

 ISSN: 2584-0495 Vol. 2, Issue 9, pp. 1197-1202

International Journal of Microsystems and IoT
ISSN: (Online) Journal homepage: https://www.ijmit.org

Parallelization of Scientific Applications with MPI

Sanjay Raju, Astha Paditar, Vikas Gaur and Biswajit Bhowmik

Cite as: Raju, S., Paditar, A., Gaur, V., & Bhowmik, B. (2024). Parallelization of Scientific

Applications with MPI. International Journal of Microsystems and IoT, 2(9), 1197–1202.

https://doi.org/10.5281/zenodo.14100106

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 23 Sept 2024

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.14100106

 Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.14100106
https://doi.org/10.5281/zenodo.14100106
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

1197

International Journal of Microsystems and IoT
 Vol. 2, Issue 9, pp.1197-1202; DOI: https://doi.org/10.5281/zenodo.14100106

Parallelization of Scientific Applications with MPI
Sanjay Raju, Astha Paditar, Vikas Gaur and Biswajit Bhowmik

Maharshi Patanjali CPS Lab, BRICS Lab, Department of Computer Science and Engineering, National Institute of Technology

Karnataka, Mangalore, Bharat

KEYWORDS

Open Multi-Processing(OpenMP);
Message Passing Interface(MPI);
Open Accelerators(OpenACC);
Scalable Local Fourier Analysis
(SLFA); Block Diagonal Varying
System (BDVS).

1. INTRODUCTION

High-performance computing (HPC) is characterized by its

ability to perform complex calculations at unprecedented

speeds. For instance, a typical laptop with a 3 GHz processor

can execute around 3 billion calculations per second—an

impressive feat compared to human capability but modest

relative to HPC systems that can achieve quadrillions of

calculations per second. A prime example of HPC is the

supercomputer, which consists of thousands of interconnected

compute nodes working in parallel to tackle complex tasks [1].

This parallel processing model is akin to aggregating the

computing power of thousands of PCs to accelerate task

completion significantly.

The shift toward Parallel computing architecture, such as

OpenMP, OpenACC, and MPI, are pivotal in advancing the

efficiency of scientific codes within the HPC domain. These

models enable the parallelization of computational tasks,

resulting in substantial performance gains for scientific

applications [2]. By distributing computations across multiple

processors, parallel computing not only reduces execution

times but also handles larger datasets more effectively [3,4].

This process involves converting sequential code into a parallel

format, addressing challenges such as loop parallelism and

dependency management [5].

The process of transitioning from sequential to parallel code is

fraught with challenges. One of the primary difficulties lies in

handling data dependencies and ensuring that parallel tasks do

not interfere with each other [6,7].

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

Additionally, selecting the most appropriate parallelization

model for a given application can be complex, requiring careful

consideration of the specifics and requirements of the code.

Achieving scalability, where performance improvements

continue as more processors are added, is another significant

challenge [8,9]. Moreover, the necessity for domain-specific

knowledge often complicates the parallelization process, as

understanding the scientific context is crucial for effective

optimization [10,11].

The method of parallelizing scientific applications using

OpenMP, OpenACC, and MPI is mentioned in [12]. This

approach emphasizes the efficient modernization of sequential

codes to make them parallel-ready with minimal redesign. It

involves a structured framework that identifies parallelizable

loops, evaluates performance gains, converts loops into

independent processes, and integrates checkpointing logic. This

method effectively addresses the intricacies of loop parallelism

and provides strategies to optimize code for enhanced

parallelism while minimizing extensive redesign efforts.

