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1. INTRODUCTION 

High-performance computing (HPC) is characterized by its 

ability to perform complex calculations at unprecedented 

speeds. For instance, a typical laptop with a 3 GHz processor 

can execute around 3 billion calculations per second—an 

impressive feat compared to human capability but modest 

relative to HPC systems that can achieve quadrillions of 

calculations per second. A prime example of HPC is the 

supercomputer, which consists of thousands of interconnected 

compute nodes working in parallel to tackle complex tasks [1]. 

This parallel processing model is akin to aggregating the 

computing power of thousands of PCs to accelerate task 

completion significantly. 

The shift toward Parallel computing architecture, such as 

OpenMP, OpenACC, and MPI, are pivotal in advancing the 

efficiency of scientific codes within the HPC domain. These 

models enable the parallelization of computational tasks, 

resulting in substantial performance gains for scientific 

applications [2]. By distributing computations across multiple 

processors, parallel computing not only reduces execution 

times but also handles larger datasets more effectively [3,4]. 

This process involves converting sequential code into a parallel 

format, addressing challenges such as loop parallelism and 

dependency management [5].  

The process of transitioning from sequential to parallel code is 

fraught with challenges. One of the primary difficulties lies in 

handling data dependencies and ensuring that parallel tasks do 

not interfere with each other [6,7].  
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Additionally, selecting the most appropriate parallelization 

model for a given application can be complex, requiring careful 

consideration of the specifics and requirements of the code.  

Achieving scalability, where performance improvements 

continue as more processors are added, is another significant 

challenge [8,9]. Moreover, the necessity for domain-specific 

knowledge often complicates the parallelization process, as 

understanding the scientific context is crucial for effective 

optimization [10,11]. 

The method of parallelizing scientific applications using 

OpenMP, OpenACC, and MPI is mentioned in [12]. This 

approach emphasizes the efficient modernization of sequential 

codes to make them parallel-ready with minimal redesign. It 

involves a structured framework that identifies parallelizable 

loops, evaluates performance gains, converts loops into 

independent processes, and integrates checkpointing logic. This 

method effectively addresses the intricacies of loop parallelism 

and provides strategies to optimize code for enhanced 

parallelism while minimizing extensive redesign efforts. 

The implementation of this methodology led to significant 

speedups in various scientific codes. Notably, there is a 

twelvefold increase in the performance of the DiskMass Survey 

code and a 3.70x enhancement in the efficiency of the Spray 

Web code. These improvements are achieved through the 

utilization of parallelization models such as MPI, OpenACC, 

and OpenMP. However, the study also acknowledges certain 

limitations. It does not offer explicit solutions for handling true 

dependencies, choosing suitable parallelization models, 

achieving scalability, or addressing domain-specific knowledge 

requirements—challenges that remain in the parallelization of 

 
ABSTRACT 

Modernizing scientific codes to harness parallel computing is essential for significantly boosting 
performance and efficiency. However, transitioning from sequential to parallel programming introduces 
complex challenges, such as managing global variables, addressing aliasing issues, and integrating 
random number generators and stateful functions. To address these challenges, this paper proposes a 
semi-automatic methodology designed to simplify the parallelization of applications with minimal 
redesign effort. This versatile approach supports various parallel computing paradigms, including shared 
memory systems (via OpenMP), message passing (via MPI), and GPU computing (via OpenACC). The 
methodology's efficacy is validated by applying it to four real-world physics and materials science 
codes, demonstrating its broad applicability and substantial impact on advancing scientific 
computations. 
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scientific codes. Despite these limitations, the paper 

demonstrates notable achievements in enhancing the 

performance of scientific applications.   

The rest of this paper is organized as follows: Section 2 

provides a related works. Section 3 presents a proposed 

methodology. Section 4 discusses the experimental setup and 

results. Section 5 concludes the final paper. 

2. RELATED WORKS 

HPC has seen significant advancements in recent years, driven 

by the need to process vast amounts of data and perform 

complex calculations more efficiently. Numerous studies have 

explored various methodologies for parallelizing scientific 

applications to leverage the full potential of modern HPC 

systems. Recent breakthroughs in this domain include 

optimizing nested loop parallelism through meta-heuristics, 

enhancing distributed stack programming for parallel 

processing, and employing deep learning approaches to 

accelerate the analysis of whole-slide images in virtual 

pathology. 

