

 ISSN: 2584-0495 Vol. 2, Issue 9, pp. 1203-1210

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

Android Malware Detection on Imbalanced Data Using Deep
Learning

Enugala Rajitha, Anil Pinapati

Cite as: Rajitha, E., & Pinapati, A. (2024). Android Malware Detection on Imbalanced

Data Using Deep Learning. International Journal of Microsystems and IoT, 2(9), 1203–

1210. https://doi.org/10.5281/zenodo.14101737

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 23 Sept 2024

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.14101737

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.14101737
https://doi.org/10.5281/zenodo.14101737
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1203

International Journal of Microsystems and IoT
 Vol. 2, Issue 9, pp.1203-1210; DOI: https://doi.org/10.5281/zenodo.14101737

Android Malware Detection on Imbalanced Data Using Deep Learning
Enugala Rajitha, Anil Pinapati

Department of Computer Science and Engineering, National Institute of Technology Calicut, Kerala, India

KEYWORDS

Android, PCA, SMOTE, Multilayer
Perceptron, Malware

1. INTRODUCTION

Android is a prevalent operating system worldwide [26]. As

per the International Data Corporation (ICD) report, the sales

of mobile devices increase by 351 million units annually [11].

The Android platform's open environment enables users to

install applications from various sources effortlessly due to its

versatile operating system (OS), which can function on

various devices, including Internet of Things (IoT) devices,

tablets, smartphones, and smartwatches. Android devices

enjoy extensive usage. The Android OS is establishing itself

as the leading mobile platform, mostly because of its open-

source capabilities, scalability, and user-friendly [14].

Nowadays, most people store their details on social media,

banking, and shopping apps. Attackers shift their focus to

mobile apps to cause threats to Android mobiles [6, 18].

Malicious applications steal personal information like

banking information, message lists, and contact numbers

without user concern. To safeguard users from malware,

many researchers have concentrated their efforts on dynamic

analysis, static analysis, and hybrid analysis employing

machine learning approaches [1, 2, 3, 4]. Android protection

performs in three ways: 1. Signature-based 2.Dynamic

analysis based 3.Static analysis based [29]. In signature-based

methods, we create a malware signatures database [29]. It

detects the malware if the malware signature matches the

signatures stored in the database. It fails to detect unknown

malware. Traditional antivirus software makes use of

signature-based approaches. Signature-based techniques can

be vulnerable to obfuscation via byte-code-level

transformation attacks [27]. Extracting malware signatures

based on known patterns requires substantial time and

expertise due to the rising number of newly identified

malware instances [15]. Moreover, this method can lead to

false negatives when generating signatures for variations

within established malware categories [32].

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

In the dynamic-based method, we examine the behavior of

the application while it is operating in real-time or in an open

sandbox, including memory utilization, system calls,

information flow, and power consumption [4, 24].

Environmental setup is expensive, and extracting features

takes longer. The features are extracted in static analysis by

decompiling the Android Application Package (APK) file.

Static feature extraction is easier than dynamic feature

extraction because it requires no extra setup. It takes less time

and is cost-effective [23]. Hybrid analysis combines dynamic

and static information, allowing for very efficient Android

malware detection [30].

Algorithms developed using machine learning (ML) are used

to determine malware in the Android ecosystem. Zarni et al.

[33] proposed a permission-based method using K means

clustering. This method utilized information gain to select the

best features. The dataset used in this approach contains few

samples. It achieved 90% accuracy. Shubair et al. introduced

an intelligent method for Android malware detection utilizing

a neuro-fuzzy technique [31]. This approach uses information

gain to extract features converted into feature patterns.

Feature patterns give input to the neuro-fuzzy strategy. It

achieved 70% accuracy, which is very low compared to

previous techniques.