The implementation of this methodology led to significant

speedups in various scientific codes. Notably, there is a

twelvefold increase in the performance of the DiskMass Survey

code and a 3.70x enhancement in the efficiency of the Spray

Web code. These improvements are achieved through the

utilization of parallelization models such as MPI, OpenACC,

and OpenMP. However, the study also acknowledges certain

limitations. It does not offer explicit solutions for handling true

dependencies, choosing suitable parallelization models,

achieving scalability, or addressing domain-specific knowledge

requirements—challenges that remain in the parallelization of

ABSTRACT

Modernizing scientific codes to harness parallel computing is essential for significantly boosting
performance and efficiency. However, transitioning from sequential to parallel programming introduces
complex challenges, such as managing global variables, addressing aliasing issues, and integrating
random number generators and stateful functions. To address these challenges, this paper proposes a
semi-automatic methodology designed to simplify the parallelization of applications with minimal
redesign effort. This versatile approach supports various parallel computing paradigms, including shared
memory systems (via OpenMP), message passing (via MPI), and GPU computing (via OpenACC). The
methodology's efficacy is validated by applying it to four real-world physics and materials science
codes, demonstrating its broad applicability and substantial impact on advancing scientific
computations.

https://doi.org/10.5281/zenodo.14100106
https://www.isve.in/default?page=adminisve&pid=home

1198

scientific codes. Despite these limitations, the paper

demonstrates notable achievements in enhancing the

performance of scientific applications.

The rest of this paper is organized as follows: Section 2

provides a related works. Section 3 presents a proposed

methodology. Section 4 discusses the experimental setup and

results. Section 5 concludes the final paper.

2. RELATED WORKS

HPC has seen significant advancements in recent years, driven

by the need to process vast amounts of data and perform

complex calculations more efficiently. Numerous studies have

explored various methodologies for parallelizing scientific

applications to leverage the full potential of modern HPC

systems. Recent breakthroughs in this domain include

optimizing nested loop parallelism through meta-heuristics,

enhancing distributed stack programming for parallel

processing, and employing deep learning approaches to

accelerate the analysis of whole-slide images in virtual

pathology.

Mahjoub [13] introduced an advanced technique to enhance

parallelism in nested loops by transforming non-uniform loop

structures into uniform ones using the Shuffled Frog-Leaping

Algorithm (SFLA). Their approach identifies optimal Basis

Dependence Vector Sets (BDVS), reducing the size of the

Dependence Cone (DCS) and improving loop uniformity.

However, challenges such as prolonged execution times and

sensitivity to parameter settings remain. Drocco [14] explore a

distributed stack for programming with distributed algorithms,

achieving linear speedup for single-range algorithms and

optimizations for multi-range algorithms. However, the

complexity of the performance model for multi-range

algorithms presents limitation [15] addresses the analysis of

gigapixel-scale whole-slide images (WSIs) in virtual pathology

using deep learning models. Their HPC-based approach

significantly reduces processing times, demonstrating notable

efficiency improvements.

Ying [16] presents a technique to overcome speculative

parallelization obstacles using the T4 compiler, addressing

issues like incorrect assumptions and hardware scalability

constraints. While promising, further work is needed to

simplify implementation and reduce programming load. The

author in [17] employed an optimizing parallel communication

by leveraging MPI-4.0 technologies to enhance thread-to-

thread communication and eliminate bottlenecks. Their

research shows performance improvements and better

scalability in MPI+threads applications. Gupta [18] tackle

cloud computing challenges by integrating a primary backup

model to enhance fault tolerance and productivity. Their E-DFT

design algorithm effectively reduces processing time and

improves practical features [19] proposed a method to model

performance and predict speedup of parallel loops in multi-

socket multi-core architectures using M/M/1/N/N queueing

models. Their LoopPerf library offers fine-grained control over

worker threads, optimizing parallel loop performance.

Giordano [20] introduce a method to balance performance

between nodes in a cellular automata (CA) model, achieving

significant latency reductions in both shared and distributed

memory configurations. In cloud computing, venture

scheduling [11, 12] aims to allocate tasks to ensure maximum

profit and timely completion, despite the challenges posed by

dynamic assignment arrivals and limited capacity. The Profit

Maximization Algorithm (PMA) [13] employs simulated

annealing particle swarm optimization (SAPSO) to optimize

project allocation and balance workloads between private and

public clouds, addressing the complexities of dynamic

scheduling. This paper addresses the limitations identified in

these studies by providing a semi-automatic methodology for

parallelizing scientific applications. Table 1 summarized the

literature.

Table. 1 Existing Approach for Parallelization Scientific

Applications

Author Approach Results Limitations

Aldinucci et al.

