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ABSTRACT

We present a multilayer SPR-based sensor capable of detecting analyte-induced changes in refractive KEYWORDS

index. The design incorporates an Aluminum-based prism with calcium fluoride, Silicon as the dielectric
layer, and Fluorinated Graphene as the biorecognition element. The sensor is analyzed across the near-
infrared region using the transfer matrix method, evaluating key parameters such as sensitivity (°/RIU)

Aluminium, plasmonic, machine
learning, sensors, XgBoost, Random
Forest, ANN

and figure of merit (1/RIU). Various machine learning regression models are applied to the curated
dataset, compared using R? scores, and feature importance is investigated to provide new design insights.
Testing on unseen inputs demonstrates that ML-based approaches can efficiently optimize sensor

performance compared to conventional analytical methods.

1. INTRODUCTION

Bio-sensing for real-world applications became feasible and
convenient after the proliferation of label-free detection
techniques [1]. In this view, nano-scale plasmonic detection
has gained momentum for its accuracy and high sensing
capabilities. Surface Plasmon Resonance (SPR) can be
achieved through various methodologies, such as guided
mode resonance [2], nano-structure arrangement [3], or prism
metal interface, etc. Gold (Au), Silver (Ag), and Aluminium
(Al) are the plasmonic metals used to satisfy the attenuated
total internal reflection phenomenon to achieve such
resonance at the metal-dielectric interface [2]. While utilizing
these methodologies, a step-wise optimization of each of the
intermediate geometrical parameters is required. Thus, the
numerical analysis is done using simulation methods like
Finite Difference Time Domain (FDTD) [4], Finite Element
Analysis (FEM) [5] for the precise modeling of the
electromagnetic interactions at the interface. These methods
also consider the heterogeneity of the intermediate layers
along with the complex boundary conditions, which becomes
a very computationally intensive procedure. Given the wide
range of operating wavelengths to work with these methods,
there is always a chance of missing out on some combinations
that might end up resulting in higher optical performance.
Alternatively, if the physics behind the device is fixed, we can
implement machine learning (ML)-based techniques to
predict the patterns faster and more efficiently.

In other words, compiling a comprehensive database that
systematically covers an entire range of input features, namely
all possible combinations of the geometrical parameters
involved, then applying ML to predict the performance
parameters, appears to be a more efficient approach. So far,
few reports regarding ML-based implementations on
parameter-optimization studies have been investigated for

SPR-based sensor designs.
© 2025 The Author(s). Published by ISVE, Ranchi, India

Nonetheless, these are mainly centered around Au-based and
Ag-based prismatic configurations [6] [7].

In this work, ML-based algorithms are applied to Al-based
Kretschmann  configurations. An  effective =~ ML
implementation needs a substantial dataset spanning across a
full range of lower and upper bounds. In this view, the
plasmonic behavior of Al is appreciable across the entire near-
infrared (NIR) range, as has already been highlighted
previously by our group [8]. Thus, the focus here is on
compiling the optical performance parameters for an Al-
Silicon (Si)-Fluorinated Graphene (FG) based SPR sensor
within the range of 900 nm to 1500 nm, evaluated across a
broad range of geometric dimensions for each of the
intermediate parameters. The output sensing parameters are
defined in terms of sensitivity (°/RIU) and Figure of Merit
[FOM] (1/RIU). Thereafter, the ML implementation is used to
predict performance metrics over trained data throughout the
NIR range.

Device engineering can only be implemented via ML when
consistent physics is involved in the plasmonic interaction at
the nano-scale level. Thus, we have considered capturing the
predicted results in a specific frequency range only, i.e., the
NIR region. Once newer and smaller databases are generated
and models are established, ML can enable rapid prediction
and  optimization of newer/unknown  geometrical
configurations with minimized computational overhead.

