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I. INTRODUCTION

Global agriculture, a major source of vegetables crucial 

for economic growth and food security [11-13], [19], [20], 

heavily relies on tomato production. However, the existence of 

diseases represents a potential threat, leading to substantial 

yield losses. Tomatoes are vulnerable to various diseases 

caused by bacteria, fungi, and viruses. Tomato leaf diseases 

encompass Early Blight, Leaf mold, late blight, Bacterial Spot, 

Septoria Leaf Spot, Target Spot, Yellow Leaf Curl Virus, 

and Mosaic Virus [14-16]. Various tomato leaf diseases 

demand specific management strategies to safeguard crop 

health. Images of infected tomato leaves and a healthy leaf are 

shown in Figure 1. 
 

Fig. 1. Random visualization of tomato leaf images 
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II. LITERATURE REVIEW 

Recent advancements in tomato disease identification 

have seen significant progress through the application of 

advanced techniques to improve accuracy and practicality. 

Convolutional Neural Networks (CNNs) have played a central 

role, as high- lighted in recent studies. One notable research effort 

employed various models, including InceptionV3, ResNet152, 

VGG19, and EfficientNetB0-B4, achieving impressive accuracy 

rates ranging from 91.07% to an exceptional 99.23%. The 

proposed deep learning architecture, incorporating transfer 

learning with VGGNet and an enhanced categorical cross-entropy 

loss func- tion, stands out as a crucial tool for farmers, ensuring 

precise detection and protection of tomato crops [1]. 

Another study underscores the significance of deep 

learning in agricultural disease identification, emphasizing the 

role of data augmentation for improved model generalization. Uti- 

lizing GANs like CycleGAN and LeafGAN, Attaining 

94.33 percent, the top-1 average identification accuracy 

reflects the model’s strong performance, demonstrating its 

capability to accurately classify items in the given dataset 

comprising 1500 tomato leaf images categorized into five classes 

[2]. A modified RDN model has been designed for the 

identification of diseases in tomato leaves. This hybrid deep 

learning approach showcases effectiveness in reducing training 

process parameters and enhancing calculation accuracy [3]. 

 

ABSTRACT 

Plant leaf diseases cause substantial annual production losses for farmers, impacting their primary 
food source. Minimizing these losses requires early detection of diseases. A deep learning approach 
is used to address the early identification of tomato leaf diseases, enabling farmers to take preventive 
measures and reduce production loss. A Customized six-layer Convolutional Neural Network (CNN) 
is suggested for the identification of diseases in tomato plant leaves, aiming to mitigate annual 
production losses for farmers. The CNN utilizes automatic feature extraction, requiring no explicit 
feature engineering, enabling finer disease classification. Employing 11,100 leaf images from the Plant 
Village dataset, the model classifies ten classes, including nine distinct diseases and one healthy class. 
With an 80/20 dataset split, 30 epochs, and a 0.001 learning rate, the CNN achieves a overall accuracy 
of 91.3%. The focus on computational efficiency addresses the critical issue of early and accurate 
disease detection, potentially boosting agricultural productivity and affordability for consumers. 
Comparative analysis with VGG-16 and VGG-19 using transfer learning reveals the superior 
performance of the proposed model. Its simplicity not only reduces parameters but also facilitates 
deployment on lightweight devices, significantly reducing training time and the simulation utilized 
Google Colab. It also emphasizes the effectiveness of a simplified approach in addressing crucial 
challenges in tomato disease identification, with potential applicability to other crops and plants. 
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By combining leaf photos, (CNNs), and a chatbot controller, an 

integrated system is implemented to identify eight categories of 

pests and illnesses affecting tomatoes. This method ensures a 

holistic and interactive solution for managing plant health. The 

study contributes to the intersection of agriculture, computer 

vision, and conversational AI for efficient plant disease 

identification [4]. Addressing the challenge of low classification 

accuracy due to limited samples in tomato disease classification, 

a proposed method, MMDGAN, achieving a 97.129% accuracy 

and an FI (Fowlkes-Mallows Index) value of 97.78% on open 

datasets, such as Plant Village [5], establishes notable 

performance. Particularly in the domain of Sectioning and 

identifying tomato plant leaves autonomously, these metrics 

signify advanced capabilities in precision and effectiveness, 

Mask R-CNN exhibits robust performance [6]. Innovation 

continues with the introduction of LMBRNet, an advanced 

method for tomato leaf disease identification that surpasses 

existing models with fewer parameters. This method showcases 

effectiveness with 80 images for training and validation and 20 

for testing [7]. 

