound profile

associated with each Raag and were used as input features for

training the model. Additionally, each audio sample was

annotated with its corresponding Raag label, which was

stored in a structured JSON file (labels.json). This file

mapped each filename to its respective Raag, ensuring clarity

and organization within the dataset. Prior to model training,

the data was divided into two subsets: 40% for training the

model and 60% for evaluating its performance (test_size =

0.6). This data split was chosen to test the classifier’s ability

to generalize well to new, unseen inputs and to avoid the risk

of overfitting.

3.2 Model Training using Random Forest Classifier

The Random Forest Classifier (RFC) is an ensemble learning

technique that constructs multiple decision trees and

aggregates their predictions to improve classification

accuracy. It reduces overfitting and enhances performance

compared to individual decision trees. Random Forest

Classifier is a powerful and widely used machine learning

algorithm that belongs to the ensemble learning family. It is

an extension of Decision Trees and works by constructing

multiple decision trees during training, merging their results

to improve accuracy and reduce overfitting.

3.3 Training Procedure:

The classifier was implemented using Sklen: ensemble.

Random Forest Classifier with the following

hyperparameters:

Number of Trees (n_estimators=100): The model was trained

using 100 decision trees, which provided a balance between

performance and computational efficiency.

Random State (random_state=42): A fixed random seed was

used to ensure reproducibility of results across multiple runs.

Split Criterion (Default: Gini Impurity): The decision trees

were trained using the Gini Index, which measures the

impurity of splits.

Depth of Trees (max_depth - Not Defined): The depth of each

decision tree was left unrestricted to allow the model to learn

complex patterns, though it could be adjusted to control

overfitting.

Minimum Samples for Split (min_samples_split=2): The

model required at least two samples to split a node, ensuring

decision boundaries were meaningful

Minimum Samples per Leaf (min_samples_leaf=1): Each leaf

node contained at least one sample, allowing the trees to

capture detailed variations.

The model was trained over 50 epochs, where it was

iteratively refined using training data. In each epoch, the

classifier was re-fitted, and its performance was evaluated on

both training and test datasets. Since Random Forest does not

have an inherent loss function like deep learning models, a

dummy loss function was defined as the error rate (1 -

accuracy). This helped the model to track how well the model

was learning over epochs.

3.4 Model Testing and Evaluation

Once trained, the model was tested on the reserved test

dataset, and its performance was assessed using the following

evaluation metrics:

Accuracy Score: The classifier achieved 91% accuracy,

which indicates a strong learning capability. Accuracy was

calculated using accuracy_score(y_test, y_pred), where

y_test represents the actual labels and y_pred represents the

predicted labels. The accuracy was computed using the

accuracy_score function from the sklearn. metrics module.

The formula for accuracy is:

Accuracy = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠/𝑇𝑜𝑡𝑎𝑙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (1)

 Fig.2. Model Training Results

Confusion Matrix: To assess the performance of the trained

Random Forest model, a confusion matrix was created to

offer a detailed breakdown of how accurately the model

classifies each Raag. This matrix serves as a valuable tool for

comparing the model's predicted labels with the actual labels,

allowing us to evaluate its performance and identify the types

of errors it makes.

The confusion matrix includes the following elements True

Positives (TP), represents the instances where the model

correctly identified a Raag. False Positives (FP), where the

model mistakenly predicted a Raag that was not present. False

Negatives (FN), where the model failed to identify a Raag that

was present. True Negatives (TN), where the model correctly

identified the absence of a Raag. By evaluating these

components, we can calculate the model's overall accuracy

and pinpoint specific areas where it is prone to making errors,

such as Raags that are more likely to be misclassified.

1719

Heatmap Visualization: To enhance the interpretability of the

confusion matrix, a heatmap was generated using a popular

Python visualization library, seaborn. It gives a visual

representation of the confusion matrix, where different colors

are used to indicate each class of prediction. The color

intensity or shade in each cell corresponds to the number of

samples in specific category. This color-coded representation

makes it easy to identify trends and patterns. Darker shades

signify higher values, showing areas where the model was

more accurate or made more frequent misclassifications.

Lighter shades indicate lower values, highlighting instances

where errors are less common. By visualizing the confusion

matrix as a heatmap, it becomes easier to detect which Raags

the model tends to misclassify and identify any patterns or

biases that could be addressed.

