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1. INTRODUCTION 

Android is a prevalent operating system worldwide [26]. As 

per the International Data Corporation (ICD) report, the sales 

of mobile devices increase by 351 million units annually [11]. 

The Android platform's open environment enables users to 

install applications from various sources effortlessly due to its 

versatile operating system (OS), which can function on 

various devices, including Internet of Things (IoT) devices, 

tablets, smartphones, and smartwatches. Android devices 

enjoy extensive usage. The Android OS is establishing itself 

as the leading mobile platform, mostly because of its open-

source capabilities, scalability, and user-friendly [14]. 

Nowadays, most people store their details on social media, 

banking, and shopping apps. Attackers shift their focus to 

mobile apps to cause threats to Android mobiles [6, 18]. 

Malicious applications steal personal information like 

banking information, message lists, and contact numbers 

without user concern. To safeguard users from malware, 

many researchers have concentrated their efforts on dynamic 

analysis, static analysis, and hybrid analysis employing 

machine learning approaches [1, 2, 3, 4]. Android protection 

performs in three ways: 1. Signature-based 2.Dynamic 

analysis based 3.Static analysis based [29]. In signature-based 

methods, we create a malware signatures database [29]. It 

detects the malware if the malware signature matches the 

signatures stored in the database. It fails to detect unknown 

malware. Traditional antivirus software makes use of 

signature-based approaches. Signature-based techniques can 

be vulnerable to obfuscation via byte-code-level 

transformation attacks [27]. Extracting malware signatures 

based on known patterns requires substantial time and 

expertise due to the rising number of newly identified 

malware instances [15]. Moreover, this method can lead to 

false negatives when generating signatures for variations 

within established malware categories [32]. 
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In the dynamic-based method, we examine the behavior of 

the application while it is operating in real-time or in an open 

sandbox, including memory utilization, system calls, 

information flow, and power consumption [4, 24].  

 

Environmental setup is expensive, and extracting features 

takes longer. The features are extracted in static analysis by 

decompiling the Android Application Package (APK) file. 

Static feature extraction is easier than dynamic feature 

extraction because it requires no extra setup. It takes less time 

and is cost-effective [23]. Hybrid analysis combines dynamic 

and static information, allowing for very efficient Android 

malware detection [30]. 

Algorithms developed using machine learning (ML) are used 

to determine malware in the Android ecosystem. Zarni et al. 

[33] proposed a permission-based method using K means 

clustering. This method utilized information gain to select the 

best features. The dataset used in this approach contains few 

samples. It achieved 90% accuracy. Shubair et al. introduced 

an intelligent method for Android malware detection utilizing 

a neuro-fuzzy technique [31]. This approach uses information 

gain to extract features converted into feature patterns. 

Feature patterns give input to the neuro-fuzzy strategy. It 

achieved 70% accuracy, which is very low compared to 

previous techniques. 

Ke Xu et al. presented ICCDetector, a method designed to 

find malware by leveraging ICC-related features [28]. It 

classifies five different malware categories. This method 

achieves 97.4% accuracy, but the limitation is that the dataset 

needs to be more balanced. Sometimes, a single classifier 

may not give better results. Xin et al. proposed the Mlifdect 

method. Mlifdect utilized a combination of data and a parallel 

machine-learning technique to detect malware [25]. It creates 

two feature sets in Mlifdect, using a feature selection 

algorithm from the set of eight static features. This technique 

ABSTRACT 

This Android remains the most widely adopted operating system due to its open nature, enabling users 
to install applications from various origins. Malware causes severe problems for Android users and 
steals personal data by injecting malware into various applications. Many previous works used 
machine learning models to detect malware but suffer from data imbalance and high feature size. In 
this work, we perform three tasks: 1) Data pre-processing using the Synthetic Minority Oversampling 
Technique to Fix the Class Inequality Problem, and Standardization is used to normalize the features; 
2) Principal Component Analysis is applied to the dataset to shrink the dimensionality of the feature 
vector; 3) Multilayer Perceptron is used for classification. We performed the proposed approach on 
Drebin, Malgenome, and Maldroid2020 and it achieved 98.27, 98.15, and 97.12 accuracy respectively. 
The results of the experiments demonstrate that the proposed strategy is more accurate than previous 
studies 
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used the Dempster-Shafer information fusion technique and 

probability analysis-based technique. Deep learning 

represents a relatively recent and rapidly advancing domain 

within machine learning research, drawing substantial 

attention in artificial intelligence. 

