

 ISSN: 2584-0495 Vol. 3, Issue 1, pp. 1499-1506

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

 A Comprehensive Investigation of 3D Game Development
with Unreal Engine

Nitesh Ghodichor, Vaishali Patil, Yash Nagpure and Yashavi Viragade

Cite as: Ghodichor, N., Patil, V., Nagpure, Y., & Viragade, Y. (2025). A Comprehensive

Investigation of 3D Game Development with Unreal Engine. International Journal of
Microsystems and IoT, 3(1), 1499–1506. https://doi.org/10.5281/zenodo.15473298

© 2025 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 20 January 2025

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.15473298

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.15473298
https://doi.org/10.5281/zenodo.15473298
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1499

International Journal of Microsystems and IoT
Vol.3, Issue 1, pp.1499-1506; DOI: https://doi.org/10.5281/zenodo.15473298

A Comprehensive Investigation of 3D Game Development with Unreal Engine
Nitesh Ghodichor1, Vaishali Patil2, Yash Nagpure 1 and Yashavi Viragade1

1 Department of Computer Technology, Priyadarshini Collge of Engineering, Nagpur,Maharshtra, India
2 Department of Artificial Intelligence, G H Raisoni College of Engineering & Management, Nagpur, Maharashtra, India

KEYWORDS

Unreal Engine; Videogame: Engine
3D Game Development; Video
Game; Simulators

1. INTRODUCTION

The gaming business has changed dramatically with the

introduction of cutting-edge technology, and three-

dimensional (3D) games have become a major component of

this development. These games have enthralled audiences all

around the world thanks to their realistic graphics, engaging

gameplay, and dynamic worlds, which have helped the gaming

industry grow rapidly. However, creating such complicated

games is difficult and involves a thorough comprehension of a

number of areas, including as user experience, programming,

graphics rendering, and game design.

The Unreal Engine is one of the most widely used programs

for creating 3D games. The Unreal Engine is a full suite of

creation tools created by Epic Games that are intended to fulfill

ambitious artistic ambitions while being adaptable enough to

guarantee success for teams of all sizes. The Unreal Engine is

a well-known and adaptable game production tool that has

been utilized to produce some of the most well-known and

aesthetically spectacular video games available, such as the

Borderlands series, Street Fighter V, and Fortnight.

This research seeks to explore the methodology of

developing a 3D game utilizing Unreal Engine. The several

phases of game production, encompassing the initial concept

and design through to the concluding stages of testing and user

input, are examined. This research emphasizes the distinctive

attributes and functionalities of the Unreal Engine, including

its sophisticated graphics rendering, physics simulation, and

intuitive interface, rendering it a favored option for game

creators.

The game created for this study will exemplify the

utilization of Unreal Engine elements in the development of a

3D game.
© 2025 The Author(s). Published by Indian Society for VLSI

Education, Ranchi, India

The game is crafted to be captivating, intuitive, and visually

elaborate, fully leveraging the sophisticated graphics rendering

and physics simulation features of the Unreal Engine. This

research will yield significant insights into the practical

dimensions of game production, enhancing the broader

discipline of game development studies.

This document is organized as follows: Following this

introduction, a literature analysis is provided, examining prior

research pertinent to 3D game production and the Unreal

Engine. This is succeeded by a comprehensive elucidation of

the game mechanics employed in this study, encompassing the

design and development process of the 3D game. The results

section delineates the study's conclusions, encompassing game

performance and user input. The discussion section analyses

these findings within the framework of existing literature,

offering a thorough examination of the data. The report

ultimately finishes with a synthesis of the findings and its

implications for subsequent studies.

2. LITERATURE REVIEW

For the purpose of this research paper, the literature review

covers two primary topics: the creation of three-dimensional

games and the application of the Unreal Engine in the process

of doing so.

2.1 The Development of 3D Games:

The creation of three-dimensional games has been a subject of

interest for a great number of researchers due to the intricacy

of the process and the extensive skill set that is required.