Mahjoub [13] introduced an advanced technique to enhance 

parallelism in nested loops by transforming non-uniform loop 

structures into uniform ones using the Shuffled Frog-Leaping 

Algorithm (SFLA). Their approach identifies optimal Basis 

Dependence Vector Sets (BDVS), reducing the size of the 

Dependence Cone (DCS) and improving loop uniformity. 

However, challenges such as prolonged execution times and 

sensitivity to parameter settings remain. Drocco [14] explore a 

distributed stack for programming with distributed algorithms, 

achieving linear speedup for single-range algorithms and 

optimizations for multi-range algorithms. However, the 

complexity of the performance model for multi-range 

algorithms presents limitation [15] addresses the analysis of 

gigapixel-scale whole-slide images (WSIs) in virtual pathology 

using deep learning models. Their HPC-based approach 

significantly reduces processing times, demonstrating notable 

efficiency improvements. 

Ying [16] presents a technique to overcome speculative 

parallelization obstacles using the T4 compiler, addressing 

issues like incorrect assumptions and hardware scalability 

constraints. While promising, further work is needed to 

simplify implementation and reduce programming load. The 

author in [17] employed an optimizing parallel communication 

by leveraging MPI-4.0 technologies to enhance thread-to-

thread communication and eliminate bottlenecks. Their 

research shows performance improvements and better 

scalability in MPI+threads applications. Gupta [18] tackle 

cloud computing challenges by integrating a primary backup 

model to enhance fault tolerance and productivity. Their E-DFT 

design algorithm effectively reduces processing time and 

improves practical features [19] proposed a method to model 

performance and predict speedup of parallel loops in multi-

socket multi-core architectures using M/M/1/N/N queueing 

models. Their LoopPerf library offers fine-grained control over 

worker threads, optimizing parallel loop performance. 

Giordano [20] introduce a method to balance performance 

between nodes in a cellular automata (CA) model, achieving 

significant latency reductions in both shared and distributed 

memory configurations. In cloud computing, venture 

scheduling [11, 12] aims to allocate tasks to ensure maximum 

profit and timely completion, despite the challenges posed by 

dynamic assignment arrivals and limited capacity. The Profit 

Maximization Algorithm (PMA) [13] employs simulated 

annealing particle swarm optimization (SAPSO) to optimize 

project allocation and balance workloads between private and 

public clouds, addressing the complexities of dynamic 

scheduling. This paper addresses the limitations identified in 

these studies by providing a semi-automatic methodology for 

parallelizing scientific applications. Table 1 summarized the 

literature. 

Table. 1 Existing Approach for Parallelization Scientific 

Applications  

Author Approach Results Limitations 

Aldinucci et al. 

[12] 

Parallelize 

scientific 

applications using 
MPI 

Speedup of 12 in 

scientific codes 

Unable to achieve 

scalability 

Mahjoub et al. 

[13] 

Convert nested 

loops into loop 
parallelization 

with Shuffled 

frog-leaping 
algorithm 

BDVS sets 

discovered by 
uniformization 

Sometimes 

execution time is 
large 

Drocco et al. [14] implementation of 

stack for 
distributed 

algorithms 

Two Intel Xeon 

with parallel 
execution  

Sometimes not 

accurately reflect 
real-world 

situations 

Li et al. [15] Parallelization 

scientific 
algorithm focusing 

on digital 

pathology 

Stride size affects 

the sensitivity of 
lesion-level 

detection 

performance. 

Challenging to 

measure sustained 
memory 

bandwidth 

Ying et al. [16,24] Increases the 

prevalence of 

parallelism in 
programming 

Creates tiny tasks 

quickly and 

removes stack 
contention 

Complexity is 

high, and resource 

utilization causes 
overhead 

Zambre et al. [17] Optimizes thread-

to-thread 

communication 
independence 

Gain in MPI+ 

thread 

applications 
performance 

Synchronization 

issues in 

partitioned 
communication 

models 

Gupta et al. [18] Improves resource 
utilization and 

minimizes task 

response time 

Effectively 
minimizes 

response time and 

maximizes 
resource 

utilization  

 Network and 
interconnect 

technologies are 

limiting factors 

Cho et al. [19] Models 
performance and 

forecasts speedup 

of parallel loops in 
multi-socket 

multicore 

architectures 

Accurately 
forecasts 

acceleration 

Does not 
sufficiently handle 

synchronization 

and scheduling 
overhead 

Giordano et al. 
[20,23] 

Dynamic 
techniques to 

achieve optimal 

resource 
utilization 

150\% 
performance gain 

with complex 

transition 
functions. 

Relies on 
mathematical 

formalizations.  