A study using Xception achieved 99.45% accuracy in 

tomato leaf disease detection, highlighting timely identification’s 

importance with the Plant Village dataset [9]. A pre- trained 

MobileNetV2 architecture demonstrates remarkable efficiency 

with a 99.30% accuracy, this approach emphasizes a small 

model size and low computational cost, contributing to its 

lightweight nature [10]. 

 

III. MATERIALS AND METHODS 

 
 

The technical workflow involves data acquisition, pre- 

processing, network training, and testing and evaluation [1]. 

The Plant Village dataset is where the input images are obtained 

[8]. The dataset is subsequently partitioned into training, 

validation, and testing sets for comprehensive model 

development and assessment. A constant 224 x 224-pixel size 

is applied to the images. Data augmentation is performed to 

increase the training accuracy [5]. The compact convolutional 

networks and VGG architectures are trained using the dataset 

[6], [7]. Finally, the classes of tomato leaf are predicted 

using test dataset. The schematic representation delineates the 

proposed system architecture for the classification of tomato 

leaf diseases, shown in Figure 2. 

 

 
Fig. 2. Proposed workflow for classification of tomato plant leaf 

 

 
Create an experimental dataset that will be used for train- ing, 

validation, and performance evaluation of the proposed 

architecture. The public dataset [8] consists of 11,000 images 

that formed the basis of the dataset. The classification sys- tem 

encompasses various disease categories in tomato leaves, 

including leaf mold, tomato yellow leaf curl virus, bacterial 

spot, mosaic virus, target spot, late blight, early late blight, two-

spotted spider mite, and Septoria spot. Additionally, one 

category is dedicated to the classification of healthy leaves. 

These images are pre-processed with a deep learning input 

dimensional model (specifically 224*224*3) and divided into 

10 classes. 
 

The raw input images undergo standard transformations 

to create an augmented dataset [13]. Necessary libraries for 

training, testing, and graphical output are imported. Due to 

variations in image sizes from different sources, images are 

resized during preprocessing to adhere to a standard dimension 

model (specifically 224x224) [15] and saved in JPEG format. 

Augmentation aims to maximize the training dataset by 

introducing slight distortions [19], minimizing overfitting. To 

enhance testing performance, image transformations are 

applied to various rotated images during testing. Images are 

augmented using an arbitrary combination of different image 

augmentation methods shown in Figure 3. 

 

Sample Augmentation code 

 

Using the above augmented code technique, an image is created 

that is different from the original image. During the conversion, 

the image is not saved to disk and requires no storage space, 

because the converted image is created at runtime and is 

computationally efficient. Augmentation techniques can be used 

to address the problem of overfitting, while improving test 

performance [17]. The sample augmented images are 

represented in Figure 4. 

 

 

 
Augmented images using the original image 

Image acquisition and dataset 

Fig. 3. 

Fig. 4. 

Process pipeline 

Data pre-processing and augmentation 
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In the proposed work on customized CNN architecture, six 

convolutional layers followed by six max-pooling layers, one 

flattening and three dense layers are used. In this work, Keras 

Sequential API is used to build a CNN model. Sequential mode 

instances are created using the Sequential class. To get a 

snapshot of the entire CNN architecture considering all 

parameters, the summary method is used, as shown in Figure 5. 

convolutional layers in a CNN extract features, preserving local 

context [22]. Pooling layers reduce pixel dimensions, 

parameters, and remove noise. The final dense layer assigns 

class labels, driven by an activation function, concluding image 

classification. 

 

 
Customized CNN model 

 

Transfer learning is a technique in the field of machine 

learning whereby a pre-existing model, which has been ini- 

tially trained for a specific task, is leveraged as a foundation to 

construct a novel model for a different task.VGG-16 and 

VGG- 19 model are taken as transfer learning framework 

which is trained on ImageNet datasets [21]. The proposed 

methodology incorporates distinct training and testing phases. 

