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1. INTRODUCTION 

Bio-sensing for real-world applications became feasible and 

convenient after the proliferation of label-free detection 

techniques [1]. In this view, nano-scale plasmonic detection 

has gained momentum for its accuracy and high sensing 

capabilities. Surface Plasmon Resonance (SPR) can be 

achieved through various methodologies, such as guided 

mode resonance [2], nano-structure arrangement [3], or prism 

metal interface, etc.  Gold (Au), Silver (Ag), and Aluminium 

(Al) are the plasmonic metals used to satisfy the attenuated 

total internal reflection phenomenon to achieve such 

resonance at the metal-dielectric interface [2]. While utilizing 

these methodologies, a step-wise optimization of each of the 

intermediate geometrical parameters is required. Thus, the 

numerical analysis is done using simulation methods like 

Finite Difference Time Domain (FDTD) [4], Finite Element 

Analysis (FEM) [5] for the precise modeling of the 

electromagnetic interactions at the interface. These methods 

also consider the heterogeneity of the intermediate layers 

along with the complex boundary conditions, which becomes 

a very computationally intensive procedure. Given the wide 

range of operating wavelengths to work with these methods, 

there is always a chance of missing out on some combinations 

that might end up resulting in higher optical performance.  

Alternatively, if the physics behind the device is fixed, we can 

implement machine learning (ML)-based techniques to 

predict the patterns faster and more efficiently. 

In other words, compiling a comprehensive database that 

systematically covers an entire range of input features, namely 

all possible combinations of the geometrical parameters 

involved, then applying ML to predict the performance 

parameters, appears to be a more efficient approach. So far, 

few reports regarding ML-based implementations on 

parameter-optimization studies have been investigated for 

SPR-based sensor designs.  
© 2025 The Author(s). Published by ISVE, Ranchi, India 

 

 

 

 

Nonetheless, these are mainly centered around Au-based and 

Ag-based prismatic configurations [6] [7].  

In this work, ML-based algorithms are applied to Al-based 

Kretschmann configurations. An effective ML 

implementation needs a substantial dataset spanning across a 

full range of lower and upper bounds. In this view, the 

plasmonic behavior of Al is appreciable across the entire near-

infrared (NIR) range, as has already been highlighted 

previously by our group [8]. Thus, the focus here is on 

compiling the optical performance parameters for an Al-

Silicon (Si)-Fluorinated Graphene (FG) based SPR sensor 

within the range of 900 nm to 1500 nm, evaluated across a 

broad range of geometric dimensions for each of the 

intermediate parameters. The output sensing parameters are 

defined in terms of sensitivity (°/RIU) and Figure of Merit 

[FOM] (1/RIU). Thereafter, the ML implementation is used to 

predict performance metrics over trained data throughout the 

NIR range.  

Device engineering can only be implemented via ML when 

consistent physics is involved in the plasmonic interaction at 

the nano-scale level. Thus, we have considered capturing the 

predicted results in a specific frequency range only, i.e., the 

NIR region. Once newer and smaller databases are generated 

and models are established, ML can enable rapid prediction 

and optimization of newer/unknown geometrical 

configurations with minimized computational overhead.  

Regression methods like Artificial Neural Networks (ANN), 

Random Forest, and XG Boost are employed to enhance the 

sensor’s analytical capabilities. ANN captures the non-linear 

plasmonic behavior with high accuracy. Meanwhile, 

XGBoost and Random Forest have better interpretability and 

faster training [9]. Following the data preprocessing, when the 

input features involve Al at 30nm and a wide range of 

thicknesses of Si and FG at varying refractive indices from 

 
      ABSTRACT 

We present a multilayer SPR-based sensor capable of detecting analyte-induced changes in refractive 
index. The design incorporates an Aluminum-based prism with calcium fluoride, Silicon as the dielectric 
layer, and Fluorinated Graphene as the biorecognition element. The sensor is analyzed across the near-
infrared region using the transfer matrix method, evaluating key parameters such as sensitivity (°/RIU) 
and figure of merit (1/RIU). Various machine learning regression models are applied to the curated 
dataset, compared using R² scores, and feature importance is investigated to provide new design insights. 
Testing on unseen inputs demonstrates that ML-based approaches can efficiently optimize sensor 
performance compared to conventional analytical methods. 
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1.33 to 1.37, the target parameter, i.e., FOM, is predicted. 