[12]

Parallelize

scientific

applications using
MPI

Speedup of 12 in

scientific codes

Unable to achieve

scalability

Mahjoub et al.

[13]

Convert nested

loops into loop
parallelization

with Shuffled

frog-leaping
algorithm

BDVS sets

discovered by
uniformization

Sometimes

execution time is
large

Drocco et al. [14] implementation of

stack for
distributed

algorithms

Two Intel Xeon

with parallel
execution

Sometimes not

accurately reflect
real-world

situations

Li et al. [15] Parallelization

scientific
algorithm focusing

on digital

pathology

Stride size affects

the sensitivity of
lesion-level

detection

performance.

Challenging to

measure sustained
memory

bandwidth

Ying et al. [16,24] Increases the

prevalence of

parallelism in
programming

Creates tiny tasks

quickly and

removes stack
contention

Complexity is

high, and resource

utilization causes
overhead

Zambre et al. [17] Optimizes thread-

to-thread

communication
independence

Gain in MPI+

thread

applications
performance

Synchronization

issues in

partitioned
communication

models

Gupta et al. [18] Improves resource
utilization and

minimizes task

response time

Effectively
minimizes

response time and

maximizes
resource

utilization

 Network and
interconnect

technologies are

limiting factors

Cho et al. [19] Models
performance and

forecasts speedup

of parallel loops in
multi-socket

multicore

architectures

Accurately
forecasts

acceleration

Does not
sufficiently handle

synchronization

and scheduling
overhead

Giordano et al.
[20,23]

Dynamic
techniques to

achieve optimal

resource
utilization

150\%
performance gain

with complex

transition
functions.

Relies on
mathematical

formalizations.

3. PROPOSED METHODOLOGY

This section introduces the proposed methodology,

1199

emphasizing its novel contributions and improvements over

existing approaches. Previous work using MPI-based

parallelization provided essential insights for our approach

[12]. Techniques for enhancing parallelism in nested loops

informed our task resizing strategy, while distributed

programming in C highlighted the importance of robust

execution in distributed systems. Additionally, deep learning

models leveraging high-performance computing influenced our

focus on task size variations [15]. Insights into speculative

parallelization and thread communication guided our proposed

scheduler optimization. Furthermore, dynamic scheduling and

performance modeling emphasized task length and scheduling

effectiveness, while dynamic load balancing aligned with our

goal of optimizing task performance [20,22,26].

Fig. 1 Task Scheduling Algorithm

The proposed task scheduling algorithm (Figure 1) initiates a

priority queue (PQ) to manage tasks based on their priority.

Each task is encapsulated within a Task Object, which contains

attributes such as Task ID, Size, Priority, and Arrival Time,

which uniquely identify each task, determine resource

requirements, and resolve conflicts. The rules iterate through

listing obligations, creating a Task Object for everyone, and

including it in the PQ based on its precedence. If multiple

obligations have equal precedence, Arrival Time is used as a

tiebreaker to prioritize the earlier task. After initializing the PQ,

the rules create a Scheduled Tasks Queue to maintain the ready

tasks for execution.

In the main scheduling loop, tasks are dequeued from the PQ

one by one. For each task, the algorithm checks if the necessary

resources are available. If sufficient resources are available,

they are allocated, and the task is added to the

ScheduledTasksQueue for execution. If resources are

insufficient, the task is re-added to the PQ with an updated

priority to be reconsidered in the next cycle. This process

continues until all tasks are scheduled. Finally, the schedule

consists of tasks with their execution order derived from the

ScheduledTasksQueue, completing the scheduling system. This

approach ensures tasks are executed based on priority and

arrival time while considering resource constraints.

Fig. 2 Proposed Algorithm Flowchart

The proposed approach focuses on dynamic task resizing,

optimizing task execution across multiple cores. It enhances

scheduler performance by optimizing task sizes and prioritizing

tasks based on priority and arrival time. The method

incorporates MPI programming for parallel processing,

boosting system speed and performance in high-performance

computing environments. It ensures effective resource

1200

allocation and reallocation, addressing resource availability and

task requirements. The proposed method is designed to scale

efficiently with increasing tasks and cores, making it suitable

for large-scale scientific applications. This methodology

addresses the limitations of previous approaches by providing a

semi-automatic system for parallelizing scientific applications,

ensuring optimal performance and resource utilization, as

illustrated in Figure 2.