In the training phase, Pretrained VGG-16 and VGG-19 models 

are taken as the base model then the Flatten Layer, Dense 

layers, and dropout layer are added to the pre-trained VGG 

models. The output layer, tailored to the number 10 classes, 

uses softmax activation to compute class probabilities. Once 

the model has converged on new data, 

the model undergoes evaluation using previously unseen data. 

during the phase of testing, the input that has undergone 

pre-processing data is employed for assessing the model’s 

performance and the results of the classification are acquired by 

means of the Softmax layer. [18]. 
 

a) VGG-16: VGG-16 architecture uses 3x3 convolutional 

filters and 2x2 max-pooling layers as shown in Figure 6 , which 

allows for a deep network without excessive complexity. VGG-

16, part of the VGG model family, developed at the University 

of Oxford by the Visual Geometry Group. excels in image 

classification due to its uniform design and pre-training on the 

extensive ImageNet dataset [18]. Widely used, its 16- layer 

depth makes it computationally demanding. The final fully 

connected layers serve as a classifier, making VGG- 

16 suitable for diverse image recognition tasks, with the flatten 

layer converting its output into a flat vector for further 

processing. The custom added layers include two densely 

connected layers with rectified linear unit (ReLU) activation. 

functions (4096 and 1072 neurons) to learn high-level features. 

The Dropout Layer helps to prevent overfitting by randomly 

deactivating some neurons (20% dropout rate). The output layer 

with several neurons equal to the classification classes which is 

10, uses softmax activation to produce class proba- bilities. 

 

 

 

 

 
VGG-16 Model Architecture 

 

VGG-19: VGG-19 is a deep a CNN that uses 3x3 convolutional 

filters and 2x2 max-pooling layers as shown in Figure 7. It 

consists of 19 layers, making it deeper than VGG-16. VGG-19 is 

well-regarded for its image classification capabilities and is part 

of the VGG family of models developed at the University of 

Oxford by the Visual Geometry Group. The model’s depth allows 

it to capture intricate visual features. VGG-19’s final layers serve 

as a classifier, making it suit- able for various image recognition 

tasks. However, its depth also makes it computationally 

demanding during training and deployment.VGG-19 is 

incorporated with the same layers as VGG-16, including the 

Flatten Layer, two Dense layers (4096 and 1072 ReLU-activated 

neurons) functions, and a Layer of Dropouts with a rate of twenty 

percent. 

Customized CNN Architecture 

Fig. 5. 

Fig. 6. 

Transfer learning 

CNN Model 
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VGG-19 Model Architecture 

 

IV. RESULTS AND DISCUSSION 

Table I provides the detailed overview of the hyperparameter 

employed in the proposed model. 

 
TABLE I 

HYPERPARAMETERS FOR THE PROPOSED CUSTOMIZED CNN 
 

Hyperparameters Description 
No. of convolution layers 6 
No. of max pooling layers 6 

Activation function Relu (Rectified Linear Unit) 
Learning rate 0.001 

Number of epochs 30 

Batch size 32 

 

 

The comparative analysis is conducted by comparing the 

proposed network against the transfer learning approach such 

as VGG-16 and VGG-19 using the same dataset. Following 

training, the proposed model achieves 92.73% validation accu- 

racy and a 95.84% training accuracy. The accuracy progression 

across the validation and training epochs is shown in the 

accuracy graph in Figure 8. With increasing epochs, validation 

accuracy as well as training accuracy both gradually increases. 

The associated shift in the model’s loss function parameters 

over the training and validation phases is displayed in the loss 

function graph in Figure 9. 

Table II implies a comparison between the Customized 

CNN, VGG-16 and VGG-19 architectures. 

 

 
TABLE II 

COMPARISON TABLE OF CUSTOMIZED CNN AND VGG ARCHITECTURES 

 
Model Train Acc. Train Loss Val Acc. Val Loss 

VGG-16 96.77% 0.100 88.93% 0.465 

VGG-19 97.79% 0.068 88.16% 0.446 

Customized CNN 95.84% 0.112 92.73% 0.211 

 

 

 

 
Accuracy graph for training and validation of Customized CNN 

 

 

Loss graph for training and validation of Customized CNN 

 

 

 

Analysis was conducted with three distinct neural network 

structures, including VGG-16, VGG-19, and a customized 

CNN architecture with reduced parameters. The cells on the 

right and left of Figure 10 emphasize this disparity. 

 

 
Confusion Matrix for Proposed Customized CNN 

A. Performance Evaluation 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 
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The Customized CNN architecture outperforms both the 

VGG-19 and VGG-16 models in terms of disease classifi- 

cation. It consistently achieves higher precision, recall, and F1-

score values across all classes as shown in Figure 11. 
 

 
Fig. 11. Classification Report for Proposed Customized CNN 

 

The bar chart shown in Figure 12 visually represents the 

outcomes of testing CNN and VGG models for disease          

classification. The CNN model demonstrates higher accuracy 

and fewer misclassifications compared to the VGG model 

across various tomato diseases. The Customized CNN model is 

the recommended option for precise disease prediction. 