Ke Xu et al. presented ICCDetector, a method designed to

find malware by leveraging ICC-related features [28]. It

classifies five different malware categories. This method

achieves 97.4% accuracy, but the limitation is that the dataset

needs to be more balanced. Sometimes, a single classifier

may not give better results. Xin et al. proposed the Mlifdect

method. Mlifdect utilized a combination of data and a parallel

machine-learning technique to detect malware [25]. It creates

two feature sets in Mlifdect, using a feature selection

algorithm from the set of eight static features. This technique

ABSTRACT

This Android remains the most widely adopted operating system due to its open nature, enabling users
to install applications from various origins. Malware causes severe problems for Android users and
steals personal data by injecting malware into various applications. Many previous works used
machine learning models to detect malware but suffer from data imbalance and high feature size. In
this work, we perform three tasks: 1) Data pre-processing using the Synthetic Minority Oversampling
Technique to Fix the Class Inequality Problem, and Standardization is used to normalize the features;
2) Principal Component Analysis is applied to the dataset to shrink the dimensionality of the feature
vector; 3) Multilayer Perceptron is used for classification. We performed the proposed approach on
Drebin, Malgenome, and Maldroid2020 and it achieved 98.27, 98.15, and 97.12 accuracy respectively.
The results of the experiments demonstrate that the proposed strategy is more accurate than previous
studies
.

https://doi.org/10.5281/zenodo.14101737

1204

used the Dempster-Shafer information fusion technique and

probability analysis-based technique. Deep learning

represents a relatively recent and rapidly advancing domain

within machine learning research, drawing substantial

attention in artificial intelligence.

Yuan et al. introduced DroidDetector to detect malware using

Deep Learning [27]. DroidDetector used hybrid features,

achieving 96.76% accuracy, better than machine learning

techniques. The dataset used in this technique is imbalanced

and it reduces the total number of elements by applying a

feature selection algorithm. Suleiman et al. introduced the

DroidFusion technique for detecting malware in Android.

DroidFusion uses multilevel architecture. In this approach,

machine learning algorithms act as the primary classifier on a

base level. In comparison, a set of ranking methods is utilized

at a higher level to produce the result [20].

Mulhem et al. suggested a deep learning-based technique for

spotting malware in Android. They used static analysis [7].

This method uses binary classification to detect whether it is

malware or not, and it performs multilevel classification (five

classes) to detect the type of malware. Jin et al. used

multilevel data pruning techniques to extract significant

patterns and used a Support Vector machine as a classifier

[21]. This technique streamlined the feature set from 135 to

25, resulting in analysis times reduced by a factor of 4 to 32

compared to utilizing all available features. Taeguen et al.

introduced a multimodal deep-learning technique [22]. In this

approach, features are removed using methods for generating

feature vectors, such as existing-based and similarity-based

approaches. It uses a set of Deep Neural Networks (DNN) to

get the final result. Xiaofei et al. stated a method using the

Auto Encoder (AE) technique [8]. This technique extracts

features using byte code and converts them to a grayscale

image fed to the autoencoder. This technique used

dimensionality reduction features. Esraa et al. introduced a

method that leverages the co-existence of features [2]. This

method used a frequent pattern growth algorithm to identify

the top frequent pattern and used Random Forest (RF) as a

classifier to detect malware.

Pakarat et al. introduced ensemble learning using different

deep learning methods [9]. It uses a set of base classifiers,

and the output generated from all hidden layers is given to the

Meta classifier to get the final result. Iman et al. introduced

Ransomware malware detection. This approach involves the

Synthetic Minority Over-sampling Technique (SMOTE)

oversampling method to resolve an issue of class imbalance

and the SVM classifier for Ransomware detection [12]. Lwin

et al. balanced the dataset using the SMOTE oversampling

technique [13]. Yuan et al. proposed two sampling methods

for the class imbalance problem. This approach uses Center

point SMOTE and IO-SMOTE methods [5].

After the literature review, it was observed that the majority

of prior research efforts concentrated on feature extraction

and classification methods. Most of the datasets used in the

above results are imbalanced. More balanced data is needed

to give more accuracy. This work proposed a new approach

by combining the SMOTE oversampling technique for class

imbalance. Most of the existing works used the total dataset.

It is vital to select important features from the dataset. This

work makes use of towards reduction of dimensionality,

principal component analysis (PCA), and deep learning

techniques used for classification

The main works performed in the proposed method are as

follows:

• We propose the SMOTE oversampling as a

technique to overcome the class imbalanced

problem.

• Standardization is the process of normalizing the

features

• PCA for dimensionality reduction.

• The Multilayer Perceptron (MLP) for classification.

• We assess the effectiveness of the suggested

approach using three different datasets: Drebin,

Malgenome, and Maldroid2020, and it achieves an

accuracy of 98.15%, 98.42%, and 97.12%,

respectively.

In our evaluation, we compared the proposed method to

earlier approaches, and the experimental findings

unambiguously demonstrate that the proposed strategy

reaches a noteworthy degree of accuracy.