3. PROPOSED METHODOLOGY 

This section introduces the proposed methodology, 
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emphasizing its novel contributions and improvements over 

existing approaches. Previous work using MPI-based 

parallelization provided essential insights for our approach 

[12]. Techniques for enhancing parallelism in nested loops 

informed our task resizing strategy, while distributed 

programming in C highlighted the importance of robust 

execution in distributed systems. Additionally, deep learning 

models leveraging high-performance computing influenced our 

focus on task size variations [15]. Insights into speculative 

parallelization and thread communication guided our proposed 

scheduler optimization. Furthermore, dynamic scheduling and 

performance modeling emphasized task length and scheduling 

effectiveness, while dynamic load balancing aligned with our 

goal of optimizing task performance [20,22,26]. 

 

Fig. 1 Task Scheduling Algorithm 

 

The proposed task scheduling algorithm (Figure 1) initiates a 

priority queue (PQ) to manage tasks based on their priority. 

Each task is encapsulated within a Task Object, which contains 

attributes such as Task ID, Size, Priority, and Arrival Time, 

which uniquely identify each task, determine resource 

requirements, and resolve conflicts. The rules iterate through 

listing obligations, creating a Task Object for everyone, and 

including it in the PQ based on its precedence. If multiple 

obligations have equal precedence, Arrival Time is used as a 

tiebreaker to prioritize the earlier task. After initializing the PQ, 

the rules create a Scheduled Tasks Queue to maintain the ready 

tasks for execution. 

In the main scheduling loop, tasks are dequeued from the PQ 

one by one. For each task, the algorithm checks if the necessary 

resources are available. If sufficient resources are available, 

they are allocated, and the task is added to the 

ScheduledTasksQueue for execution. If resources are 

insufficient, the task is re-added to the PQ with an updated 

priority to be reconsidered in the next cycle. This process 

continues until all tasks are scheduled. Finally, the schedule 

consists of tasks with their execution order derived from the 

ScheduledTasksQueue, completing the scheduling system. This 

approach ensures tasks are executed based on priority and 

arrival time while considering resource constraints. 

 

Fig. 2 Proposed Algorithm Flowchart 

 

The proposed approach focuses on dynamic task resizing, 

optimizing task execution across multiple cores. It enhances 

scheduler performance by optimizing task sizes and prioritizing 

tasks based on priority and arrival time. The method 

incorporates MPI programming for parallel processing, 

boosting system speed and performance in high-performance 

computing environments. It ensures effective resource 
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allocation and reallocation, addressing resource availability and 

task requirements. The proposed method is designed to scale 

efficiently with increasing tasks and cores, making it suitable 

for large-scale scientific applications. This methodology 

addresses the limitations of previous approaches by providing a 

semi-automatic system for parallelizing scientific applications, 

ensuring optimal performance and resource utilization, as 

illustrated in Figure 2. 

4. EXPERIMENT AND RESULTS 

This section details the experimental setup, performance 

metrics, results, and analysis of the proposed task scheduling 

algorithm. It details the methodology used to evaluate the 

performance of the scheduling system and includes the results, 

in Table 2 which highlight the metrics used for performance 

evaluation. Graphical representations are provided in Figures 3 

and 4 to visualize the results effectively. Additionally, the 

equations used for parallel computing of subtasks and their 

calculations are presented to support the analysis. 

Fig. 3 Parallel Computing Task for Execution Time 

4.1 Metrics Used for Performance Measure 

A wide range of metrics are calculated and examined to identify 

grain size and related overheads, which can be dynamically 

adjusted to optimize task size. Here, Execution Time is (𝑡𝑒𝑥𝑒) 

and Total time is (𝑡𝑓𝑢𝑛𝑐). The key metrics include: 

       4.1.1 Thread Idle-Rate 

This refers to a thread's time in an idle state. A high idle rate 

suggests the thread frequently anticipates responsibilities or 

sources in equation 1, which could signify inefficiencies in task 

scheduling or resource allocation. 

𝑡𝑜 =
∑ 𝑡𝑓𝑢𝑛𝑐 − ∑ 𝑡𝑒𝑥𝑒  

𝑛𝑡

               (1)  

            4.1.2 Task Duration 

This is the total time required to finish a task from start to finish. 

It consists of the time spent actively processing the task and any 

delays or waiting intervals that could arise during execution. 

Task in in equation 2. Duration is critical for understanding how 

long each project will take and scheduling tasks efficiently. 