Yuan et al. introduced DroidDetector to detect malware using 

Deep Learning [27]. DroidDetector used hybrid features, 

achieving 96.76% accuracy, better than machine learning 

techniques. The dataset used in this technique is imbalanced 

and it reduces the total number of elements by applying a 

feature selection algorithm. Suleiman et al. introduced the 

DroidFusion technique for detecting malware in Android. 

DroidFusion uses multilevel architecture. In this approach, 

machine learning algorithms act as the primary classifier on a 

base level. In comparison, a set of ranking methods is utilized 

at a higher level to produce the result [20]. 

Mulhem et al. suggested a deep learning-based technique for 

spotting malware in Android. They used static analysis [7]. 

This method uses binary classification to detect whether it is 

malware or not, and it performs multilevel classification (five 

classes) to detect the type of malware. Jin et al. used 

multilevel data pruning techniques to extract significant 

patterns and used a Support Vector machine as a classifier 

[21]. This technique streamlined the feature set from 135 to 

25, resulting in analysis times reduced by a factor of 4 to 32 

compared to utilizing all available features. Taeguen et al. 

introduced a multimodal deep-learning technique [22]. In this 

approach, features are removed using methods for generating 

feature vectors, such as existing-based and similarity-based 

approaches. It uses a set of Deep Neural Networks (DNN) to 

get the final result. Xiaofei et al. stated a method using the 

Auto Encoder (AE) technique [8]. This technique extracts 

features using byte code and converts them to a grayscale 

image fed to the autoencoder. This technique used 

dimensionality reduction features. Esraa et al. introduced a 

method that leverages the co-existence of features [2]. This 

method used a frequent pattern growth algorithm to identify 

the top frequent pattern and used Random Forest (RF) as a 

classifier to detect malware. 

Pakarat et al. introduced ensemble learning using different 

deep learning methods [9]. It uses a set of base classifiers, 

and the output generated from all hidden layers is given to the 

Meta classifier to get the final result. Iman et al. introduced 

Ransomware malware detection. This approach involves the 

Synthetic Minority Over-sampling Technique (SMOTE) 

oversampling method to resolve an issue of class imbalance 

and the SVM classifier for Ransomware detection [12]. Lwin 

et al. balanced the dataset using the SMOTE oversampling 

technique [13]. Yuan et al. proposed two sampling methods 

for the class imbalance problem. This approach uses Center 

point SMOTE and IO-SMOTE methods [5]. 

After the literature review, it was observed that the majority 

of prior research efforts concentrated on feature extraction 

and classification methods. Most of the datasets used in the 

above results are imbalanced. More balanced data is needed 

to give more accuracy. This work proposed a new approach 

by combining the SMOTE oversampling technique for class 

imbalance. Most of the existing works used the total dataset. 

It is vital to select important features from the dataset. This 

work makes use of towards reduction of dimensionality, 

principal component analysis (PCA), and deep learning 

techniques used for classification 

The main works performed in the proposed method are as 

follows: 

• We propose the SMOTE oversampling as a 

technique to overcome the class imbalanced 

problem. 

• Standardization is the process of normalizing the 

features 

• PCA for dimensionality reduction. 

• The Multilayer Perceptron (MLP) for classification. 

• We assess the effectiveness of the suggested 

approach using three different datasets: Drebin, 

Malgenome, and Maldroid2020, and it achieves an 

accuracy of 98.15%, 98.42%, and 97.12%, 

respectively. 

In our evaluation, we compared the proposed method to 

earlier approaches, and the experimental findings 

unambiguously demonstrate that the proposed strategy 

reaches a noteworthy degree of accuracy. 

  

2. METHODOLOGY 
 

Figure 1 offers an illustration of the proposed method's 

architecture. This paper provides a malware detection method 

based on deep learning in datasets with unequal class 

distributions. The proposed work comprises three parts: Data 

pre-processing, Dimensionality reduction using PCA, and 

MLP for classification. Deep learning is the widely used 

classification technique at present. Many previous studies 

employed deep learning and machine learning techniques on 

imbalanced datasets with many features. Consequently, these 

methods often yielded lower accuracy and incurred longer 

classification times. The proposed work focuses on class 

imbalance problems, dimensionality reduction, and 

classification techniques. 

 
 

Figure 1.  Design of the proposed approach 

2.1 Data Pre-processing 

Data preparation is vital in data mining, encompassing tasks 

such as data cleansing, transformation, and integration. These 

activities are crucial in readying the data for subsequent 
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analysis. The proposed work uses SMOTE oversampling and 

Standardization. 