Further, evaluation metrics used to justify the model fit are 

studied in terms of the R2 score. Additionally, the feature 

importance for each model depicts the critical drivers of the 

outcome of the dataset. Novelty versus the prediction error is 

also observed, showing which models are more robust 

towards an unknown dataset. In this way, different ML 

algorithms applied over newer datasets can help devise new 

approaches to observe existing analytical trends differently. 

Once a model is trained, it can be used as a surrogate for 

larger, exhaustive simulation methods (FDTD, FEM) and 

numerical analysis.  This way, analytical design engineering 

would become more straightforward and efficient.  

 

 

Fig. 1 Steps involved from TMM simulations to Analysis 

based on ML models 

Figure 1 illustrates the workflow carried out in this article. It 

consists of three major blocks. The first block is the Transfer 

Matrix Method (TMM) model, which is simulated in 

MATLAB to obtain performance parameters such as 

sensitivity, full width at half maximum (FWHM), minimum 

reflectance (Rmin), and figure of merit (FOM). These 

simulations are iterated hundreds of times to generate a 

comprehensive dataset. The generated data is then 

preprocessed and subsequently fed into the last block, where 

different data-driven machine learning models are analyzed 

for their efficient design approach. The ML approach can help 

enhance the efficiency of the plasmonic configurations once 

the models are well-trained. Eventually, future scope involves 

realizing the inverse design problem, starting with a desirable 

response per the application and aiming to find an optimized 

geometrical structure to produce it. This added advantage was 

not previously the case in analytical design engineering. 

 

2. SENSOR DESIGN AND 

OPTIMIZATION 

 
       The methodology used to achieve the final optimized 

       plasmonic design involves a two-step approach: 
 

2.1 Transfer Matrix method (TMM) for Al-based 

Prism configuration: 

Firstly, Drude’s model is used to calculate the dielectric 

constant (εm) of Al using Eq. (1). 

                           εm (λ) = 1-(
𝜆2𝜆𝑐

𝜆𝑝
2  (𝜆𝑐+𝑗𝜆)

)                           (1)                                                  

Where λ is the wavelength, λp= 1.0657e-7 m and λc= 

2.4511e-5 m denote the plasma wavelength and collision 

wavelength, respectively. Furthermore, the refractive 

indices for Si and Gr (in the NIR range) utilized to reach 

the optimized plasmonic design are extracted from Ref. 

[10] and [11], respectively. 

When several homogeneous layers are aligned along the z-

axis, reflectance is calculated using the TMM methodology 

[12]. The coefficient of total reflection is computed using 

the N-layer approximation approach.  To relate the initial 

and final electric and magnetic tangential field components, 

we computed a characteristic matrix M for the kth layer, 

which has the refractive index nk.  

Three primary metrics- sensitivity, minimum reflectance, 

and FOM are used in the sensor's design to assess its optical 

performance.  The ratio of the change in resonance angle to 

the change in the analyte's refractive index is known as 

sensitivity.  The breadth of the resonance curve at 50% of 

the reflected intensity is known as the Full Width Half 

Maximum (FWHM), and it gives information about how 
sharp the resonance is.  The ratio of sensitivity to FWHM 

is used to compute the FOM.  

2.2 ML-based approach for Parameter Optimization 

 

We employed three machine learning models: an Artificial 

Neural Network (ANN) for capturing high-dimensional 

nonlinear dependencies, and two ensemble-based 

techniques- Random Forest and XGBoost for their 

robustness to noise, interpretability, and efficiency in 

handling smaller datasets. 

The data-set with 1000 entries (curated from TMM 

technique) was pre-processed using feature scaling, and 

split into training and testing subsets (80:20). The approach 

involved calculating the FOM prediction problem as a 

regression task, where key design parameters such as 

geometry and material properties served as input features, 

and plasmonic responses (e.g., resonance wavelength or 

field enhancement) were the target outputs. All three ML 

models were implemented using Python with libraries 

including scikit-learn, XGBoost, and TensorFlow/Keras. 