4. EXPERIMENT AND RESULTS

This section details the experimental setup, performance

metrics, results, and analysis of the proposed task scheduling

algorithm. It details the methodology used to evaluate the

performance of the scheduling system and includes the results,

in Table 2 which highlight the metrics used for performance

evaluation. Graphical representations are provided in Figures 3

and 4 to visualize the results effectively. Additionally, the

equations used for parallel computing of subtasks and their

calculations are presented to support the analysis.

Fig. 3 Parallel Computing Task for Execution Time

4.1 Metrics Used for Performance Measure

A wide range of metrics are calculated and examined to identify

grain size and related overheads, which can be dynamically

adjusted to optimize task size. Here, Execution Time is (𝑡𝑒𝑥𝑒)

and Total time is (𝑡𝑓𝑢𝑛𝑐). The key metrics include:

 4.1.1 Thread Idle-Rate

This refers to a thread's time in an idle state. A high idle rate

suggests the thread frequently anticipates responsibilities or

sources in equation 1, which could signify inefficiencies in task

scheduling or resource allocation.

𝑡𝑜 =
∑ 𝑡𝑓𝑢𝑛𝑐 − ∑ 𝑡𝑒𝑥𝑒

𝑛𝑡

 (1)

 4.1.2 Task Duration

This is the total time required to finish a task from start to finish.

It consists of the time spent actively processing the task and any

delays or waiting intervals that could arise during execution.

Task in in equation 2. Duration is critical for understanding how

long each project will take and scheduling tasks efficiently.

𝑡𝑑 =
∑ 𝑡𝑒𝑥𝑒

𝑛𝑡

 (2)

 4.1.3 Task Overhead

This represents the additional time and resources required to

manage a task beyond the actual processing time. It includes

various factors like context switching and setup. Reducing task

overhead is crucial for enhancing overall system performance

mentioned in in equation 3.

𝑡𝑜 =
∑ 𝑡𝑓𝑢𝑛𝑐 − ∑ 𝑡𝑒𝑥𝑒

𝑛𝑡

 (3)

Table. 2 Evaluation of Parallel Computing Subtasks

Process Subtask Task Result

 0 0 0 637

 1 1 1 501

 2 2 2 474

 3 3 3 449

 0 4 4 470

 1 5 5 648

 2 6 6 327

 3 7 7 518

 0 8 8 628

 1 9 9 532

 2 10 10 553

 3 11 11 533

 0 12 12 477

 1 13 13 556

 2 14 14 343

 3 15 15 444

 0 16 16 541

 1 17 17 502

 2 18 18 478

 3 19 19 351

 4.1.4 Thread Management Overhead

This is the overhead associated with managing threads,

including tasks such as creating, destroying, and

synchronizing threads. It also covers the cost of context

switching between threads. High thread management

overhead can affect system performance, so optimizing thread

control is essential for efficient multitasking in equation 4

𝑇𝑜 =
𝑡𝑜 ∗ 𝑛𝑡

𝑛𝑐

 (4)

 4.1.5 Wait Time

This is the time a thread or assignment spends looking ahead

to sources or other conditions to be met before it can hold with

execution. Wait time can result from different factors, such as

1201

looking ahead to I/O operations to finish or looking in advance

to exceptional tasks or threads to launch assets in equation 5.

𝑇𝑤 =
𝑡𝑑 − 𝑡𝑑1 ∗ 𝑛𝑡

𝑛𝑐

 (5)

 4.1.6 Execution Time (𝒕𝒆𝒙𝒆)

Execution time is the duration spent actively processing a task,

including any extra delays or setup time. It measures the time

from when the computation starts to when it finishes, excluding

any extra delays or setup time.

 4.1.7 Total Time (𝒕𝒇𝒖𝒏𝒄)

It represents the total duration of a task, including execution

time, delays, overheads, and other factors such as resource

waiting, setup, and interruptions. It provides a comprehensive

view of the duration of a task, considering all factors affecting

its completion.