 

 

Fig. 12. Testing results comparison between the Customized CNN and VGG 

architecture 

 
 

 
 

            Fig.13. Comparison of classification results 

 

 

 

 

 

 

 

 

Fig. 14. Comparison of parameters 

 

 

sentation includes a side-by-side comparison of real images 

and the model’s predictions, illustrating how well the custom 

CNN model performs in accurately classifying and predicting the 

content of these images. The bar chart shown in Figure 13 

illustrates the classifi- cation results for VGG-16, VGG-19, and a 

Customized CNN model. The Customized CNN model exhibited 

a slightly lower training accuracy of 95.84%. However, in terms 

of validation and testing accuracy, the Customized CNN 

outperformed the VGG models, achieving a validation accuracy 

of 92.73% and a testing accuracy of 91.50%. This suggests that 

the Customized CNN demonstrated superior generalization to 

unseen data, highlighting its efficacy in real-world applications. 

 

The bar chart shown in Figure 14 provides a visual com- 

parison of the total, trainable, and non-trainable parameters for 

VGG-16, VGG-19, and a Customized CNN model. The VGG 

models have significantly more total parameters, mainly due to 

their deep architecture. However, the Customized CNN model is 

lightweight, with all parameters being trainable and no non-

trainable parameters. This highlights the efficiency of the 

Customized CNN in terms of parameter count, making it a more 

streamlined option for scenarios with limited computational 

resources compared to the VGG models[23-24]. 

In Figure 15 actual and predicted images during testing are 

shown using a Customized CNN model. This visual 

representation 
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Fig. 15. Prediction output 

 

Early disease detection is vital for improving tomato pro- 

duction, efficiency, and product quality. To identify tomato 

leaf diseases, an effective CNN architecture was presented. 

This model prioritizes computational efficiency by avoiding 

overly complex layers and parameters. Using a ten-class 

dataset containing nine disease categories and healthy leaves, 

this method outperforms pre-trained networks. This 

emphasizes that superior disease identification is attainable 

without intricate architecture, making this model practical and 

efficient for deployment. The results exhibit the efficacy of the 

Customized CNN architecture in classifying tomato leaf 

diseases. With a training accuracy of 95.84%, the model 

exhibits strong learning capabilities during the training phase. 

This indicates that it has successfully learned the features 

and patterns associated with the different classes. The high 

validation accuracy of 92.73% further validates the model’s 

performance. This suggests that the Customized CNN gener- 

alizes well to unseen data, which is a crucial aspect for real- 

world applications. The impressive testing accuracy of 91.5% 

solidifies the model’s proficiency in accurately identifying 

tomato diseases in practical scenarios. This shows the effec- 

tivenes of the Customized CNN in making accurate predictions 

on new, unseen data. 

 

V. CONCLUSIONS 

 

Overall, the Customized CNN architecture showcases robust 

performance across the board, demonstrating its potential as 

a powerful tool for automating the identification and 

categorization of leaf diseases in tomatoes. The combination of 

high accuracy rates in training, validation, and testing phases 

affirms the model’s effectiveness and suitability for practical 

deployment in agricultural settings. For future improvements, 

the application can be integrated into web services for wider 

network use. Expanding the dataset with diverse disease images 

will boost model performance. Real-time monitoring systems 

can enable instant disease detection in agricultural fields 

through live video analysis. Enhancements can also include 

providing disease localization and severity details. Extending 

the model’s applicability to various crops will further 

contribute to agricultural and food security efforts. 

                                 REFERENCES 

[1]  Tabakis, I. M. et.al. (2023). A Robust Hybrid Deep Convolutional Neural 
Network for COVID-19 Disease Identification from Chest X-ray Images. 
Information 14(6), 310. 

 
[2] Wang, T., et.al. (2023).  RiceNet: A two-stage machine learning method for 

rice disease identification. Biosystems Engineering 225(1), 25-40. 

 
 

[3] Zhou, S., et.al. (2021). Tomato leaf disease identification by restructured 
deep residual dense network. 9(1), 28822-28831. 

 
[4] Hemalatha, A., et.al. (2021). Automatic tomato leaf diseases classification 

and recognition using transfer learning model with image processing 
techniques.  In 2021 Smart Technologies, Communication and Robotics 
(STCR), pp. 1-5. 