Numerous studies have been conducted to investigate various

ABSTRACT

This study represents a comprehensive investigation into the creation of a three-dimensional (3D) game
utilizing the features of the Unreal Engine, a leading resource in the gaming sector. The study carefully
analyzes every phase of game development, from initial design to thorough testing, highlighting the
distinctive features of the Unreal Engine that streamline this process. The game, created within the
framework of this investigation, is designed to be captivating, user-focused, and visually outstanding,
leveraging the advanced graphics rendering and physics simulation features of the Unreal Engine to
their fullest potential. This study's outcomes offer valuable insights into 3D game development with the
Unreal Engine, thus enhancing the growing body of knowledge in the field of game development. The
results of this study provide a significant resource for upcoming game developers, enabling them to
effectively utilize the Unreal Engine in crafting immersive and high-quality 3D games.

https://doi.org/10.5281/zenodo.15473298

1500

areas of the production of three-dimensional games, such as

game design, programming, graphics rendering, and

interaction with the player.

In the field of game design, academics have investigated a

variety of design ideas and methodologies that contribute to

the production of 3D games that are both engaging and

immersive. For example, Adams and Rollings (2007) offer a

detailed review of the process of game design. They examine

important aspects of the game design process, including

gameplay, narrative, characters, and world design.

When it comes to the technical aspects of developing a 3D

game, the most important components are the programming

and graphics rendering process. Insights into the programming

languages, algorithms, and graphics application programming

interfaces (APIs) that are typically utilized in game

development can be gained from studies such as those

conducted by Gregory (2014) and Rabin (2010).

Additionally, the user experience is an essential component of

the production of 3D games. This area of research has been

centered on gaining an understanding of how players engage

with games and how these interactions might be modified to

increase the level of satisfaction experienced by players. In this

particular area of study, the work that Isbister and Schaffer

(2008) have done is a significant contribution.

2.2 Utilizing Unreal Engine for the Development of 3D

Games:

The Unreal Engine, which was created by Epic Games, is

currently one of the most widely used tools for the

development of three-dimensional games. Numerous research

have been conducted on them because of the sophisticated

capabilities and traits that they possess.

The architecture of the Unreal Engine has been investigated by

a number of scholars, who have discussed the various

components of the engine and how they contribute to the

process of game production. An in-depth analysis of the engine

architecture was presented in the Keler (2004) investigation.

The application of Unreal Engine to the creation of particular

categories of video games has also been the subject of research.

The work of Lewis and Jacobson (2002), for instance, explores

the application of the Unreal Engine in the process of

developing first-person shooter video games.

In addition, a number of scientific investigations have

concentrated on the ability of Unreal Engine to produce

graphics. Several studies, such as the one conducted by Engel

(2008), offer valuable insights into the manner in which the

Unreal Engine manages the rendering of images. These studies

examine aspects such as the engine's lighting model,

shadowing approaches, and shade programming. In summing

up, the body of literature concerning the production of three-

dimensional games with the Unreal Engine is broad and varied.

The purpose of this study is to make a contribution to the

existing body of knowledge by presenting a real-world

example of the production of a three-dimensional game

utilizing the Unreal Engine.

3. GAME MECHANICS

3.1 World design and environment creation

Conceptualization: Start by conceptualizing the game world.

This could involve sketching out ideas, creating mood boards,

and writing descriptions of different areas within the game

world.

Design: Use the landscape and foliage systems of Unreal

Engine to design the game world. This includes creating

terrain, adding trees and other vegetation, and designing bodies

of water.

Weather and Lighting Effects: Implement different weather

systems and lighting effects to increase the realism of the game

world. This could involve creating a day/night cycle, adding

rain or snow effects, using Unreal Engine's lighting system to

create the desired atmosphere.

Fig. 1 Desired atmosphere

3.2 Character Design and Animation

Character Design: Sketch and model characters were

created using 3D modeling software such as Blender or

Maya. This includes creating the character's physical

appearance, clothing, and any accessories they might have.