4.2 Technologies Used

The methodology utilizes various tools and frameworks for

performance assessment and optimization. Profilers such as

gprof and Valgrind are employed to analyze execution

characteristics. Gprof aids in identifying performance

bottlenecks by providing detailed records of function calls and

execution times. Valgrind, with tools like Callgrind and

Cachegrind, offers in-depth analysis of execution time, thread

idle costs, and task overhead, which are crucial for performance

optimization.

Fig. 3 Time Required for Different Processes

In the realm of parallel computing, OpenMP and MPI are

pivotal. OpenMP facilitates task division among multiple

threads within a shared memory environment, maximizing the

use of multicore processors. MPI, on the other hand, manages

communication between processes on different nodes,

supporting data exchange and synchronization in distributed

computing systems. These frameworks enable efficient

parallelization and effective task management.

For visualization purpose, Matplotlibrar and Gnuplot are used

to generate graphs and charts that illustrate performance data.

SLURM is utilized for job scheduling and resource allocation,

ensuring efficient use of computational resources. Additionally,

Apache Mesos and Kubernetes are leveraged for dynamic task

resizing and load balancing, ensuring tasks are scheduled

effectively and resources are optimally utilized. These tools

collectively enhance performance and efficiency.

5 CONCLUSION

This paper evaluates the effects of task size variations on the

performance of schedulers in multicore systems. The findings

reveal that significant performance differences arise with

changes in task size, underscoring the importance of task

granularity for optimizing scheduling efficiency. The analysis

indicates that tasks with durations of 15, 4, 4, and 3 seconds

show varied impacts on scheduler performance, demonstrating

the need for precise task size adjustment to enhance both

execution speed and overall system efficiency. Looking

beforehand, we are considering the possibility of dynamically

converting project sizes for ongoing development, analyzing

the effectiveness of numerous scheduling approaches with

exceptional undertaking sizes to encompass a much wider

variety of workloads and realistic applications to corroborate

our effects similarly.

REFERENCES

1. Czarnul, P. (2018). Parallel programming for modern high performance
computing systems. CRC Press.zzavi B. (2012) Design of Analog CMOS

Integrated Circuit. Tata McGraw Hill Education.

2. Saxena, D., & Bhowmik, B. (2024, May). Analysis of Selected Load
Balancing Algorithms in Containerized Cloud Environment for

Microservices. In 2024 IEEE 4th International Conference on VLSI

Systems, Architecture, Technology and Applications (VLSI SATA) (pp.1-
6).IEEE. https://doi.org/10.1109/VLSISATA61709.2024.10560139

3. Kirk, D. B., & Wen-Mei, W. H. (2016). Programming massively parallel

processors: a hands-on approach. Morgankaufmann.
4. Patterson, D. (2010). In Praise of Programming Massively Parallel

Processors: A Hands-on Approach. Parallel Computing.

5. Hwang, K., & Jotwani, N. (1993). Advanced computer

architecture:parallelism,scalability,programmability (Vol. 199). New

York: McGraw-Hill.

6. Li, X. F. (2016). Advanced design and implementation of
virtualmachines.CRCPress. https://doi.org/10.1201/9781315386706

7. McCool, M. D. (2008). Scalable programming models for massively

multicore processors. Proceedings of the IEEE, 96(5), 816-831.
10.1109/JPROC.2008.917731

8. Kumar, V. P., & Gupta, A. (1994). Analyzing scalability of parallel

algorithms and architectures. Journal of parallel and distributed
computing, 22(3),379-391.

https://doi.org/10.1006/jpdc.1994.1099
9. Campanoni, S., Agosta, G., Crespi Reghizzi, S., & Di Biagio, A. (2010).

A highly flexible, parallel virtual machine: Design and experience of

ILDJIT. Software: Practice and Experience, 40(2), 177-207.

http://dx.doi.org/10.1002/spe.950
10. Dimakopoulos, V. V. (2013). Parallel programming models. In Smart

multicore embedded systems (pp. 3-20). New York, NY: Springer New
York.

11. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., & Chapman,

B. (2011). High performance computing using MPI and OpenMP on

https://doi.org/10.1109/VLSISATA61709.2024.10560139
https://doi.org/10.1201/9781315386706
http://10.0.4.85/JPROC.2008.917731
https://doi.org/10.1006/jpdc.1994.1099

1202

multi-core parallel systems. Parallel Computing, 37(9), 562-

575.https://doi.org/10.1016/j.parco.2011.02.002
12. Aldinucci, M., Cesare, V., Colonnelli, I., Martinelli, A. R., Mittone, G.,

Cantalupo, B., ... & Drocco, M. (2021). Practical parallelization of

scientific applications with OpenMP, OpenACC and MPI. Journal of
parallel and distributedcomputing, 157,13-29..

https://doi.org/10.1016/j.jpdc.2021.05.017
13. Mahjoub, S., Golsorkhtabaramiri, M., Amiri, S. S. S., Hosseinzadeh, M.,

& Mosavi, A. (2022). A New Combination Method for Improving

Parallelism in Two and Three Level Perfect Nested Loops. IEEE

Access, 10,74542-74554.
http://dx.doi.org/10.1109/ACCESS.2022.3190483

14. Drocco, M., Castellana, V. G., & Minutoli, M. (2020, June).

Practicaldistributed programming in C++. In Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed

Computing (pp.35-39).

https://doi.org/10.1145/3369583.3392680
15. Li, W., Mikailov, M., & Chen, W. (2023). Scaling the inference of digital

pathology deep learning models using cpu-based high-performance

computing. IEEE Transactions on Artificial Intelligence, 4(6),1691-1704.
http://dx.doi.org/10.1109/TAI.2023.3246032

16. Ying, V. A., Jeffrey, M. C., & Sanchez, D. (2020, May). T4: Compiling

sequential code for effective speculative parallelization in hardware.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture(ISCA) (pp.159-172).IEEE.
https://doi.org/10.1109/ISCA45697.2020.00024

17. Zambre, R., Sahasrabudhe, D., Zhou, H., Berzins, M.,

Chandramowlishwaran, A., & Balaji, P. (2021). Logically parallel
communication for fast mpi+ threads applications. IEEE Transactions on

ParallelandDistributedSystems, 32(12),3038-3052.

http://dx.doi.org/10.1109/TPDS.2021.3075157
18. Gupta, P., Sahoo, P. K., & Veeravalli, B. (2021). Dynamic fault tolerant

scheduling with response time minimization for multiple failures in

cloud. Journal of Parallel and DistributedComputing, 158,80-93.
https://doi.org/10.1016/j.jpdc.2021.07.019

19. Cho, Y., Oh, S., & Egger, B. (2019). Performance modeling of parallel

loops on multi-socket platforms using queueing systems. IEEE
Transactions on Parallel and DistributedSystems,31(2),318-

331.https://doi.org/10.1109/TPDS.2019.2938172
20. Giordano, A., De Rango, A., Rongo, R., D'Ambrosio, D., & Spataro, W.

(2020). Dynamic load balancing in parallel execution of cellular automata.

IEEE Transactions on Parallel and Distributed Systems, 32(2), 470-484.

https://doi.org/10.1109/TPDS.2020.3025102
21. Girish, K. K., Kumar, S., & Bhowmik, B. R. (2024). Industry 4.0: Design

Principles, Challenges, and Applications. Topics in Artificial Intelligence

Applied to Industry4.0,39-68.
https://doi.org/10.1002/9781394216147.ch3

22. Hegde, A., & Bhowmik, B. (2024, April). Big Data Insights: Pioneering

Changes in FinTech. In 2024 IEEE 9th International Conference for
Convergence in Technology (I2CT) (pp. 1-6). IEEE.

https://doi.org/10.1109/I2CT61223.2024.10543820
23. Vaishnavi, V. G. S. S., & Bhowmik, B. (2024, January). Evolution of