The predictions were validated against known physical 

behavior to ensure consistency with the underlying 

plasmonic theory. The reliability of the models applied was 

evaluated using the standard regression metric: coefficient 

of determination (R²) [13]. This methodology provides a 

scalable framework for rapid prototyping and inverse 

design of plasmonic systems, potentially applicable to a 

wide range of nanophotonic structures. 
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3. RESULTS AND DISCUSSIONS  

 
The plasmonic resonance is initiated with the optimization of Al 
in a multi-layer homogenous structure arranged over a prism 
(CaF2 (n = 1.426)) interface. Because of its chemical inertness, 
a CaF₂ prism is selected for effective coupling of p-polarized 
incident light [14]. In steps of 10nm, the optimized Al thickness 
stands at 30nm when optimized in the range from 20nm to 
50nm. Figure 2(a) shows the considered schematic (not to scale) 
of the Al-Si-FG-sensing medium in a prism-based design. 
Figures 2(b- d) depict the universal plasmonic nature of Al in 
the entire NIR regime ((b) 900nm, (c) 1100nm, and (d) 
1500nm). The prism-based design shows multiple resonance 
dips, which are waveguide modes and the SP modes, when the 
light is incident at angles beyond the critical angles of reflection 
under the attenuated total internal reflection phenomenon. The 
dips represented are at an optimized thickness of 10 nm of Si 
and 0.34 nm of FG. 

 

Fig. 2 (a) Schematic of Al-based three-layered Prism 

configuration; Reflectivity dips showing the plasmonic nature 

of Al thickness of 30nm covering a broad range of NIR regime 

at wavelengths of (b) 900nm, (c) 1100nm, and (d) 1500nm, 

respectively. 
 

 
Fig. 3 3D surface plot of FOM as a function of Si and FG 

layer thickness 

Further studying the pattern of the compiled dataset of 
varied thickness of Al-Si-FG shows that the FOM, i.e., the target 
feature, exhibits a highly non-linear behavior. In this view, 
Figure 3 exhibits such behavior, characterized by multiple peaks 
and valleys, thereby presenting a complex interdependence 
between Si layer thickness and FG layer thickness in obtaining 
the FOM. The yellow ridges indicative of high FOM suggest 
specific combinations of these parameters that lead to optimal 
output performance. On the other hand, the lower FOM regions 
(purple troughs) emphasize the configurations of device designs 
with reduced FOM. This intricate landscape necessitates 
advanced optimization methods like ML to explore the 
parameter space efficiently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Predicted v/s Actual FOM Using ANN, Random Forest, 

and XGBoost Models.  

 
Next, regression techniques are applied that can generalize 
complex input-output mappings in non-linear plasmonic 
interactions. We have computed the R² score for three different 
regression models for this. 

Herein, the R2 score is defined as: 

R² = 1 − (sum squared regression (SSR) / total sum of squares 

(SST)) 

R² = 1 − (∑ (yᵢ − ŷᵢ) ² / ∑ (yᵢ − ȳ) ²)  

 

Where yᵢ is the actual value, ŷᵢ is the predicted value, and ȳ is 

the mean of actual values. The R2 score ranges from 0 to 1, 

where an R2 score of 1 indicates that all the variations in 𝑦 are 

fully explained by the model (perfect fit), while an R2 score 

tending towards zero indicates that the model explains none of 

the variations in 𝑦. Figure 4 illustrates how well each model’s 

predictions match the actual values in this context. The red lines 

signify the regression trend line, while the blue dots represent 

the data points. Each scatter plot illustrates the relationship 

between the actual and predicted FOM values. Ideally, the red 

line must closely align with correct predictions. Random Forest 
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and ANN show minimal scatter around the regression line. On 

the other hand, XGBoost shows slightly higher dispersion with 

a broader spread around the regression line. 

 
A bar chart comparison of the R² scores calculated for each of 

the regression models above is presented in Figure 5. Among 

them, Random Forest achieved the highest R² score of 0.78, 

indicating the best performance in explaining the variance in the 

target variable. ANN followed with a score of 0.736, and 

XGBoost with the lowest score of 0.724. This shows that 

Random Forest and ANN are more reliable in predicting FOMs 

for different plasmonic setups. XGBoost underperforms here, 

possibly due to differences in data splitting, tuning, or 

sensitivity to outliers. The bar plot comparison emphasizes the 

need for continued data collection and refinement of the input 

feature to improve the R2 score further.  

 

 
Fig. 5 Bar plot comparison of R2 score for the three regression 

models 

Next, the feature importance for each of the models is discussed. 

This is because the geometrical optimization comes secondary 

as the primary drivers of sensor design are operating wavelength 

and material selection. In this regard, the feature importances 

obtained from three distinct models-XGBoost, Random Forest, 

and Multi-Layer Perceptron (MLP), utilizing permutation 

importance are compared in Figure 6, providing information 

about the main factors influencing the model predictions. 