Interpretation: Examining both the confusion matrix and the

heatmap provides valuable insights into the model's

performance across different Raags. This analysis is crucial

for identifying areas where the model may be

underperforming or exhibiting biases, allowing for targeted

improvements in the classification process. It also guides

potential adjustments to the model, such as refining feature

extraction methods, tuning hyperparameters, or exploring

different algorithms to enhance accuracy in future iterations.

Fig.3 Confusion Matrix

To better understand the learning behavior of the model, the

following plots were generated. The plots are generated on

the basis of epochs for the training. One epoch indicates that

the complete training dataset is passed through the model

learning algorithm. It plays vital role to understand how a

machine extract information and learns from the data

provided. It helps to adjust the weights and biases for the

training enhancing the accuracy and gradual reduction in

errors. Here these graphs give an idea of how the accuracy

and loss parameters changes per epoch.

Training vs. Testing Accuracy Graph: It is important to

differentiate the training and testing data to avoid overfitting.

The datasets are loaded in three steps, Supply (allocate data

to the model), Declare (Conversion of data to model suitable

format), Run (put the model for testing). Plotted accuracy

over 50 epochs to visualize performance improvements.

Showed how well the model generalized to unseen data.

Training vs. Testing Loss Graph: Since Random Forest does

not compute loss directly, error rate (1 - accuracy) was used

as a substitute for loss. The loss graph helped identify

potential overfitting issues. ‘If the training error is very low

but the testing error is significantly higher, it indicates that the

model is fitting the training data too closely and not

generalizing well to unseen data; a classic sign of overfitting’

[16]. On the other hand, if both training and testing errors are

high, it may indicate underfitting, suggesting the model is too

simple or insufficiently trained.

Fig. 4 (a) Accuracy Graph for Train vs. Test

Fig.4 (b) Loss Graph for Train vs. Test

4. Testing Process for Raag Classification

Model:
The trained Random Forest Classifier (RFC) was tested using

new audio samples, which were pre-processed into text files

containing extracted frequency parameters. This section

details the testing pipeline, including feature extraction,

model loading, and prediction steps.

In the first step in the testing pipeline involved processing the

new audio samples. Each audio file was pre- processed to

extract relevant frequency parameters, which were stored in

text files. The features extracted from the audio signals were

consistent with those used during the training phase to

maintain compatibility. These features typically include

statistical measures such as the mean frequency, standard

1720

deviation, and median frequency, which were computed for

each audio sample.

Once the features were extracted, the trained Random Forest

Classifier (RFC) model was loaded into memory. The model,

which had been previously trained on a labeled dataset, was

serialized and saved for later use. During testing, the saved

model was loaded into the pipeline to make predictions based

on the new test data. This

dynamics), and ABM (agent-based modelling). These

approaches are essential to study the mechanical response of

tissues, single cells, and extracellular substances under

different stimuli. Prendergast [1] investigates the effects of

mechanical loading on tissue formation by employing finite

element Modelling to simulate stress-induced growth. Mak et

al. [2] reveal the force of multiscale integration by coupling

molecular dynamics with tissue-level mechanics to better

understand cellular responses considered as a whole.

Tepole [3] presents a methodology based on systems

biomechanics for Modelling wound healing, emphasizing the

complexities of mechanical-biochemical feedback in

regenerating tissues.Considering bone mechanobiology by in

silico Modelling, Giorgi et al. [4] provide some insights into

the prediction of fracture healing and osteo-

interventions.Rajagopal et al. [5] delve into the mechanical

deformation of individual cells, utilizing computational tools

to assess cytoskeletal behavior under stress. Their models

help in understanding mechanosensitivity and cell signalling

pathways.

Newer advances build on these prior technics and

frameworks. Brown et al. [6] use computational models to

explore cardiac development and investigate the role of

mechanical cues in shaping morphogenesis and in congenital

heart disease. Boaretti et al. [7] advance the perspective on

multicellular in silico models in studying coordinated cellular

mechanisms in bone reModelling. Dolan et al. [8] present a

summary of a suite of techniques—force microscopy, image-

based Modelling—used to explore mechanotransduction at

various spatial scales.