Regression methods like Artificial Neural Networks (ANN),
Random Forest, and XG Boost are employed to enhance the
sensor’s analytical capabilities. ANN captures the non-linear
plasmonic behavior with high accuracy. Meanwhile,
XGBoost and Random Forest have better interpretability and
faster training [9]. Following the data preprocessing, when the
input features involve Al at 30nm and a wide range of
thicknesses of Si and FG at varying refractive indices from
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1.33 to 1.37, the target parameter, i.e., FOM, is predicted.
Further, evaluation metrics used to justify the model fit are
studied in terms of the R? score. Additionally, the feature
importance for each model depicts the critical drivers of the
outcome of the dataset. Novelty versus the prediction error is
also observed, showing which models are more robust
towards an unknown dataset. In this way, different ML
algorithms applied over newer datasets can help devise new
approaches to observe existing analytical trends differently.
Once a model is trained, it can be used as a surrogate for
larger, exhaustive simulation methods (FDTD, FEM) and
numerical analysis. This way, analytical design engineering
would become more straightforward and efficient.
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Fig. 1 Steps involved from TMM simulations to Analysis
based on ML models

Figure 1 illustrates the workflow carried out in this article. It
consists of three major blocks. The first block is the Transfer
Matrix Method (TMM) model, which is simulated in
MATLAB to obtain performance parameters such as
sensitivity, full width at half maximum (FWHM), minimum
reflectance (Rmin), and figure of merit (FOM). These
simulations are iterated hundreds of times to generate a
comprehensive dataset. The generated data is then
preprocessed and subsequently fed into the last block, where
different data-driven machine learning models are analyzed
for their efficient design approach. The ML approach can help
enhance the efficiency of the plasmonic configurations once
the models are well-trained. Eventually, future scope involves
realizing the inverse design problem, starting with a desirable
response per the application and aiming to find an optimized
geometrical structure to produce it. This added advantage was
not previously the case in analytical design engineering.

2. SENSOR DESIGN AND
OPTIMIZATION

The methodology used to achieve the final optimized
plasmonic design involves a two-step approach:

2.1 Transfer Matrix method (TMM) for Al-based
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Prism configuration:

Firstly, Drude’s model is used to calculate the dielectric
constant (em) of Al using Eq. (1).

em (1) = 1(12—1) )

A5 A4 j2)

Where A is the wavelength, A,= 1.0657¢” m and A=
2.4511¢ m denote the plasma wavelength and collision
wavelength, respectively. Furthermore, the refractive
indices for Si and Gr (in the NIR range) utilized to reach
the optimized plasmonic design are extracted from Ref.
[10] and [11], respectively.

When several homogeneous layers are aligned along the z-
axis, reflectance is calculated using the TMM methodology
[12]. The coefficient of total reflection is computed using
the N-layer approximation approach. To relate the initial
and final electric and magnetic tangential field components,
we computed a characteristic matrix M for the kth layer,
which has the refractive index ny.

Three primary metrics- sensitivity, minimum reflectance,
and FOM are used in the sensor's design to assess its optical
performance. The ratio of the change in resonance angle to
the change in the analyte's refractive index is known as
sensitivity. The breadth of the resonance curve at 50% of
the reflected intensity is known as the Full Width Half
Maximum (FWHM), and it gives information about how
sharp the resonance is. The ratio of sensitivity to FWHM
is used to compute the FOM.

2.2 ML-based approach for Parameter Optimization

We employed three machine learning models: an Artificial
Neural Network (ANN) for capturing high-dimensional
nonlinear dependencies, and two ensemble-based
techniques- Random Forest and XGBoost for their
robustness to noise, interpretability, and efficiency in
handling smaller datasets.

The data-set with 1000 entries (curated from TMM
technique) was pre-processed using feature scaling, and
split into training and testing subsets (80:20). The approach
involved calculating the FOM prediction problem as a
regression task, where key design parameters such as
geometry and material properties served as input features,
and plasmonic responses (e.g., resonance wavelength or
field enhancement) were the target outputs. All three ML
models were implemented using Python with libraries
including scikit-learn, XGBoost, and TensorFlow/Keras.
The predictions were validated against known physical
behavior to ensure consistency with the underlying
plasmonic theory. The reliability of the models applied was
evaluated using the standard regression metric: coefficient
of determination (R?) [13]. This methodology provides a
scalable framework for rapid prototyping and inverse
design of plasmonic systems, potentially applicable to a
wide range of nanophotonic structures.