2.1.1 Synthetic Minority Over-sampling Technique 

In cases where one class of data represents an 

underrepresented minority within the data sample, it uses 

over-sampling techniques to replicate instances of this class, 

thereby achieving a more balanced representation of positive 

results during training. Over-sampling becomes essential 

when the quantity of collected data is insufficient, one 

commonly used over-sampling technique is SMOTE. 

SMOTE creates synthetic samples simply by randomly 

picking features from examples in the minority class [5]. 

When a particular class of data represents the overrepresented 

majority in a dataset, under-sampling can be employed to 

balance it with the minority class. Under-sampling is a 

suitable approach when the quantity of collected data is large. 

Standard under-sampling methods, such as cluster centroids 

and Tomek links, focus on identifying potential overlaps in 

features within the dataset to reduce the volume of majority 

class data. 

SMOTE, developed by Chawla in 2002, is an early technique 

applied across various domains, including but not limited to 

the medical and industrial sectors [16]. 

Algorithm: 

• Step 1: The dataset was analyzed to identify the majority 

and minority classes, and the numerical disparity 

between them was recorded. 

• Step 2: For each sample x, in the minority sample data, 

apply the K-Nearest Neighbor (KNN) algorithm to find 

its neighbors and the difference between sample x and its 

neighbors using Euclidean distance. 

• Step 3: Multiply the distance with any random number 

between 0 and 1, create a synthesized feature with that 

value, and add it to the previous feature vector. 

• Step 4: Repeat step 3 until the amount of samples in the 

majority class equals the amount of classes provided in 

the minority class. 

The blue circles in Figure. 2 represent benign data, the pink 

circles represent malware data, and the green circle represents 

synthesized data. Figure 3 indicates the Drebin dataset class 

distribution before and after SMOTE. 

 

Figure 2.  Dataset representation before and after the SMOTE 

oversampling technique 

 

Figure 3.  Drebin dataset before and after SMOTE 

2.1.2 Standardization 

Standardization is scaling data to align with a 

standard normal distribution. It often has a zero mean and one 

deviation from the mean. 

The equation of Standardization involves X=((x-μ))/σ, 

where the feature is expressed by x. σ represents the standard 

deviation, while μ is the average of the value of the features. 

Figure. 4 and Figure. 5 symbolize the dataset before and after 

performing Standardization. 

 
Figure 4.  Dataset before Standardization 
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Figure 5.  Dataset after Standardization 

2.2 Principal component analysis (PCA) 

The values generated after Standardization are applied to 

PCA to create a new feature vector [19]. Figure 6 indicates 

the Scree plot of Drebin, Figure 7 indicates the Scree plot of 

Malgenome, and Figure 8 represents the Scree Plot of the 

Maldroid2020 datasets. 

The PCA method is as follows: 

i. Subtracting the mean from each dimension of 

the provided dataset results in a new dataset 

with a mean value of zero. 

ii. Determine the covariance matrix for two 

distinct dimensions within the dataset. 

iii. Obtain the Eigen vectors and Eigen values of 

the matrix derived in step ii.  

iv. Construct a feature vector, transpose it, and 

multiply it by the initial dataset to store a new 

feature set in the new space. 

 

Figure 6.  Drebin Principal Components 

 

Figure 7.  Malgenome Principal Components 

 

Figure 8.   MalDroid2020 Principal Components 

2.3 The deep learning model for classification 

This work employs MLP and comes under a classification 

technique. An MLP consists of entirely linked dense layers 

that can effectively reshape input dimensions to the desired 

format. Multiple layers are a defining feature of this kind of 

neural network. It connects neurons so that their outputs can 

act as inputs for other neurons. A normal MLP comprises a 

single input layer, including one neuron for each input, and 

one output layer, having a single node per each output. It can 

additionally include any number of layers that are hidden, 

with a variable number of nodes within each of them. Figure 

1 presents the key components of MLP. 

The proposed work uses three different datasets. The number 

of input layers depends on many features. This work used one 

input layer, five numbers of hidden layers, two dropout 

layers, and a single output layer. The hidden layer utilizes the 

rectified linear (ReLU) activation function, whereas The 

activation function known as the sigmoid is utilized by the 

output layer. It uses Adam optimizer for optimization to 

adjust weights during training. The output of MLP is 

probability value; It gives malware if the probability is more 

significant than 0.5; otherwise, it is benign. It uses the 

following formulas for the Relu and Sigmoid activation 

function. 

Relu:  

if the input is more significant than zero 

return input 

else   

return 0; 

Sigmoid:   

The sigmoid function turns every real-valued number into a 

number that ranges from 0 to 1, making it appropriate for 

binary classification. 