 
 

[5]  Liangji, Z., et.al. (2022). MMDGAN: A fusion data augmentation method 
for tomato-leaf disease identification. Applied Soft Computing 123 (1), 
108969. 

 
[6]  Prabhjot, K., et.al. (2022). An approach for characterization of infected area 

in tomato leaf disease based on deep learning and object detection tech- 
nique. Engineering Applications of Artificial Intelligence. 115 (1),105210. 

 
 

[7] Chen, A., et.al. (2023). Identification of tomato leaf diseases based on 
LMBRNet. Engineering Applications of Artificial Intelligence. 123(1), 
106195. 

 
[8] Tomato Leaf Disease Detection. Available online: https://www.kaggle. 

com/datasets/kaustubhb999/tomatoleaf. 

 
[9] Anandhakrishnan, T., et.al. (2020). Identification of tomato leaf disease 

detection using pretrained deep convolutional neural network models. 
Scalable Computing: 21(4), 625-635. 

 
 

[10] Ahmed,  T., et.al. (2022).  Less is more: Lighter and faster deep neural 
architecture for tomato leaf disease classification.10 (1), 68868-68884. 

 
[11] Agarwal, M., et.al. (2020). TOLED: Tomato Leaf Disease Detection 

using convolution neural network 167(1), 293–301. 

 
 

[12] Ahmad, I., et.al. (2020). Optimizing pretrained convolutional neural 
networks for tomato leaf disease detection,  Complexity,  20(1), 1–6. 

 
[13] Aishwarya, N., et.al. (2022). Smart farming for detection and 

identification of tomato plant diseases using light weight deep neural 
network , Multimedia Tools and Applications  82(18),18799–18810. 

 
 

[14] Bhandari, M., et.al. (2023). Botanicx-ai: Identification of tomato leaf 
diseases using an explanation- driven deep-learning model  9(2), 53. 

 
[15] Deshpande, R., et.al. (2023). Detection of leaf disease in tomato plants 

using a lightweight parallel deep convolutional neural network, Archives 
of Phytopathology and Plant Protection, 11(1), 707–720. 

 
 

[16] Dhingra,  G., et.al. (2018). Study of digital image processing techniques 
for leaf disease detection and classification, Multimedia Tools and 
Applications  77(1), 19951-20000. 

 
[17] Kokate, J. K., et.al.  (2023). Classification of Tomato Leaf Disease using 

a Custom Convolutional Neural Network , Current Agriculture Research 
Journal  11(1),315-325. 

 
 

[18] Kumar,  A., et.al.  (2023). Automatic recognition and classification of 
Tomato leaf diseases using transfer learning model, Future Farming: 
Advancing Agriculture with Artificial Intelligence 13(1), 23–40. 

 
[19] Rubanga, D., et.al. (2020). Early identification of Tuta absoluta in tomato 

plants using Deep Learning, Scientific African 10(1), 1000590- 1000601. 

 
 



1400  
[20] Patnayakuni, S.P., et.al. (2022).  Tomato: Different leaf disease 

detection using transfer learning based network, Journal of Mobile 
Multimedia  6(5), 1-11. 

 
[21] Rajathi, N., et.al. (2022).  Early stage prediction of plant leaf diseases 

using Deep Learning Models, Algorithms for Intelligent Systems  
2(1), 245–260. 

 
[22] Sakkarvarthi, G., et.al. (2022).  Detection and classification of tomato 

crop disease using convolutional neural network 11(1),3618-3632. 

 
[23] Sarkar S., Kerketta A., Nath V. (2021) Kisaan Seva—A Web site for 

Serving the Farmers. In: Nath V., Mandal J. (eds) Nanoelectronics, 
Circuits and Communication Systems. Lecture Notes in Electrical 
Engineering, 692. Springer, Singapore. https://doi.org/10.1007/978-
981-15-7486-3_61 

 
[24] Lakra,A.A.,  Murmu,K., Prasad, D. and Nath, V. (2019) Study and 

Development of Solar-Powered Water Pumping System. In: Nath V., 
Mandal J. (eds) Proceedings of the Third International Conference on 
Microelectronics, Computing and Communication Systems, Lecture 
Notes in Electrical Engineering, 556(1), 655-660 . Springer, Singapore 
DOI: 10.1007/978-981-13-7091-5_56. 

 

 

https://doi.org/10.1007/978-981-15-7486-3_61
https://doi.org/10.1007/978-981-15-7486-3_61