3. RESULTS AND DISCUSSIONS

The plasmonic resonance is initiated with the optimization of Al
in a multi-layer homogenous structure arranged over a prism
(CaF; (n = 1.426)) interface. Because of its chemical inertness,
a CaF: prism is selected for effective coupling of p-polarized
incident light [14]. In steps of 10nm, the optimized Al thickness
stands at 30nm when optimized in the range from 20nm to
50nm. Figure 2(a) shows the considered schematic (not to scale)
of the Al-Si-FG-sensing medium in a prism-based design.
Figures 2(b- d) depict the universal plasmonic nature of Al in
the entire NIR regime ((b) 900nm, (c) 1100nm, and (d)
1500nm). The prism-based design shows multiple resonance
dips, which are waveguide modes and the SP modes, when the
light is incident at angles beyond the critical angles of reflection
under the attenuated total internal reflection phenomenon. The
dips represented are at an optimized thickness of 10 nm of Si
and 0.34 nm of FG.
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Fig. 2 (a) Schematic of Al-based three-layered Prism
configuration; Reflectivity dips showing the plasmonic nature
of Al thickness of 30nm covering a broad range of NIR regime
at wavelengths of (b) 900nm, (c) 1100nm, and (d) 1500nm,
respectively.
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Fig. 3 3D surface plot of FOM as a function of Si and FG
layer thickness
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Further studying the pattern of the compiled dataset of
varied thickness of Al-Si-FG shows that the FOM, i.e., the target
feature, exhibits a highly non-linear behavior. In this view,
Figure 3 exhibits such behavior, characterized by multiple peaks
and valleys, thereby presenting a complex interdependence
between Si layer thickness and FG layer thickness in obtaining
the FOM. The yellow ridges indicative of high FOM suggest
specific combinations of these parameters that lead to optimal
output performance. On the other hand, the lower FOM regions
(purple troughs) emphasize the configurations of device designs
with reduced FOM. This intricate landscape necessitates
advanced optimization methods like ML to explore the
parameter space efficiently.
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Fig. 4 Predicted v/s Actual FOM Using ANN, Random Forest,
and XGBoost Models.

Next, regression techniques are applied that can generalize
complex input-output mappings in non-linear plasmonic
interactions. We have computed the R? score for three different
regression models for this.

Herein, the R? score is defined as:

R2 =1 — (sum squared regression (SSR) / total sum of squares
(SST))

R=1-QF-W>/2Fi-9?

Where y; is the actual value, §; is the predicted value, and y is
the mean of actual values. The R? score ranges from 0 to 1,
where an R? score of 1 indicates that all the variations in y are
fully explained by the model (perfect fit), while an R? score
tending towards zero indicates that the model explains none of
the variations in y. Figure 4 illustrates how well each model’s
predictions match the actual values in this context. The red lines
signify the regression trend line, while the blue dots represent
the data points. Each scatter plot illustrates the relationship
between the actual and predicted FOM values. Ideally, the red
line must closely align with correct predictions. Random Forest



and ANN show minimal scatter around the regression line. On
the other hand, XGBoost shows slightly higher dispersion with
a broader spread around the regression line.

A bar chart comparison of the R? scores calculated for each of
the regression models above is presented in Figure 5. Among
them, Random Forest achieved the highest R? score of 0.78,
indicating the best performance in explaining the variance in the
target variable. ANN followed with a score of 0.736, and
XGBoost with the lowest score of 0.724. This shows that
Random Forest and ANN are more reliable in predicting FOMs
for different plasmonic setups. XGBoost underperforms here,
possibly due to differences in data splitting, tuning, or
sensitivity to outliers. The bar plot comparison emphasizes the
need for continued data collection and refinement of the input
feature to improve the R? score further.

79Compari'_-'.on of R? Score among Models

0.780
0.78

0.77 1
0.76

0.75 4

R2 Score

0.74 1

0.73 1

Random Forest

XGBoost ANN

Fig. 5 Bar plot comparison of R? score for the three regression
models

Next, the feature importance for each of the models is discussed.
This is because the geometrical optimization comes secondary
as the primary drivers of sensor design are operating wavelength
and material selection. In this regard, the feature importances
obtained from three distinct models-XGBoost, Random Forest,
and Multi-Layer Perceptron (MLP), utilizing permutation
importance are compared in Figure 6, providing information
about the main factors influencing the model predictions.