2. METHODOLOGY

Figure 1 offers an illustration of the proposed method's

architecture. This paper provides a malware detection method

based on deep learning in datasets with unequal class

distributions. The proposed work comprises three parts: Data

pre-processing, Dimensionality reduction using PCA, and

MLP for classification. Deep learning is the widely used

classification technique at present. Many previous studies

employed deep learning and machine learning techniques on

imbalanced datasets with many features. Consequently, these

methods often yielded lower accuracy and incurred longer

classification times. The proposed work focuses on class

imbalance problems, dimensionality reduction, and

classification techniques.

Figure 1. Design of the proposed approach

2.1 Data Pre-processing

Data preparation is vital in data mining, encompassing tasks

such as data cleansing, transformation, and integration. These

activities are crucial in readying the data for subsequent

1205

analysis. The proposed work uses SMOTE oversampling and

Standardization.

2.1.1 Synthetic Minority Over-sampling Technique

In cases where one class of data represents an

underrepresented minority within the data sample, it uses

over-sampling techniques to replicate instances of this class,

thereby achieving a more balanced representation of positive

results during training. Over-sampling becomes essential

when the quantity of collected data is insufficient, one

commonly used over-sampling technique is SMOTE.

SMOTE creates synthetic samples simply by randomly

picking features from examples in the minority class [5].

When a particular class of data represents the overrepresented

majority in a dataset, under-sampling can be employed to

balance it with the minority class. Under-sampling is a

suitable approach when the quantity of collected data is large.

Standard under-sampling methods, such as cluster centroids

and Tomek links, focus on identifying potential overlaps in

features within the dataset to reduce the volume of majority

class data.

SMOTE, developed by Chawla in 2002, is an early technique

applied across various domains, including but not limited to

the medical and industrial sectors [16].

Algorithm:

• Step 1: The dataset was analyzed to identify the majority

and minority classes, and the numerical disparity

between them was recorded.

• Step 2: For each sample x, in the minority sample data,

apply the K-Nearest Neighbor (KNN) algorithm to find

its neighbors and the difference between sample x and its

neighbors using Euclidean distance.

• Step 3: Multiply the distance with any random number

between 0 and 1, create a synthesized feature with that

value, and add it to the previous feature vector.

• Step 4: Repeat step 3 until the amount of samples in the

majority class equals the amount of classes provided in

the minority class.

The blue circles in Figure. 2 represent benign data, the pink

circles represent malware data, and the green circle represents

synthesized data. Figure 3 indicates the Drebin dataset class

distribution before and after SMOTE.

Figure 2. Dataset representation before and after the SMOTE

oversampling technique

Figure 3. Drebin dataset before and after SMOTE

2.1.2 Standardization

Standardization is scaling data to align with a

standard normal distribution. It often has a zero mean and one

deviation from the mean.

The equation of Standardization involves X=((x-μ))/σ,

where the feature is expressed by x. σ represents the standard

deviation, while μ is the average of the value of the features.

Figure. 4 and Figure. 5 symbolize the dataset before and after

performing Standardization.

Figure 4. Dataset before Standardization

1206

Figure 5. Dataset after Standardization

2.2 Principal component analysis (PCA)

The values generated after Standardization are applied to

PCA to create a new feature vector [19]. Figure 6 indicates

the Scree plot of Drebin, Figure 7 indicates the Scree plot of

Malgenome, and Figure 8 represents the Scree Plot of the

Maldroid2020 datasets.

The PCA method is as follows:

i. Subtracting the mean from each dimension of

the provided dataset results in a new dataset

with a mean value of zero.

ii. Determine the covariance matrix for two

distinct dimensions within the dataset.

iii. Obtain the Eigen vectors and Eigen values of

the matrix derived in step ii.

iv. Construct a feature vector, transpose it, and

multiply it by the initial dataset to store a new

feature set in the new space.

Figure 6. Drebin Principal Components

Figure 7. Malgenome Principal Components

Figure 8. MalDroid2020 Principal Components

2.3 The deep learning model for classification

This work employs MLP and comes under a classification

technique. An MLP consists of entirely linked dense layers

that can effectively reshape input dimensions to the desired

format. Multiple layers are a defining feature of this kind of

neural network. It connects neurons so that their outputs can

act as inputs for other neurons. A normal MLP comprises a

single input layer, including one neuron for each input, and

one output layer, having a single node per each output. It can

additionally include any number of layers that are hidden,

with a variable number of nodes within each of them. Figure

1 presents the key components of MLP.