The refractive index is the most significant feature in all three 

models, suggesting a close relationship between this variable 

and the desired attribute.  This consistency across various model 

architectures implies that the refractive index captures a key 

component of the underlying physical behavior that the models 

are learning.  The fact that wavelength is the second most crucial 

characteristic in every situation highlights its essential function, 

most likely because it affects optical response or material 

interaction. 

 

 
Fig. 6 Comparison of feature importance across models: (a) 

XGBoost, (b) Random Forest, and (c) MLP{ANN} 

 

Across all models, the Si feature has a moderate level of 

relevance and makes a significant but not overwhelming 

contribution to prediction accuracy. On the other hand, FG has 

the lowest value, particularly in the MLP model, where its 

permutation importance is almost zero.  This implies that FG 

has little predictive value and could be a good candidate for 

feature reduction or additional research on its applicability. 

In summary, Figure 6 shows that wavelength and refractive 

index are the key variables influencing model performance, 

with FG providing the least impact and Si providing moderate 

Si dependence. In applications where the comprehension of 

physical factors is just as crucial as accuracy, these insights not 

only direct future feature engineering endeavors but also 

improve interpretability and the model's predictions. 

In the context of physics-based machine learning challenges, a 

novelty is the degree to which a model maintains its robustness 

when it comes to encountering data that is different from the 

training set.  Figure 7 compares prediction error versus novelty 

for the above-discussed models. Although there is still 

considerable diversity in prediction errors, the ANN model 

shows some resilience to new inputs among the models 

examined.  On the other hand, XGBoost shows a more 

noticeable decline in predicting performance and is more 

sensitive to unknown data. Likewise, the Random Forest 

model's accuracy decreases with growing data unfamiliarity, as 

evidenced by the positive connection between novelty and 

prediction error.  These patterns emphasize the importance of 

assessing model reliability in novel situations, especially in 

scientific applications where predictability and interpretability 

are crucial. These ML-based analyses offer one key advantage: 

they provide newer dimensions and novel perspectives to 

plasmonic engineering that were previously unexplored when 

investigating through traditional data-driven methods. 
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Fig. 7 Relationship between prediction error and data novelty 

across all the ML models 

Table Ⅰ Comparison of Previously Reported Works 

Ref. λ [ nm] Metal 
Sensitivity 

(°/RIU) 

Sensitivity 

(nm/RIU) 
FOM  

(RIU-1) 

[15] 

Visible 

region 

Prism‑SPR with Gr 

and PSO 

optimization 

68.75 
- 

100 

[16] 
720-

1280 

PCF‑SPR with Au 

nanowires - 
2000– 

18000  311.41 

[17] 
800-

1600 

D-Shaped Fiber with 

Grated Au-ZnS 
- 

9000 – 

18,000 
158.73 

[18] 
1870-

1950 

square-shaped within 

an incomplete circle 

refractive 

index biosensor 

(SWICRIB) 

700 

- 

298.81 

[19] 
1000-

2800 

MMF-SPR 

Biosensor 
- 

31,427 
271.43 

[20] 20-180 PCF-SPR biosensor - 18,000 125 

This 

work 

900-

1550 
Al-Si-FG 132 

- 
600 

 
The tabulated entries in Table I show limited reports of Au and 

Ag-based designs using the ML-based approach to predict either 

the resonance wavelength or performance parameters. In 

contrast, most earlier works are limited to traditional 

optimization-based methods, whereas recent works are utilizing 

the ML-based approach. In this view, an Al-based SPR sensor 

in which resonance wavelength and performance parameters are 

optimized and predicted using different ML techniques, with the 

help of our own dataset, though in the future we will expand the 

dataset so that data-driven techniques can be used with more 

accuracy and precision. 

 

4. CONCLUSIONS 
The curated dataset enables the use of an inverse design 

approach in future research, representing a significant 

advancement over conventional optical performance 

monitoring techniques. 

Due to its relative novelty, the Al-based dataset is a valuable 

starting point for upcoming models and analysis, especially in 

application-specific fields where sparse data is typical. In this 

regard, the model's remarkable performance and ability to 

generalize successfully despite data constraints are highlighted 

by its R2 score.  In addition to measurements, this result 

highlights significant insights into underlying trends, 

correlations, and hypotheses, proving the model's capacity to 

capture intricate interactions in a data-scarce condition. 
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