The refractive index is the most significant feature in all three
models, suggesting a close relationship between this variable
and the desired attribute. This consistency across various model
architectures implies that the refractive index captures a key
component of the underlying physical behavior that the models
are learning. The fact that wavelength is the second most crucial
characteristic in every situation highlights its essential function,
most likely because it affects optical response or material
interaction.
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Fig. 6 Comparison of feature importance across models: (a)
XGBoost, (b) Random Forest, and (¢) MLP {ANN}

Across all models, the Si feature has a moderate level of
relevance and makes a significant but not overwhelming
contribution to prediction accuracy. On the other hand, FG has
the lowest value, particularly in the MLP model, where its
permutation importance is almost zero. This implies that FG
has little predictive value and could be a good candidate for
feature reduction or additional research on its applicability.

In summary, Figure 6 shows that wavelength and refractive
index are the key variables influencing model performance,
with FG providing the least impact and Si providing moderate
Si dependence. In applications where the comprehension of
physical factors is just as crucial as accuracy, these insights not
only direct future feature engineering endeavors but also
improve interpretability and the model's predictions.

In the context of physics-based machine learning challenges, a
novelty is the degree to which a model maintains its robustness
when it comes to encountering data that is different from the
training set. Figure 7 compares prediction error versus novelty
for the above-discussed models. Although there is still
considerable diversity in prediction errors, the ANN model
shows some resilience to new inputs among the models
examined. On the other hand, XGBoost shows a more
noticeable decline in predicting performance and is more
sensitive to unknown data. Likewise, the Random Forest
model's accuracy decreases with growing data unfamiliarity, as
evidenced by the positive connection between novelty and
prediction error. These patterns emphasize the importance of
assessing model reliability in novel situations, especially in
scientific applications where predictability and interpretability
are crucial. These ML-based analyses offer one key advantage:
they provide newer dimensions and novel perspectives to
plasmonic engineering that were previously unexplored when
investigating through traditional data-driven methods.
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Table I Comparison of Previously Reported Works

Sensitivity

(nm/RIU) FOM

(RIU)

Sensitivity

Ref. | A [ nm] Metal C/RIU)

Visible | Prism-SPR with Gr -
[15] | region and PSO 68.75 100
optimization

720- | PCE-SPR with Au 2000—

16l | 1280 nanowires - 18000 | 31141
800- | D-Shaped Fiber with 9000 —

U7V 1600 | Grated Au-zns - 18000 | 13873

square-shaped within -
an incomplete circle

[18] 1870- refractive 700 298.81

1950 . .

index biosensor
(SWICRIB)

1000- MMF-SPR 31,427
U911 5800 Biosensor B 27143
[20] | 20-180 | PCF-SPR biosensor - 18,000 125
This 900- . -
work 1550 Al-Si-FG 132 600

The tabulated entries in Table I show limited reports of Au and
Ag-based designs using the ML-based approach to predict either
the resonance wavelength or performance parameters. In
contrast, most earlier works are limited to traditional
optimization-based methods, whereas recent works are utilizing
the ML-based approach. In this view, an Al-based SPR sensor
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in which resonance wavelength and performance parameters are
optimized and predicted using different ML techniques, with the
help of our own dataset, though in the future we will expand the
dataset so that data-driven techniques can be used with more
accuracy and precision.

4. CONCLUSIONS

The curated dataset enables the use of an inverse design
approach in future research, representing a significant
advancement over conventional optical performance
monitoring techniques.

Due to its relative novelty, the Al-based dataset is a valuable
starting point for upcoming models and analysis, especially in
application-specific fields where sparse data is typical. In this
regard, the model's remarkable performance and ability to
generalize successfully despite data constraints are highlighted
by its R? score. In addition to measurements, this result
highlights significant insights into underlying trends,
correlations, and hypotheses, proving the model's capacity to
capture intricate interactions in a data-scarce condition.
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