The proposed work uses three different datasets. The number

of input layers depends on many features. This work used one

input layer, five numbers of hidden layers, two dropout

layers, and a single output layer. The hidden layer utilizes the

rectified linear (ReLU) activation function, whereas The

activation function known as the sigmoid is utilized by the

output layer. It uses Adam optimizer for optimization to

adjust weights during training. The output of MLP is

probability value; It gives malware if the probability is more

significant than 0.5; otherwise, it is benign. It uses the

following formulas for the Relu and Sigmoid activation

function.

Relu:

if the input is more significant than zero

return input

else

return 0;

Sigmoid:

The sigmoid function turns every real-valued number into a

number that ranges from 0 to 1, making it appropriate for

binary classification.

F(x) =
1

1+𝑒−𝑥

1207

Here, e is the natural logarithm's base (about 2.71828), and
the function's argument is x. The plot of the sigmoid function

resembles an S curve, with the function being continuous and

differential at any point within its area.

3. FINDINGS AND CONTRIBUTIONS

This study conducts a series of studies to figure out the

effectiveness of the recommended model using static

analysis. We compared the results to those obtained using

other state-of-the-art methodologies. This work uses Drebin,

Malgenome, and Maldroid2020 datasets. Table 1 describes

the details of the above three datasets.

Table 1. Android Malware Dataset Description.

Dataset Type Feat

ures

Sam

ples

Classes Malware

samples

Benign

Samples

Drebin Static 215 1503
6

2 4434 7590

Malgen

ome

Static 215 3799 2 994 2045

Maldroi
d2020

Static 1633 2081 2 792 872

1. The Drebin dataset encompasses 215 static features,

which include Permissions and API calls that have been

obtained from a dataset comprising 15,306 APK files

[34, 35]. These features are derived within the manifest

file and disassembled code of the APK file. The dataset

is composed of 7,590 benign instances and 4,434

malware samples.

2. The Malgenome dataset contains 215 static features,

including permissions extracted from 3799 APK files

[36]. The dataset comprises 2045 benign instances and

994 malware samples.

3. CICMaldroid2020 contains 1633 static features,

including intents, permissions, and services from 2081

APK files. It contains 872 benign and 792 malware

samples [17, 10].

In the proposed work, we deleted the dataset's missing and

duplicate values. We performed data preprocessing

(SMOTE+Standardization), and then PCA was used to lower

the dimensionality. MLP takes the new features extracted

after PCA as input. MLP classifies the given sample as either

malware or benign. In the case of an MLP, the total amount

of the input layer's neurons varies depending on the size of

the features. The proposed MLP comprises five layers that

are hidden in addition to one layer for input, each comprising

50 neurons using the output layer using the Sigmoid

activation function and the ReLU activation function. The

proposed work utilizes the Adam optimizer to reduce the loss

function during neural network training.

The rate at which learning occurs is set at 0.01, and we

conclude the training procedure after 20 epochs. Dropout is

introduced into the training process following the second and

third hidden layers To avoid overfitting, given a rate of

dropout of 0.3. The training dataset is divided into smaller

batches to modify the model's values during training. The

batch size is 32.

Figure 9 conveys the model summary of the Drebin dataset,

Figure 10 conveys the model summary of the Malgenome

dataset, and Figure 11 represents the model summary of the

MalDroid2020 dataset. Figures 12, 13, and 14 demonstrate

both the loss and accuracy curves for the datasets utilized in

this work.

We performed different sets of experiments with and

without using data preprocessing (SMOTE) and feature

reduction (PCA) to examine the suggested model's

effectiveness. Experiment 1 achieves the highest accuracy,

which uses data preprocessing and feature reduction

techniques in combination with MLP.

• Experiment 1 conducted on the proposed model

(combining SMOTE+PCA+MLP) Drebin gives the

highest accuracy compared to the remaining datasets.

Table 2 shows the performance of all three datasets

based on the proposed model.

• Experiment 2 was conducted by performing only

PCA+MLP on the given four datasets. It observes that all

the datasets achieve less accuracy compared to

experiment 1 because these datasets need to be more

balanced. Table 3 shows the performance of all three

datasets.

• Experiment 3 was conducted by performing only

SMOTE+MLP. The Malgenome dataset achieves the

highest accuracy, but it is less than the proposed model

because using PCA combines correlated features into

new features, reduces feature space, and improves

accuracy. Table 4 shows the performance of all three

datasets.