Together, these studies demonstrate how computational

Modelling has transformed mechanobiology. Through

simulating mechanical environments with great accuracy,

they facilitate linking experimental data to theory and

promoting developments in personalized medicine,

regenerative therapies, and target-specific intervention

design. With mechanobiology increasingly interfacing with

artificial intelligence and high-throughput data analytics,

these tools will find increasingly more use in biomedical

exploration.

ensures that the model remains consistent with its training

parameters.

With the extracted features and the loaded model, the final

step was to pass the feature vectors from the test data into the

RFC. The model then processed the feature vectors and

generated predictions regarding the class or category of the

audio samples. The RFC leverages the decision trees that

were created during the training phase to assess the test data

and output the predicted class label.

Each new audio sample was processed through this pipeline,

allowing for efficient and automated predictions. This

approach ensures that the classifier could be reliably applied

to unseen data, providing consistent results in real- world

scenarios.

4.1 Loading the Trained Model

Before testing new audio samples, the previously trained

Random Forest model was loaded from a saved file using the

joblib.load() function. The model had been serialized and

saved as raag_classifier_1.pkl during the training phase. By

using this method, the model could be quickly and efficiently

reloaded without the need for retraining, ensuring both time

and computational efficiency. The joblib.load() function was

used to deserialize the model from the file, restoring its

internal structure, including the trained decision trees and

their corresponding parameters. This process re-establishes

the Random Forest Classifier (RFC) in its previous state,

making it ready for use in making predictions on new data.

By using the saved model, we ensure that the classification

system is both reusable and consistent. This method

eliminates the need for redundant training, allowing

predictions to be made directly from the test data. It also

ensures that the classifier remains aligned with the original

training setup, preserving its performance without any

modifications or adjustments to the model. This approach

streamlines the prediction process, making it more efficient

and practical for real-world deployment.

4.2 Processing New Test Data

The test dataset comprises audio recordings that have been

processed using the same feature extraction and

transformation pipeline as the training data, ensuring

consistency in input format and structure. These audio files

are first converted into text format and saved within a specific

directory labeled Test_Text.

Each of these text files encapsulates frequency-related

attributes derived from the original audio, such as pitch

variations and note dynamics, which serve as inputs to the

classifier. Before classification, every test file undergoes a

series of validation steps to ensure the integrity and reliability

of the data being passed into the model:

File Reading Check: Each file is loaded using the

pandas.read_csv() function. This step checks whether the file

is readable and properly formatted. In cases where a file fails

to load due to encoding issues, corruption, or improper

formatting it is excluded from further processing to maintain

the robustness of the pipeline.

Column Presence Verification: A crucial check is performed

to confirm the existence of the "Frequency (Hz)" column

within each file. This column contains the core data required

for generating meaningful statistical features (e.g., mean,

standard deviation). If this column is missing, the file is

automatically skipped to avoid feeding incomplete or

incorrect data to the machine learning model.

By enforcing these validation steps, the pipeline ensures that

only high-quality, well-structured test data is used in the

evaluation phase, thereby enhancing the reliability and

accuracy of the raag classification results.

4.3 Feature Extraction for Prediction

1721

To maintain consistency with the training phase, the same set

of statistical features was extracted from the frequency data

to ensure that the model receives comparable input during

both training and testing. Specifically, the following

statistical measures were used:

 Mean Frequency (np.mean(frequencies)): This measure

represents the average of the frequency values, providing a

central point around which the frequencies are distributed. It

is a fundamental metric for understanding the general

tendency or "center" of the frequency distribution.

Standard Deviation (np.std(frequencies)): This value

quantifies the extent of variation or dispersion within the

frequency data. A higher standard deviation indicates a wider

spread of frequencies, while a lower value suggests that the

frequencies are more concentrated around the mean.

Median Frequency (np.median(frequencies)): The median

serves as a robust alternative to the mean, offering a central

value that is less sensitive to outliers. It divides the frequency

data into two equal halves, making it especially useful when

there are extreme values that could skew the mean.

These extracted statistical features were compiled into a

feature vector, which was then reshaped into a one-

dimensional array. This reshaping ensures that the data format

aligns with the input requirements of the trained model,

enabling smooth integration of the test data with the model’s

expected structure. By maintaining this consistent approach,

the model can evaluate the test data in the same manner as the

training data, ensuring valid and reliable predictions.