Fig. 2 Creating the character's physical

appearance

Character Animation: Import the character models into

Unreal Engine and create character animations using Unreal

Engine's animation system. This includes walking, running,

jumping, and any other movements the character will need

to make in the game

1501

Fig. 3 Movement of characters

3.3 Multiplayer Networking

Network Basics: Learn about the networking and multiplayer

features of Unreal Engine. Understanding how to manage

latency and synchronize game states across several clients are

part of this.

Character Synchronization: Make sure that characters on

different clients are in sync. This guarantees that every player

will witness the same motions and behaviours from every

character.

 Gameplay Mechanics: Creating server-authoritative gaming

mechanics is the goal. Because the server has the last word

over how any action in the game turns out, cheating may be

less likely to occur.

3.4 Combat System Development

Combat Mechanics: Design the combat mechanics and

systems. This includes deciding how players will attack and

defend themselves, what kinds of abilities they will have, and

how health and damage will be calculated.

Fig. 4 Character combat animation

 Combat Animations: Implement combat animations and

character abilities. This includes creating animations for

different attacks and abilities, and programming these

abilities into the game.

3.5 Opponent AI Implementation

AI Design: the AI is Designed for the opponents in the

game. This includes deciding how the AI will behave, what

tactics it will use, and how it will react to the player's actions.

AI Programming: Implement the AI using Unreal

Engine's AI tools. This includes programming the AI's

behavior, reactions, and tactics.

3.6 Quest System Integration

 Quest Design: Design the quest system for the game.

This includes creating different quests for the player to

complete, deciding what rewards the player will receive, and

writing a dialogue for quest-related NPCs.

Quest Implementation: Implement the quest system in the

game. This includes programming the quests into the game,

creating quest markers and objectives, and testing the quests

to ensure that they work correctly.

3.7 User Interface (UI) Design

UI Design: Design the user interface for the game. This

includes creating menus, buttons, health bars, and other UI

elements.

UI Implementation: Implement the UI in the game. This

includes programming the UI elements to work correctly and

testing the UI to ensure that it is intuitive and user friendly.

3.8 Sound and Music Integration

Sound Design: Design the sound effects and music for the

game. This includes creating sound effects for different

actions and events in the game, and composing or selecting

music for different areas and situations in the game.

 Sound Implementation: The sound effects and music

implemented in the game. This includes programming the

sounds to play at the correct times and testing the sound to

ensure that it enhances the game experience.

3.9 Testing and Debugging

 Testing: Test the game thoroughly to find any bugs or

issues. This includes testing all aspects of the game, from the

gameplay mechanics to the UI.

Debugging: Fix any bugs or issues found during testing.

This includes debugging the game code, fixing any issues

with the game art or sound, and retesting to ensure that the

issues have been resolved.

3.10 Optimization for Performance

Performance analysis: Analyze the game's performance to

find any areas that could be optimized. This includes

checking the game's frame rate, load times, and memory

usage.

 Optimization: Optimize the game to improve

performance. This includes optimizing the game code, art

assets, and sound files, and retesting to ensure that the

optimizations have improved the game's performance

4. A UNREAL ENGINE 5

(DEVELOPMENT TOOL

Epic Games is responsible for the development of the Unreal

Engine, which is a powerful real-time 3D creative tool that is

1502

utilized extensively across a variety of industries1. The high-

fidelity graphics and efficient blueprint visual scripting

mechanism that it possesses have garnered a lot of praise.

Listed below are some of the most important aspects of it:

• Incomparable Graphical Capabilities: An Unreal

Engine is renowned for its exceptional graphical proof.

Developers are able to create worlds that are both

visually attractive and photorealistic because to its

cutting-edge rendering capabilities, which are

represented by the powerful Unreal Engine 5. Players

are plunged into intriguing surroundings because to the

engine's high-fidelity graphics and dynamic lighting

technologies, which provide an unrivalled level of

realism and aesthetic appeal.

• Blueprint Visual Scripting System: The Blueprint

visual scripting system makes it easier for designers and

artists to write code, which in turn encourages

collaboration and streamlines the development

process1. The use of this feature can be advantageous

in every facet of the game development process.