• In the proposed model, we conduct experiment 4 by

performing only MLP. The Malgenome dataset achieves

the highest accuracy, but it is less compared to the

suggested approach. Table 5 shows the performances of

all three datasets.

Table 2. Performances of the proposed model.
Dataset Principal

Components
Accuracy Precision Recall F1_score

Drebin 50 98.27 97.25 98.12 97.69

Malgenome 70 98.15 96.32 98.49 97.39

MalDroid202
0

400 97.12 95.7 98.5 97.1

Table 3. Performances of the PCA+MLP model.
Dataset Principal

Components

Accuracy Precision Recall F1_score

Drebin 50 97.27 95.69 97.05 96.36

Malgenome 70 96.31 97.98 91.35 94.55

MalDroid202

0

400 96.16 94.73 97.53 96.11

Table 4. Performances of the SMOTE+MLP model.
Dataset Feature size Accuracy Precision Recall F1_score

Drebin 215 97.27 94.8 98.03 96.4

Malgenome 215 97.76 96.6 96.9 96.8

1208

MalDroid202

0

1633 96.64 93.9 99.5 96.65

Table 5. Performances of the MLP model.
Dataset Feature size Accuracy Precision Recall F1_score

Drebin 215 97 94 98 96

Malgenome 215 97.76 94.9 98.8 96.85

MalDroid20
20

1633 95.9 93.45 98.5 95.2

Figure 9. Model Summary for Drebin Dataset

Figure 10. Model Summary for Malgenome Dataset

Figure 11. Model Summary for MalDroid2020 dataset

Figure 12. Model Training, Testing, and Validation

accuracy and loss curves of Drebin

Figure 13. Training, Testing, and Validation accuracy and

loss curves of Malgenome

Figure 14. Training, Testing, and Validation accuracy and

loss curves of MalDroid2020

Table 6

Comparison of the proposed approach with the Existing

approach
S.No Reference Dataset classifier Accuracy

1 [2] Drebin RF 95%

2 [2] Malgenome RF 97%

3 [2] Maldroid2020 RF 97%

4 [3] Drebin RL & RF 95.6%

5 [8] Own dataset AE 96%

6 [9] CIC-2019 DNN 94.16%

7 [9] CCCS-CIC DNN 97.72%

8 [21] Own dataset SVM 93.62%

9 [22] Malgenome

and a few own
samples

Deep Learning 98%

10 Proposed

approach

Drebin MLP 98.27%

11 Proposed
approach

Malgenome MLP 98.15%

12 Proposed Maldroid2020 MLP 97.12%

1209

approach

Table 6 demonstrates the comparative study table of the

proposed approach with existing approaches from standard

journals like IEEE Access, Springer Elsevier, etc. From Table

6, it is observed that the proposed approach achieves the best

result.

3.1 Evaluation Metrics:

To evaluate how well the proposed model predicts outcomes,

We used typical evaluation criteria like precision, accuracy,

recall, and the score of F1. The definitions of these

assessment metrics are as follows:

 Accuracy: The ratio of accurately predicted samples to the

total number of samples is known as accuracy.

Accurac𝑦 =
Tp + Tn

Tp + Fp + Tn + Fn

Precision: The percentage of accurately anticipated positive

samples among all samples projected to be positive is known

as precision.

Precission =
Tp

Tp + Fp

Recall: The percentage of accurately predicted positive

samples among all samples that are in the positive class

is called recall, or sensitivity.

Recall =
Tp

Tp + Fn

F1-Score: The score of F1 is a robust metric for calculating

the harmonic average of precision and recall.

F1_score =
2 ∗ Precision ∗ Recall

Precision + Recall

Experimental setup: The tests were carried out utilizing

Google Colaboratory (Colab), an online interactive

computing environment hosted on the Google Cloud

platform. We utilized the Pro Plus version of the Colab

notebook for these experiments, which offers extended

runtimes and more sessions compared to other versions.

4. CONCLUSION
A deep learning-based approach is presented in the suggested

article that can identify Android malware. It first uses

SMOTE oversampling to balance the dataset.

Standardization is applied to convert all the features

into the same range of values so that every feature has

equal weight while performing classification. It

involves PCA for dimensionality reduction. It applies

MLP for final classification. It uses five layers that are

hidden and one layer of output in an MLP. Activation

functions known as ReLU and sigmoid are used by the

hidden layer and output layer, respectively.