4.4 Raag Prediction using Random Forest Classifier:

After extracting the relevant features and forming the feature

vector from each test sample, this vector is fed into the

previously trained Random Forest classifier using the

clf.predict(feature_vector) method. The classifier, having

already learned the distinguishing patterns and statistical

traits of each raag during the training phase, analyzes the input

and determines the most likely raag associated with the

feature set.

The prediction result is a raag label corresponding to the input

sample, which reflects the classifier’s interpretation based on

the learned characteristics of the training data. This output is

then recorded or displayed for each test sample, effectively

completing the classification process.

4.5 Results and Output Interpretation

For every test sample processed, the model prints a predicted

Raag label along with the corresponding filename. In addition

to displaying the predicted Raag alongside the filename, this

output format makes it straightforward to verify the model's

performance on individual test samples. This provides an

Fig. 5 Testing Results for various Samples

easy-to-interpret classification output for new audio samples.

The structured output follows this format given in fig 5:

Each prediction reflects the classifier’s interpretation of the

input frequency features derived from the corresponding

audio segment. This structured feedback is especially helpful

during evaluation, as it allows for easy comparison with

ground truth labels and facilitates error analysis.

Consistent and accurate predictions like those shown in the

figure help demonstrate the effectiveness of the model in

distinguishing between Raag Yaman and Raag Malkauns.

Furthermore, this type of output can be seamlessly extended

to real-time applications, such as music identification systems

or digital Raag learning tools, where interpretability is

essential.

5. CONCLUSION:

This study demonstrates that frequency-based statistical

features, when paired with a Random Forest Classifier, can

effectively distinguish between Raag Yaman and Raag

Malkauns with an accuracy of 91%. Despite the complexity

of Hindustani Classical Raags, the results indicate that a

minimal feature set, if carefully selected, can yield robust

classification performance without requiring deep neural

networks or large datasets.

The proposed approach benefits from the interpretability and

low computational cost of ensemble learning, making it

suitable for integration into music education tools, digital

archiving systems, and real-time performance analysis

platforms. By standardizing all recordings to a single pitch

(A#), the model avoids confounding tonal variations,

focusing purely on melodic and structural features.

Future work will address current limitations by:

Expanding the dataset to include multiple Raags across

diverse pitch settings and instruments.

Incorporating pitch-independent representations to enhance

generalization.

Exploring temporal and spectral features for finer-grained

analysis.

Comparing RFC performance with deep learning

architectures such as CNNs and RNNs.

Through these enhancements, the system can evolve into a

comprehensive AI-assisted platform for Hindustani music

analysis, bridging the gap between computational methods

and traditional musicology.

6. FUTURE SCOPE:
Despite the promising results obtained in this study, several

limitations must be acknowledged to provide a

comprehensive view of the work. Firstly, the scope of the

study was deliberately confined to a specific pitch range,

which, while beneficial for controlled experimentation,

restricts the model’s ability to generalize across diverse vocal

or instrumental registers. This may limit its applicability in

real-world scenarios where pitch can vary significantly

between artists, instruments, and performance styles.

Secondly, the number of Raags included in the classification

task was limited, focusing only on Raag Yaman and Raag

Malkauns. While this helped in building a focused and well-

and richness of Hindustani classical music, which consists of

1722

hundreds of Raags, each with subtle and unique

characteristics. Expanding the dataset to include a broader

range of Raags would significantly enhance the robustness

and generalizability of the model.

Future research can build upon this foundational work by

incorporating a larger and more diverse set of Raags,

introducing variations in tempo, rhythm, and performance

style. Additionally, improvements in audio pre- processing

techniques, such as advanced noise reduction algorithms,

dynamic range compression, and harmonic separation, can

help refine feature extraction from raw audio inputs.

Another vital area for enhancement is the integration of Swar

(note) identification, which plays a key role in characterizing

Raags. By identifying the exact notes and their patterns, the

model could achieve a deeper understanding of melodic

structure. Moreover, developing pitch-independent

classification techniques would allow the model to accurately

identify Raags regardless of the tonic scale used by the

performer, making it more versatile across different vocal and

instrumental renditions.

Overall, this study lays the groundwork for more

sophisticated systems capable of capturing the intricate

nuances of Hindustani classical music, paving the way for

applications in music education, archival research, and real-

time music analysis.