𝑡𝑑 =
∑ 𝑡𝑒𝑥𝑒  

𝑛𝑡

                                 (2)  

 

            4.1.3 Task Overhead 

This represents the additional time and resources required to 

manage a task beyond the actual processing time. It includes 

various factors like context switching and setup. Reducing task 

overhead is crucial for enhancing overall system performance 

mentioned in in equation 3. 

𝑡𝑜 =
∑ 𝑡𝑓𝑢𝑛𝑐 − ∑ 𝑡𝑒𝑥𝑒  

𝑛𝑡

               (3)  

Table. 2 Evaluation of Parallel Computing Subtasks 

Process Subtask Task Result 

        0          0          0            637 

        1          1          1            501 

        2          2          2            474 

        3          3          3            449 

        0          4          4            470 

        1          5              5                648 

        2          6          6            327 

        3          7          7            518 

        0          8          8            628 

        1          9          9            532 

        2         10         10            553 

        3         11         11            533 

        0         12         12            477 

        1         13         13            556 

        2         14         14            343 

        3          15         15            444 

        0         16         16            541 

        1         17         17            502 

        2         18         18            478 

        3         19         19            351 

 

            4.1.4 Thread Management Overhead 

This is the overhead associated with managing threads, 

including tasks such as creating, destroying, and 

synchronizing threads. It also covers the cost of context 

switching between threads. High thread management 

overhead can affect system performance, so optimizing thread 

control is essential for efficient multitasking in equation 4  

𝑇𝑜 =
𝑡𝑜 ∗ 𝑛𝑡

𝑛𝑐

                     (4)  

            4.1.5 Wait Time 

This is the time a thread or assignment spends looking ahead 

to sources or other conditions to be met before it can hold with 

execution. Wait time can result from different factors, such as 
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looking ahead to I/O operations to finish or looking in advance 

to exceptional tasks or threads to launch assets in equation 5. 

  

𝑇𝑤 =
𝑡𝑑 − 𝑡𝑑1 ∗ 𝑛𝑡

𝑛𝑐

                      (5)  

   

            4.1.6 Execution Time (𝒕𝒆𝒙𝒆) 

Execution time is the duration spent actively processing a task, 

including any extra delays or setup time. It measures the time 

from when the computation starts to when it finishes, excluding 

any extra delays or setup time. 

            4.1.7 Total Time (𝒕𝒇𝒖𝒏𝒄) 

It represents the total duration of a task, including execution 

time, delays, overheads, and other factors such as resource 

waiting, setup, and interruptions. It provides a comprehensive 

view of the duration of a task, considering all factors affecting 

its completion.  

4.2 Technologies Used 

The methodology utilizes various tools and frameworks for 

performance assessment and optimization. Profilers such as 

gprof and Valgrind are employed to analyze execution 

characteristics. Gprof aids in identifying performance 

bottlenecks by providing detailed records of function calls and 

execution times. Valgrind, with tools like Callgrind and 

Cachegrind, offers in-depth analysis of execution time, thread 

idle costs, and task overhead, which are crucial for performance 

optimization. 

Fig. 3 Time Required for Different Processes 

In the realm of parallel computing, OpenMP and MPI are 

pivotal. OpenMP facilitates task division among multiple 

threads within a shared memory environment, maximizing the 

use of multicore processors. MPI, on the other hand, manages 

communication between processes on different nodes, 

supporting data exchange and synchronization in distributed 

computing systems. These frameworks enable efficient 

parallelization and effective task management. 

For visualization purpose, Matplotlibrar and Gnuplot are used 

to generate graphs and charts that illustrate performance data. 

SLURM is utilized for job scheduling and resource allocation, 

ensuring efficient use of computational resources. Additionally, 

Apache Mesos and Kubernetes are leveraged for dynamic task 

resizing and load balancing, ensuring tasks are scheduled 

effectively and resources are optimally utilized. These tools 

collectively enhance performance and efficiency. 

5 CONCLUSION 

This paper evaluates the effects of task size variations on the 

performance of schedulers in multicore systems. The findings 

reveal that significant performance differences arise with 

changes in task size, underscoring the importance of task 

granularity for optimizing scheduling efficiency. The analysis 

indicates that tasks with durations of 15, 4, 4, and 3 seconds 

show varied impacts on scheduler performance, demonstrating 

the need for precise task size adjustment to enhance both 

execution speed and overall system efficiency. Looking 

beforehand, we are considering the possibility of dynamically 

converting project sizes for ongoing development, analyzing 

the effectiveness of numerous scheduling approaches with 

exceptional undertaking sizes to encompass a much wider 

variety of workloads and realistic applications to corroborate 

our effects similarly.  
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