. This model uses Adam optimizer for optimization. The

efficiency of the suggested technique was examined

using four different datasets: Drebin, Malgenome, and

Maldroid2020 achieving accuracies of 98.27%, 98.15%,

and 97.12% respectively.
The classification result proves the proposed method is

more accurate than earlier efforts. In the future, we will

perform multilevel classification using multimodal deep

neural networks to detect different types of malware.

REFERENCES

1. Dhalaria, Meghna, and Ekta Gandotra. (2024) MalDetect: A classifier fusion

approach for detection of android malware." Expert Systems with

Applications 235, 121155.
2. Odat, Esraa, and Qussai M. Yaseen. (2023). A novel machine learning

approach for android malware detection based on the co-existence of

features." IEEE Access 11 15471-15484.
3. Wu, Yinwei, et al. (2023). DroidRL: Feature selection for Android malware

detection with reinforcement learning. Computers & Security 128 103126.
4. Bhat, Parnika, Sunny Behal, and Kamlesh Dutta. (2023). A system call-based

android malware detection approach with homogeneous & heterogeneous

ensemble machine learning. Computers & Security 130, 103277.
5. Bao, Yuan, and Sibo Yang. (2023). Two novel SMOTE methods for solving

imbalanced classification problems. IEEE Access 11, 5816

6. O. Abendan. (2011). Fake Apps Affect Android OS Users. Accessed: Oct.
30, 2022. [Online]. Available:

https://www.trendmicro.com/vinfo/us/threatencyclopedia/web-

attack/72/fake-apps-affect-android-os- users.
7. İbrahim, Mülhem, Bayan Issa, and Muhammed Basheer Jasser. (2022). A

method for automatic android malware detection based on static analysis and

deep learning. IEEE Access 117334-117352.

8. Xing, Xiaofei, et al.(2022). A malware detection approach using autoencoder

in deep learning. IEEE Access 10, 25696-25706.

9. Musikawan, Pakarat, et al (2022). An enhanced deep learning neural network
for the detection and identification of android malware. IEEE Internet of

Things Journal 10, 8560-8577.

10. Mahdavifar, Samaneh, Dima Alhadidi, and Ali A. Ghorbani 10 (2022):.
"Effective and efficient hybrid android malware classification using pseudo-

label stacked auto-encoder." Journal of network and systems

management 30(1) 22.
11. H. Menear. (2021). IDC Predicts Used Smartphone Market Will Grow 11.2%

by 2024. Accessed: Oct. 30, 2022. [Online]. Available: https://mobile-

magazine.com/mobile-operators/idc-predicts-used-smartphone market-will-
grow-112-2024?page=1.

12. Almomani, Iman, et al. 9 (2021). Android ransomware detection based on a

hybrid evolutionary approach in the context of highly imbalanced data. IEEE
Access 57674-57691.

13. Shar, Lwin Khin, Ta Nguyen Binh Duong, and David Lo. (2021). Empirical

Evaluation of Minority Oversampling Techniques in the Context of Android

Malware Detection." 2021 28th Asia-Pacific Software Engineering

Conference (APSEC). IEEE.

14. Wang, Zhiqiang, Qian Liu, and Yaping Chi. (2020). Review of Android
malware detection based on deep learning. IEEE Access 8, 181102-181126.

15. Namanya, Anitta Patience, et al. (2020). Similarity hash based scoring of

portable executable files for efficient malware detection in IoT." Future
Generation Computer Systems 110, 824-832.

16. Xu, Zhaozhao, et al. (2020). A hybrid sampling algorithm combining M-

SMOTE and ENN based on Random forest for medical imbalanced
data." Journal of Biomedical Informatics 107, 103465.

17. Mahdavifar, Samaneh, et al. 2020. Dynamic android malware category

classification using semi-supervised deep learning. 2020 IEEE Intl Conf on
Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive

Intelligence and Computing, Intl Conf on Cloud and Big Data Computing,

Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE,

18. C. D. Vijayanand and K. S. Arunlal, . (2019). Impact of malware in modern

society,’’ J. Sci. Res. Develop., 2(1), 593–600

19. Roopa, H., and T. Asha.(2019). A linear model based on principal

1210

component analysis for disease prediction. IEEE Access 7, 105314-105318.