REFERANCES:
1. Author: Dr. Vidyadhar Oke, “22 Shrutis and

melodium”, Sanskar Prakashan, 2011th edition.

2. Author: Acharya S. N. Ratanjankar, “Aesthetic Aspects

of India’s Musical heritage”, Sanskar Prakashan, first

edition Feb 1992.

3. Changsheng Xu, N. C. Maddage, Xi Shao, Fang Cao, Qi

Tian. “Music genre classification using Support Vector

Machines”, IEEE International Conference in Acoustic,

Speech and Signal Processing (ICASSP’03), 2003.

4. Ndiatenda Ndou, Ritesh Ajoodha, Ashwini Jadhav.

“Music Genre Classification: A Review of Deep-

Learning anf Traditional Machine-Learning

Approaches’, IEEE International IOT, Electronics and

Ma=echatronics Conference (IEMTRONICS), 2021.

5. N. Scaringella, G. Zola, D. Mlynek. “Automatic Genre

Classification of music content: a survey”, IEEE Signal

Processing Magzine (Vol:23, Iss:2), 2006.

6. Aakash Parmar, Rakesh Katariya, Vatsal Patel. “A

Review on random Forest: An Ensemble Classifier”,

International Conference on Intelligence Data

Communication Technologies and Internet of Things

(ICICI), 2018.

7. M. Pal. “Random Forest classifier for remote sensing

classification”, International Journal of Remote Sensing

(Vol:26), 2005.

8. Archana Chaudhary, Savita Kolhe, Raj Kamal. “An

Improved random forest classifier for multi-class

classification”, Information Processing in Agriculture,

Elsevier, (Vol:3, Iss:4) 2016.

9. Md. Rifat Ansari, Sadia Alam Timpa, Jannat Ara

Ferdouse Raya, Mohammad N. Murshed. “Comparison

between Support Vector Machine and Random Forest

for Audio Classification”, International Conference on

Electronics, Communications and Information

Technology (ICECIT), 2021.

10. Baoxun Xu, Xiufeng Guo, Yumming Ye, Jiefeng Cheng.

“An Improved Random Forest Classifier for Text

Categorization”, Journal of Computers (Vol:7 Iss:12)

Academy Publisher, 2012.

11. Zehra Cataltepe, Yusuf Yaslan and Adullah Sonmez.

“Music Genre Classification using MIDI and Audio

Features”, EURASIP Journal on Advances in Signal

Processing, Volume 2007, Hindawi Publishing

Corporation, Article ID: 36409

12. A. Elbir and N. Aydin. “Music Genre Classification and

Music Recommendation by using Deep Learning”,

Institution of Engineering and Technology Wiley Online

Library, 2025.

13. Michael Haggblade, Yang Hong, Kenny Kao. “Music

Genre Classification”.

https://cs229.stanford.edu/proj2011/HaggbladeHongKao-

MusicGenreClassification.pdf

14. Juhan Nam, Keunwoo Chol, Jongpil Lee, Szu-Yu Chou,

Yi-Hsuan Yang. “Deep learning for audio-based music

classification and Tagging: Teaching computers to

distinguish Rock from Bach”, IEEE Signal Processing

magazine (Volume 36, Issue 1), 2019

15. Jyoti Lele, Naman Palliwal, Sahil Rajurkar, Vibor

Tomar and Anuradha C Phadke, “Comparison of image

https://cs229.stanford.edu/proj2011/HaggbladeHongKao-MusicGenreClassification.pdf
https://cs229.stanford.edu/proj2011/HaggbladeHongKao-MusicGenreClassification.pdf

1723

based and audio-based techniques for Bird-species

Identification”, Ed. Intelligent Systems and

Applications in Computer Vision, CRC Press- Taylor

Francis Publication, 2023, PP. 9-1 to 9-10 pages, Book

ISBN9781003453406

16. Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, Alex

Aiken. “Improving the Accuracy, Scalability and

Performance of Graph Neural Networks with Roc”,

Proceedings of Machine Learning and Systems (MLSys

2020).

11. Zehra Cataltepe, Yusuf Yaslan and Adullah Sonmez.

“Music Genre Classification using MIDI and Audio

Features”, EURASIP Journal on Advances in Signal

Processing, Volume 2007, Hindawi Publishing

Corporation, Article ID: 36409