F(x) =  
1

1+𝑒−𝑥
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Here, e is the natural logarithm's base (about 2.71828), and 
the function's argument is x. The plot of the sigmoid function 

resembles an S curve, with the function being continuous and 

differential at any point within its area. 

3. FINDINGS AND CONTRIBUTIONS 

 
This study conducts a series of studies to figure out the 

effectiveness of the recommended model using static 

analysis. We compared the results to those obtained using 

other state-of-the-art methodologies. This work uses Drebin, 

Malgenome, and Maldroid2020 datasets. Table 1 describes 

the details of the above three datasets. 

 
Table 1.  Android Malware Dataset Description. 

Dataset Type Feat

ures 

Sam

ples 

Classes Malware 

samples 

Benign 

Samples 

Drebin Static 215 1503
6 

2 4434 7590 

Malgen

ome 

Static 215 3799 2 994 2045 

Maldroi
d2020 

Static 1633 2081 2 792 872 

 
1. The Drebin dataset encompasses 215 static features, 

which include Permissions and API calls that have been 

obtained from a dataset comprising 15,306 APK files 

[34, 35]. These features are derived within the manifest 

file and disassembled code of the APK file. The dataset 

is composed of 7,590 benign instances and 4,434 

malware samples. 

2. The Malgenome dataset contains 215 static features, 

including permissions extracted from 3799 APK files 

[36]. The dataset comprises 2045 benign instances and 

994 malware samples. 

3. CICMaldroid2020 contains 1633 static features, 

including intents, permissions, and services from 2081 

APK files. It contains 872 benign and 792 malware 

samples [17, 10]. 

 
In the proposed work, we deleted the dataset's missing and 

duplicate values. We performed data preprocessing 

(SMOTE+Standardization), and then PCA was used to lower 

the dimensionality. MLP takes the new features extracted 

after PCA as input. MLP classifies the given sample as either 

malware or benign. In the case of an MLP, the total amount 

of the input layer's neurons varies depending on the size of 

the features. The proposed MLP comprises five layers that 

are hidden in addition to one layer for input, each comprising 

50 neurons using the output layer using the Sigmoid 

activation function and the ReLU activation function.  The 

proposed work utilizes the Adam optimizer to reduce the loss 

function during neural network training. 

The rate at which learning occurs is set at 0.01, and we 

conclude the training procedure after 20 epochs. Dropout is 

introduced into the training process following the second and 

third hidden layers To avoid overfitting, given a rate of 

dropout of 0.3. The training dataset is divided into smaller 

batches to modify the model's values during training. The 

batch size is 32.  

Figure 9 conveys the model summary of the Drebin dataset, 

Figure 10 conveys the model summary of the Malgenome 

dataset, and Figure 11 represents the model summary of the 

MalDroid2020 dataset. Figures 12, 13, and 14 demonstrate 

both the loss and accuracy curves for the datasets utilized in 

this work. 

We performed different sets of experiments with and 

without using data preprocessing (SMOTE) and feature 

reduction (PCA) to examine the suggested model's 

effectiveness. Experiment 1 achieves the highest accuracy, 

which uses data preprocessing and feature reduction 

techniques in combination with MLP. 

• Experiment 1 conducted on the proposed model 

(combining SMOTE+PCA+MLP) Drebin gives the 

highest accuracy compared to the remaining datasets. 

Table 2 shows the performance of all three datasets 

based on the proposed model. 

• Experiment 2 was conducted by performing only 

PCA+MLP on the given four datasets. It observes that all 

the datasets achieve less accuracy compared to 

experiment 1 because these datasets need to be more 

balanced. Table 3 shows the performance of all three 

datasets. 

• Experiment 3 was conducted by performing only 

SMOTE+MLP. The Malgenome dataset achieves the 

highest accuracy, but it is less than the proposed model 

because using PCA combines correlated features into 

new features, reduces feature space, and improves 

accuracy. Table 4 shows the performance of all three 

datasets. 

• In the proposed model, we conduct experiment 4 by 

performing only MLP. The Malgenome dataset achieves 

the highest accuracy, but it is less compared to the 

suggested approach. Table 5 shows the performances of 

all three datasets. 