20. Yerima, Suleiman Y., and Sakir Sezer.(2018). Droidfusion: A novel multilevel
classifier fusion approach for android malware detection." IEEE transactions

on cybernetics 49.2, 453-466.

21. Li, Jin, et al. (2018). Significant permission identification for machine-
learning-based android malware detection." IEEE Transactions on Industrial

Informatics 14.7 , 3216-3225.

22. Kim, TaeGuen, et al. (2018). A multimodal deep learning method for android
malware detection using various features." IEEE Transactions on Information

Forensics and Security 14.3, 773-788.

23. Tao, Guanhong, et al. (2017). MalPat: Mining patterns of malicious and
benign Android apps via permission-related APIs. IEEE Transactions on

Reliability 67.1, 355-369.

24. Xue, Yinxing, et al. (2017). Auditing anti-malware tools by evolving android
malware and dynamic loading technique." IEEE Transactions on Information

Forensics and Security 12.7, 1529-1544.

25. Wang, Xin, et al. "Mlifdect: android malware detection based on parallel
machine learning and information fusion." Security and Communication

Networks 2017.1 (2017): 6451260.

26. Saracino, Andrea, et al. (2016). Madam: Effective and efficient behavior-based
android malware detection and prevention." IEEE Transactions on Dependable

and Secure Computing 15.1, 83-97.

27. Yuan, Zhenlong, Yongqiang Lu, and Yibo Xue. (2016). Droiddetector:
android malware characterization and detection using deep learning. Tsinghua

Science and Technology 21.1, 114-123.
28. Xu, Ke, Yingjiu Li, and Robert H. Deng. (2016). Icc detector: Icc-based

malware detection on android. IEEE Transactions on Information Forensics

and Security 11.6 1252-1264.
29. Abdulla, Shubair, and Altyeb Altaher. (2016). Intelligent approach for android

malware detection. KSII Transactions on Internet and Information Systems

(TIIS) 9.8, 2964-2983.
30. Lindorfer, Martina, Matthias Neugschwandtner, and Christian Platzer. (2016).

Marvin: Efficient and comprehensive mobile app classification through static

and dynamic analysis. 2015 IEEE 39th annual computer software and
applications conference. Vol. 2. IEEE..

31. Abdulla, Shubair, and Altyeb Altaher. (2015). .Intelligent approach for android

malware detection. KSII Transactions on Internet and Information Systems
(TIIS) 9.8, 2964-2983.

32. Faruki, Parvez, et al. (2014). Android security: a survey of issues, malware

penetration, and defenses. IEEE communications surveys & tutorials 17.2 998-

1022.3.

33. Zarni Aung, Win Zaw. (2013). Permission-based android malware

detection. International Journal of Scientific & Technology Research 2.3, 228-
234.

34. Arp, Daniel, et al. (2013). Drebin: efficient and explainable detection

ofandroid malware in your pocket." Georg-August Institute of Computer
Science, Technical Report.

35. Michael, Spreitzenbarth, et al. (2013). Mobilesandbox: Looking deeper into

android applications." Proceedings of the 28th International ACM Symposium
on Applied Computing (SAC).

36. Zhou, Yajin, and Xuxian Jiang. (2012). Dissecting android malware:

Characterization and evolution. 2012 IEEE symposium on security and
privacy. IEEE.

AUTHORS

Enugala Rajitha received her B.Tech degree

from Kakatiya University, Telangana, India in

2013 and M.Tech degree in Computer Science

and Engineering from SR Engineering College,

Telanagana, India in 2016. She is currently

pursuing PhD at the Department of Computer Science and

Engineering, National Institute of Technology Calicut, Kerala,

India. Her areas of interest are Malware detection, Machine

learning and Deep Learning.

Corresponding author E-mail:

rajitha_p210051cs@nitc.ac.in

Anil Pinapati received his B.Tech degree

from Vignan's Engineering college, Andhra

Pradesh, India in 2005 and M.Tech degree in

Computer Science and Engineering from

Vignan's Engineering college, Andhra Pradesh, India in 2010

and PhD degree in Computer Science and Engineering from

National Institute of Technology Warangal, India in 2018.

His areas of interest are Cryptography, Data Hiding and

Information Security, Elliptic Curve Cryptography and

Machine Learning, Malware Detection.

E-mail: anilpinapati@nitc.ac.in

mailto:rajitha_p210051cs@nitc.ac.in
mailto:anilpinapati@nitc.ac.in