• The capacity of an Unreal Engine: to scale to a larger

number of users is yet another significant advantage. It

is designed to work with a wide variety of platforms,

ranging from personal computers and gaming consoles

to mobile devices and virtual reality systems, which

ensures that games may be played by a large number of

people. Because of this versatility, developers are able

to simply generate and deploy a single project across

numerous platforms1, which reduces the amount of

time and work the development process takes.

• Community and Documentation: The Unreal Engine

provides customers with a community that is both

active and encouraging. The extensive documentation,

tutorials, and active online community that the engine

offers are extremely helpful resources for developers of

all skill levels. These resources enable developers to

solve problems and share their knowledge with one

another.

• When it comes to cost-effectiveness, the development

of video games employing an Unreal Engine is a good

choice1. In spite of the fact that it provides a robust free

version, creators are only required to pay royalties on

their game's gross income if it reaches a certain

threshold. This makes it an appealing choice for both

indie and established companies.

In the world of video game production, Unreal Engine has

earned a stellar reputation, and there are a multitude of reasons

why developers should consider using it. Known for its wide

range of capabilities that enable developers to create gaming

experiences that are both immersive and visually captivating,

it is a formidable force in the field of game creation. With

Unreal Engine, you will be able to bring your game

development projects to life, regardless of whether you are an

experienced developer or a novice to the engine. You will get

helpful insights and techniques that you can put into practice.

5. Result and Discussion

Blueprints is the name of the visual programming language

that is used to run a three-dimensional game on "Arena Island."

• Blueprints are visual scripting tools that are included in

the Unreal Engine. These tools enable developers to

design game logic without having to write individual

lines of code. There is a significant emphasis placed on

blueprinting on Arena Island.

• The mechanics of the game are as follows: The behavior

of the game is determined by blueprints, which include

everything from the movement of characters and combat

systems to interactive objects and riddles. The use of

blueprints is what makes this happen, whether it be a

complicated AI behavior or a straightforward trigger

event.

• In terms of level design, the landscapes, architecture, and

environmental interactions of Arena Island are all

organized through the use of blueprints. Want a secret

cave to be revealed to the player after they have solved

a puzzle? It's a blueprint!!

• Input from the User: The use of blueprints allows for the
construction of menus, aspects of the HUD, and
interactive user interface components. Players are able
to access their settings, missions, and inventory without
any difficulty.

The nodes shown in Fig.6 are defined as follows: Event

BeginPlay: This event is triggered when an actor spawns into

the game world or when the game launches. It is frequently

used to carry out setup chores such as setting timers and

initializing variables. This serves as the script's beginning

point in this plan.

Get All Actors of Class: This node obtains every actor that

belongs to a given class in the game universe. Here, searched

for every actor in the class "BP_ThirdPersonCharacter." This

could be used, for instance, to count the number of characters

in the game or to apply an effect to every character.

Fig. 5 Basic movements

 Fig. 6 Input Mapping

For Each Loop: Every element in an array is iterated

1503

over by this node. Here, the "Get All Actors of Class" node

is used to retrieve each actor one at a time. It carries out the

activities associated with the loop body for every actor.

Cast to ThirdPersonCharacter: This node aims to

handle a generic actor as an instance of a particular class of

actor, a ThirdPersonCharacter in this case. The cast

succeeds, and the screenplay continue if the actor is, in fact,

a Third-Person Character. Otherwise, the script ends, and

the cast fails. This is how you get at methods or properties

unique to the ThirdPersonCharacter class.

Print String: Text is displayed on the screen using this

node. It is frequently used to confirm that the script is

operating as intended during troubleshooting. In this

instance, it prints "hello" each time the loop executes.

 Add Movement Input: This node moves a character by

applying a movement input to it. The inputs for the World

Direction and Axis Value define the movement's power and

direction. In this instance, the image does not indicate the

World Direction, but the Axis Value is set to 1. The

Enhanced Input Local Player Subsystem, comprising this

node, offers more versatile and potent input management

than does the conventional input system. It is difficult to

pinpoint its particular function without understanding how

it fits into the overall plot.