Neuromorphic Computing. In 2024 Fourth International Conference on

Advances in Electrical, Computing, Communication and Sustainable

Technologies (ICAECT) (pp. 1-8).IEEE.
https://doi.org/10.1109/ICAECT60202.2024.10469389

24. Kumar, S., & Bhowmik, B. (2024, January). Emergence, Evolution, and

Applications of Cyber-Physical Systems in Smart Society. In 2024 Fourth

International Conference on Advances in Electrical, Computing,

Communication and Sustainable Technologies(ICAECT) (pp.1-8).IEEE.

https://doi.org/10.1109/ICAECT60202.2024.10468864
25. Samimi, N., Nasri, M., Basten, T., & Geilen, M. (2024, May). Work in

Progress: Guaranteeing weakly-hard timing constraints in server-based

real-time systems. In 2024 IEEE 30th Real-Time and
EmbeddedTechnology and Applications Symposium (RTAS) (pp.402-

405).IEEE.562-575.

https://doi.org/10.1109/RTAS61025.2024.00043
26. Hammadeh, Z. A., Quinton, S., & Ernst, R. (2019). Weakly-hard real-time

guarantees for earliest deadline first scheduling of independent

tasks. ACM Transactions on Embedded Computing
Systems(TECS), 18(6),1-25.

https://doi.org/10.1145/3356865

AUTHORS

Sanjay Raju is currently pursuing

M.Tech in Computer Scienceand

Engineering from NIT Karnataka,

Mangalore, India. He received the BTech

degree in Computer Science and

Engineering from Vidya Jyothi Institute of

Technology, Hyderabad, India in 2020.

His area of interest includes deep learning

and computational performance.

E-mail:ramapogusanjayraju.232cs026@nitk.edu.in

Astha Paditar recieved Btech degree from

Jabalpur Engineering College, Madhya

Pradesh, India in 2023. She is currently

pursuing MTech in Computer Science and

Engineering from National Institute of

Technology Karnataka, Mangalore. Her

research interest includes deep learning,

machine learning and computational performance.

Author Email: asthapatidar.232cs003@nitk.edu.in

Vikas Gaur recieved Btech degree from

Jabalpur Engineering College, Madhya

Pradesh, India in 2023. He is currently

pursuing MTech in Computer Science and

Engineering from National Institute of

Technology Karnataka, Mangalore. His

research interest includes deep learning,

machine learning and computational performance

E-mail:vikasgaur.232cs037@nitk.edu.in

Biswajit Bhowmik is serving as Assistant

Professor at NIT Karnataka, Bharat, in

Dept. of Computer Science and

Engineering. He has more than 12 years of

teaching experience. His research interest

includes Circuits and System (Design,

Testing, Verification), CPS, IoT, and AI

technologies. He has published more than 100 research papers,

including 3 Best Paper Awards, 1 Young Scientist Award, and

a Best Researcher Award. He has setup a research lab called

BRICS where at the moment 25 scholars from UG, PG, and PhD

levels are actively involved in researches in the above

mentioned areas. He is a member of ACM, senior member of

IEEE, and associated with various IEEE societies.

E-mail: brb@nitk.edu.in

http://dx.doi.org/10.1109/ACCESS.2022.3190483
http://dx.doi.org/10.1109/TAI.2023.3246032
https://doi.org/10.1109/ISCA45697.2020.00024
https://doi.org/10.1016/j.jpdc.2021.07.019
https://doi.org/10.1109/TPDS.2019.2938172
https://doi.org/10.1109/TPDS.2020.3025102
https://doi.org/10.1002/9781394216147.ch3
https://doi.org/10.1109/I2CT61223.2024.10543820
https://doi.org/10.1109/ICAECT60202.2024.10469389
https://doi.org/10.1109/ICAECT60202.2024.10468864
https://doi.org/10.1109/RTAS61025.2024.00043
https://doi.org/10.1145/3356865
file:///C:/Users/CSEDEPT/AppData/Roaming/Microsoft/Word/ramapogusanjayraju.232cs026%7d@nitk.edu.in
mailto:asthapatidar.232cs003@nitk.edu.in
mailto:vikasgaur.232cs037@nitk.edu.in
mailto:brb@nitk.edu.in