Table 2.  Performances of the proposed model. 
Dataset Principal 

Components 
Accuracy Precision Recall F1_score 

Drebin 50 98.27 97.25 98.12 97.69 

Malgenome 70 98.15 96.32 98.49 97.39 

MalDroid202
0 

400 97.12 95.7 98.5 97.1 

 

Table 3.  Performances of the PCA+MLP  model. 
Dataset Principal 

Components 

Accuracy Precision Recall F1_score 

Drebin 50 97.27 95.69 97.05 96.36 

Malgenome 70 96.31 97.98 91.35 94.55 

MalDroid202

0 

400 96.16 94.73 97.53 96.11 

 

Table 4.  Performances of the SMOTE+MLP model. 
Dataset Feature size Accuracy Precision Recall F1_score 

Drebin 215 97.27 94.8 98.03 96.4 

Malgenome 215 97.76 96.6 96.9 96.8 
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MalDroid202

0 

1633 96.64 93.9 99.5 96.65 

 

Table 5.  Performances of the MLP model. 
Dataset Feature size Accuracy Precision Recall F1_score 

Drebin 215 97 94 98 96 

Malgenome 215 97.76 94.9 98.8 96.85 

MalDroid20
20 

1633 95.9 93.45 98.5 95.2 

 

 
Figure 9.   Model Summary for Drebin Dataset 

 

 
Figure 10.   Model Summary for Malgenome Dataset 

 

 
Figure 11.   Model Summary for MalDroid2020 dataset 

 

 
 

Figure 12.   Model Training, Testing, and Validation 

accuracy and loss curves of Drebin 

 

Figure 13.   Training, Testing, and Validation accuracy and 

loss curves of Malgenome 

 

Figure 14.   Training, Testing, and Validation accuracy and 

loss curves of MalDroid2020 

Table 6 

Comparison of the proposed approach with the Existing 

approach 
S.No Reference Dataset classifier Accuracy 

1 [2] Drebin RF 95% 

2 [2] Malgenome RF 97% 

3 [2] Maldroid2020 RF 97% 

4 [3] Drebin RL & RF 95.6% 

5 [8] Own dataset AE 96% 

6 [9] CIC-2019 DNN 94.16% 

7 [9] CCCS-CIC DNN 97.72% 

8 [21] Own dataset SVM 93.62% 

9 [22] Malgenome 

and a few own 
samples 

Deep Learning 98% 

10 Proposed 

approach 

Drebin MLP 98.27% 

11 Proposed 
approach 

Malgenome MLP 98.15% 

12 Proposed Maldroid2020 MLP 97.12% 
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approach 

 

Table 6 demonstrates the comparative study table of the 

proposed approach with existing approaches from standard 

journals like IEEE Access, Springer Elsevier, etc. From Table 

6, it is observed that the proposed approach achieves the best 

result. 

3.1 Evaluation Metrics: 

To evaluate how well the proposed model predicts outcomes, 

We used typical evaluation criteria like precision, accuracy, 

recall, and the score of F1. The definitions of these 

assessment metrics are as follows: 

 Accuracy: The ratio of accurately predicted samples to the 

total number of samples is known as accuracy. 

Accurac𝑦 =
Tp + Tn

Tp + Fp + Tn + Fn
 

Precision: The percentage of accurately anticipated positive 

samples among all samples projected to be positive is known 

as precision.          

Precission =
Tp

Tp + Fp
 

Recall: The percentage of accurately predicted positive 

samples among all samples that are in the positive class 

is called recall, or sensitivity. 

Recall =
Tp

Tp + Fn
 

F1-Score: The score of F1 is a robust metric for calculating 

the harmonic average of precision and recall. 

F1_score =
2 ∗ Precision ∗ Recall

Precision + Recall
 

Experimental setup: The tests were carried out utilizing 

Google Colaboratory (Colab), an online interactive 

computing environment hosted on the Google Cloud 

platform. We utilized the Pro Plus version of the Colab 

notebook for these experiments, which offers extended 

runtimes and more sessions compared to other versions. 

4. CONCLUSION 
A deep learning-based approach is presented in the suggested 

article that can identify Android malware. It first uses 

SMOTE oversampling to balance the dataset. 

Standardization is applied to convert all the features 

into the same range of values so that every feature has 

equal weight while performing classification. It 

involves PCA for dimensionality reduction. It applies  

MLP for final classification. It uses five layers that are 

hidden and one layer of output in an MLP. Activation 

functions known as ReLU and sigmoid are used by the 

hidden layer and output layer, respectively. 

. This model uses Adam optimizer for optimization. The 

efficiency of the suggested technique was examined 

using four different datasets: Drebin, Malgenome, and 

Maldroid2020 achieving accuracies of 98.27%, 98.15%, 

and 97.12% respectively. 
The classification result proves the proposed method is 

more accurate than earlier efforts. In the future, we will 

perform multilevel classification using multimodal deep 

neural networks to detect different types of malware. 
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