Input action enhancement input: This is where the

blueprint begins. It simulates a player-inputted action, such

as pushing a button or navigating a joystick. The node has

multiple outputs, each of which represents a distinct input

action state:

Started: When the player first starts the input action, this

output is set off.

Continuous: As long as the player is pressing a button or

navigating with a joystick, this output will be constantly

activated.

Cancelled: If the input operation is canceled before it is

finished, this output is generated.

Completed: When the player releases the button or stops

moving the joystick, the input operation is considered

complete, and this output is triggered.

Add Controller Yaw Input: This node adds a yaw (vertical)

rotational input. Usually, it is used to move the player's

character or camera left and right. The amount of rotation

is determined by the "Val" input, which is linked to a value

that is altered in response to player input.

Add Controller Pitch Input: Add Controller Pitch Input,

and add rotational input around the pitch (horizontal) axis.

Usually, is utilized to enable up and down viewing of the

player's camera or character. The amount of rotation is also

set by the "Val" input, which is linked to a value that is

affected by the player input.

The green line connecting the yaw and pitch nodes'

"Val" inputs to the EnhancedInputAction Input node's

"Ongoing" output implies that the player can smoothly

control the camera by holding down an input, such as a key

or joystick, which will continually feed into the rotation

values. With the help of this configuration, responsive

camera controls that respond to player actions can be

created, providing players with an easy method for

exploring the game environment. Recall that the precise

actions you do will be determined by the connections and

values you provide in your design.

Fig. 8 Movement Input

Branch Nodes: These nodes serve as decision points in

the blueprint's execution flow, comparable to an "if"

statement in traditional programming. They use three

inputs:

Condition: The Boolean input determines the execution

path. If the condition is true, the execution will proceed

from the "true" pin. If the condition is false, the execution

will continue at the "False" pin. True (Execution Pin):

Indicates the execution path when the condition is true. If

the condition is true, all nodes related to this pin will be

executed.

False (Execution Pin): In the event that the condition

is false, this is the execution path that is taken. When the

condition is false, any nodes attached to this pin will be put

into action.

Input Axis MoveForward/MoveRight Nodes: The

player can move forward, backward, right or left by

providing input to these nodes. These nodes produce a float

value as an output, which is the input's axis value. This

value has a range of -1 to 1, where 0 denotes no input, -1

denotes full forward/left input, and 1 denotes complete

backward/left input.

Add Movement Input Nodes: The character may move

thanks to these nodes. Three inputs are available to them:

Target (Self): This is the persona to whom the motion will

be directed. This would typically be the character that the

player controls. The direction in which the character moves

is indicated by the vector called World Direction: This is a

variable that varies according to the game's circumstances,

such as moving the character toward a target, or it possibly

a constant value that moves the character ahead always.

Scale Value: A float value that indicates the magnitude of

the movement. It is frequently linked to the axis value of

the input, which implies that the character's speed changes

depending on how much input the user provides.

The connections between these nodes represent the flow

of data and the sequence of processes. For example,

InputAxis nodes are linked to Branch nodes. This signifies

that the branch will verify the value of the player's input. If

the input value is not zero (i.e., the player is providing

input), the "true" execution pin will be activated, and the

character will move in the appropriate direction.

EnhancedInputAction IA_Jump: The jump action's

1504

input node is located here. For various input action stages,

it has multiple outputs: occur. Triggered: This mode

becomes active at the initial trigger of the jump input.

Started: Turns on as soon as the jump input action starts.

Ongoing: Stays active for as long as there is continuous

jump input. Canceled: Turns on in the event that the leap

input action is stopped. Completed: Becoming active after

the leap input action is finished.

Jump: This node is linked to the EnhancedInputAction

IA_Jump node's "Triggered" output. When the input is

triggered, the character's jumping action starts. The fact

that the input pin labeled "Target" is back linked to itself

suggests that the action has an impact on the character

receiving it.

Fig. 9 Jump Input

Stop Jumping: This node is linked to the

EnhancedInputAction IA_Jump node's "Canceled" output.

If the input is canceled, the character's jump action is

stopped. The "Target" input pin is connected back to itself,

influencing the character that receives the input, much like

the Jump node.

Fig. 10 Aiming

Input Action Enhancement IA_Aim: An input action for

aiming is represented by this node. It functions similarly to

a listener, waiting for input from the player regarding the

aim. The node has multiple outputs, each of which

represents a distinct input action stage:

Triggered: When the aim input is first triggered, this

output is turned on. In the event that the aim action is

assigned to a mouse button, for instance, this output would

become active at the player's initial button press.

Started: As soon as the aim input action starts, this

output is triggered. In certain scenarios, this could be the

same as the triggered output; however, in other scenarios,

the action's official start time could be determined by a

delay or another condition.

Ongoing: As long as the aim input is active, this output

will always be active. The player can continue to activate

this output by holding down the button or key linked to the

aim action.

Canceled: When the aim input action is canceled, this

output is triggered. This could occur if the player leaves the

button before the action is finished or if the action is

interrupted by another game event.

Completed: Upon completion of the goal input action,

this output becomes active. Usually, this occurs when the

player leaves the button following a successful aim action.

SET Nodes: These nodes are employed to establish a

variable's state. Here, they use the state of the input action

to determine whether to set the value of "Is Aiming?" to

true or false: The Enhanced Input Action IA_ Aim node's

"Triggered" output is linked to the first SET node. This

indicates that the "Is Aiming?" variable is set to true when

the aim input is triggered. The Enhanced Input Action IA_

Aim node's "Canceled" and "Completed" outputs are

connected to the second SET node. This indicates that "Is

Aiming?" variable is set to false when the aim input is

either canceled or finished.

Elapsed Seconds and Triggered Seconds: These outputs

provide the temporal context of the input action. "Triggered

Seconds" might indicate the moment the input action was

initiated, while "Elapsed Seconds" could indicate the entire

amount of time that has elapsed since the input action was

initially triggered. Because of this configuration, the game

can react to user inputs in real time and alter its state in

response to what the user does. For instance, the game may

zoom in on the camera to provide a closer look at the target

if the user initiates the aim action. The game would zoom

the camera back out if the player then aborted or finished

the aim action.

6. CONCLUSION

The process of developing a 3D game with Unreal Engine

is summarized in the research paper's conclusion, which

also highlights the main conclusions and their implications

for further study.

This study set out to investigate the potential of Unreal

Engine in the context of creating 3D video games. The game

created during this study demonstrated the Unreal Engine's

strength and adaptability. World design, character

animation, multiplayer networking, combat system

development, opponent AI implementation, quest system

integration, user interface (UI) design, sound and music

integration, testing and debugging, and performance

optimization are just a few of the game development

elements it encompasses.

The developed game's performance was encouraging,

proving how well the Unreal Engine handles challenging

3D game development requirements. The success of the

game was further confirmed by user feedback, which

showed that the functionality and design were well

received.

The study's conclusions highlight how reliable the Unreal

Engine is as a tool for creating video games. Its many

1505

features and capabilities make it easier to create intricate

and captivating 3D games. Furthermore, both inexperienced

and seasoned developers can utilize the engine thanks to its

comprehensive documentation and user-friendly UI.

There is a great deal of room for more research in this area

in the future. One might investigate more complex features

of Unreal Engine, like physics simulations, ray tracing, and

VR integration. Studies comparing Unreal Engine to other

game development engines could be carried out to

determine their relative advantages and disadvantages.

To sum up, this study makes a substantial contribution to

the game development industry. This opens the door for

further study in addition to showcasing the Unreal Engine's

usefulness in producing a 3D game. It promotes further

research and creativity in the constantly changing field of

game creation by showcasing Unreal Engine's capabilities.

Thus, this study represents a first step in the direction of the

gaming industry's development.

7. FUTURE SCOPE

Several new trends and technology will transform game

creation in the future: Advances in technology The gaming

scene is redefined by combining AI, blockchain, and AR

with game production. These technologies represent

fundamental alterations that shape game design,

development, and experience.

Acquisition and Retention of Talent: In game development,

talent recruiting and retention are major issues. A global

labor shortage affects all industries, including game

creation. Future efforts will focus on this issue. Changes in

consumer tastes Game creation evolves with user tastes.

Developers must adjust their games to these developments.

Innovative business models: The free-to-play model and

NFT integration are predicted to shape game development

in the future.

Gaming Industry Inclusivity: Inclusivity is becoming more

important. Future games may have more varied characters

and storylines and be more accessible to all skills.

Virtual and Augmented Reality: VR and AR games will

grow. This technology provides immersive experiences that

traditional video games cannot equal. Mobile Gaming: This

tendency is predicted to continue as mobile gaming

becomes more popular. To expand their audience,

developers must optimize games for mobile. The future of

game creation is full of technical advancement, player-

centric design, and industry change. From AI and AR

integration to novel business models and inclusion, the

gaming industry will change how we play, develop, and

experience games.

8. ACKNOWLEDGMENTS

I would like to thank all the authors for their

contributions and for the success of this manuscript and

all the editors and anonymous reviewers of this

manuscript.

9. CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. Kensuke Yasufuku, Ginga Katou, & Sota Shoman. (2017). Game

Engine (Unity, Unreal Engine). eizō jōhō media gakkaishi, 71(5), 353–

357. doi:10.3169/itej.71.353

2. Andrew Rollings and Ernest Adams on Game Design, Publisher: New
Riders Games, ISBN:978-1-59273-001-8, Published:01 May 2003,

https://dl.acm.org/doi/book/10.5555/1213088

3. Anderson, E. F., Engel, S., Comninos, P., & McLoughlin, L. (2008,
November). The case for research in game engine architecture. In

Proceedings of the 2008 Conference on Future Play: Research, Play,

Share (pp. 228-231).
4. Roger Eastman, “CMSC425 Game Programming Fall 2019” Course

online, www.cs.umd.edu/class/fall2019/cmsc425/syllabus.shtml
5. Manojlovich, Joseph & Keeratiwintakorn, Phongsak & Hughes,

Stephen & Chen, Jinlin & Lewis, Michael. (2003). UTSAF: Getting The

Best of Consumer Graphics into Military Simulations. Proceedings of

the Human Factors and Ergonomics Society Annual Meeting. 47.
10.1177/154193120304702010.

6. Torres-Ferreyros, Carlos & Festini-Wendorff, Matthew & Shiguihara,

Pedro. (2016). Developing a videogame using unreal engine based on a
four stages methodology. 14.10.1109/ANDESCON.2016.7836249.

7. Christos Gatzidis, Stuart Baker, A Review Of First-Person Shooter
Game Engines And Their Use In Researching Scientific Disciplines,

IADIS International Conference Gaming 2008, 2008, pp 67-72

8. X. Chen, M. Wang and Q. Wu, "Research and development of virtual
reality game based on unreal engine 4," 2017 4th International

Conference on Systems and Informatics (ICSAI), Hangzhou, China,

2017, pp. 1388-1393, doi: 10.1109/ICSAI.2017.8248503.
9. Al Lawati, H. A. J. (2020). The Path of UNITY or the Path of

UNREAL? A Comparative Study on Suitability for Game

Development. Journal of Student Research.
https://doi.org/10.47611/jsr.vi.976

10. Telang, S., Patki, A., Kale, A., Jadhav, P., & Mujumdar, G. (IJRASAT).

"Shooting Game Using Unreal Engine." Department of Computer
Engineering, Pimpri Chinchwad Polytechnic, Akurdi, Pune-411044.

11. C. Vohera, H. Chheda, D. Chouhan, A. Desai and V. Jain, "Game

Engine Architecture and Comparative Study of Different Game

Engines," 2021 12th International Conference on Computing

Communication and Networking Technologies (ICCCNT), Kharagpur,

India, 2021,pp. 1-6, doi: 10.1109/ICCCNT51525.2021.9579618.
12. Qiu, W., Yuille, A. (2016). Unreal CV: Connecting Computer Vision

to Unreal Engine. In: Hua, G., Jégou, H. (eds) Computer Vision –

ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer
Science(), vol 9915. Springer, Cham. https://doi.org/10.1007/978-3-

319-49409 8_75

13. R. A. Boyd and S. E. Barbosa, "Reinforcement Learning for All: An
Implementation Using Unreal Engine Blueprint," 2017 International

Conference on Computational Science and Computational Intelligence

(CSCI), Las Vegas, NV, USA, 2017, pp. 787-792, doi:
10.1109/CSCI.2017.136.

14. Šmíd A. (2017), Comparison of Unity and Unreal Engine.

15. B. J. Geisler, F. J. Mitropoulos and S. Kavage, "GAMESPECT: Aspect
Oriented Programming for a Video Game Engine using Meta-

languages," 2019 SoutheastCon, Huntsville, AL, USA, 2019, pp. 1-8,

doi: 10.1109/SoutheastCon42311.2019.9020369.

16. D. Ginchev and S. Stavrev, "A low-cost battle tank simulator using

Unreal Engine 4 and open-hardware microcontrollers," 2020 XXIX

International Scientific Conference Electronics (ET), Sozopol,
Bulgaria, 2020, pp. 1-4, doi: 10.1109/ET50336.2020.9238266.

AUTHORS:

 Assistant Professor in Computer

Technology Dr. Nitesh Ghodichor works

for Priyadarshini College of Engineering,

RTM Nagpur University, Nagpur. With a

Ph.D. in Computer Science Engineering

from Sarvepalli Radhakrishnan University,

https://dl.acm.org/doi/book/10.5555/1213088
http://www.cs.umd.edu/class/fall2019/cmsc425/syllabus.shtml
https://doi.org/10.47611/jsr.vi.976
https://doi.org/10.1007/978-3-319-49409%208_75
https://doi.org/10.1007/978-3-319-49409%208_75

1506

Bhopal, India Dr. Ghodichor offers MANET Security and

Blockchain knowledge abound. MANET Security

investigating Blockchain and Cloud Computing technology to

design a rules of Security interests their research. Before

starting academics, Dr. Ghodichor worked as a Linux (RHCE)

Network Administrator for some time. Their commitment lies

in creating a dynamic classroom where they involve students

in research projects and critical thinking exercises. Dr.

Ghodichor, an emerging researcher, is dedicated to furthering

Blockchain and Cloud Computing technology knowledge by

means of publications and joint projects, thereby augmenting

scholarly debate.

Corresponding Author:

E-mail: niteshgho@gmail.com

Vaishali Ghodichor (Patil) serves as an

Assistant Professor in the Computer

Science and Engineering department at G

H Raisoni College of Engineering and

Management in Nagpur, Maharashtra,

India, while concurrently pursuing a Ph.D.

in Computer Science Engineering at GH

Raisoni Amaravati University, Amravati,

Maharashtra, India. Her study focuses on Blockchain and

Mobile Ad Hoc Network (MANET) Security. Before

entering academics, Ms. Ghodichor acquired expertise as a

Marketing Executive and Trainer at SCADA Training

Institute. She is committed to cultivating an engaging

educational atmosphere. Ms. Ghodichor, as an emerging

scholar, is dedicated to finalizing her research in Computer

Science and Engineering and enhancing academic discourse

through publications and partnerships.

E-mail: vaishup2004@gmail.com

Yash Nagpur is received his

Engineering Graduate (B.Tech) degree

in Computer Technology from RTMNU

Univessity Maharshtra in 2023. His

areas of interest are cloud computing,

and 3D game design on game platforms,

and artificial intelligence & machine

learning,

E-mail: yashnagpure6876@gmail.com

Yashasvi Vairagade Nagpur is

currently engineering students of

computer Tecchnology Department

Third Year B. Tech. from RTMNU

University, Maharshtra. I am active

member of PCE Incubation center,

Nagpur and also member of ACM

students Chapter Nagpur Branch.

E-mail: yashasvivairagade6@gmail.com

mailto:niteshgho@gmail.com
mailto:vaishup2004@gmail.com
mailto:yashnagpure6876@gmail.com
mailto:yashasvivairagade6@gmail.com

