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1. INTRODUCTION 

Parallel computing has revolutionized computational 

simulations, empowering researchers to address increasingly 

complex and large-scale problems [1-3]. The message passing 

interface is a standardized protocol crucial for this 

advancement, as it distributes computational tasks across 

multiple processors, enabling the simultaneous execution of 

intricate simulations. This capability is vital for scientific and 

engineering disciplines, where simulations often involve 

massive datasets and require significant processing power. By 

dividing tasks among processors, MPI alleviates computational 

bottlenecks, thus enhancing the efficiency of high-fidelity 

simulations.  

Parallel to the evolution of MPI, smoothed particle 

hydrodynamics has emerged as a powerful method for 

modeling complex fluid flows and interactions. Applied 

initially to astrophysical simulations, SPH has gained 

widespread adoption in various fields, including computational 

fluid dynamics, biomechanics, and materials science [4]. The 

method's strength lies in its ability to simulate complex physical 

processes, especially those involving fluid dynamics and 

astrophysical phenomena. However, as SPH simulations 

increase in complexity and scale, the computational demands 

also grow significantly.  

To address these challenges, this paper explores the integration 

of MPI to enhance the computational efficiency of SPH 

simulations. By parallelizing SPH simulations, MPI can help 

overcome the computational hurdles associated with large-

scale simulations, allowing for more detailed exploration and 

analysis of fluid dynamics on an intricate side. 

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India 

 

 

 

 

 

The subsequent sections cover the fundamentals of SPH, the 

challenges posed by growing simulation complexity, and the 

rationale for parallelizing SPH with MPI [5]. Details of the 

implementation process, performance improvements, and 

practical implications of integrating MPI into SPH simulations 

are provided. The goal is to showcase MPI's potential as a 

powerful tool for optimizing SPH computational efficiency, 

paving the way for more accurate and scalable simulations in 

fluid dynamics and related fields. 

 

Fig. 1 Particle approximations using a circular kernel. 

Despite its advantages, SPH can be computationally 

expensive, especially for large-scale problems involving 

millions or billions of particles [6,7]. In SPH, particles 

represent fluids, with each particle's fluid properties 

determined through interactions with neighboring particles. 

This mesh-free approach is well-suited for complex 

geometries and large deformations. Still, it underscores the 

need for efficient computational strategies, such as those 

provided by MPI, to manage the intensive computational 

demands [8-10].  

 

 

 
ABSTRACT 

Message Passing Interface (MPI) is a standard designed for parallel programming on distributed 
memory systems, enabling multiple processors to work together by dividing and distributing tasks. This 
paper presents a comprehensive approach to addressing computational challenges in smoothed particle 
hydrodynamics (SPH) simulations through a novel MPI-based parallel SPH code. The research 
emphasizes code optimization for both CPU and GPU architectures, incorporating CUDA parallel 
programming to enhance GPU performance. Detailed insights into the code design, implementation, 
algorithm flowchart, and multi-GPU usage with MPI are provided. Experimental results demonstrate 
the model’s efficiency and scalability across various scenarios, laying a solid foundation for advancing 
research in fluid dynamics and parallel computing. 
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The smoothed particle hydrodynamics addresses the governing 

partial differential equations using two essential processes: 

kernel approximation and particle approximation. In kernel 

approximation, the function values from nearby particles are 

summed to estimate integrals. Particle approximation utilizes a 

collection of particles, each containing field variable data, to 

model the computational domain, as depicted in Figure 1. 

 
The rest of the paper is structured as follows: Section 2 provides 

related work. Section 3 details the proposed methodology. 

Section 4 presents experimental results. Finally, Section 5 

concludes the paper.  
  

2. RELATED WORKS 
 

Research in the field of Smoothed Particle Hydrodynamics and 

its computational challenges has been extensive. Numerous 

studies have focused on improving SPH simulations' accuracy, 

stability, and efficiency. The integration of parallel computing 

techniques, particularly the use of MPI, has been a major area 

of interest to address the computational demands of large-scale 

simulations. 

 

Barcarolo et al. [11] introduced adaptive particle refinement 

(APR) and dynamic de-refinement techniques to enhance the 

accuracy and efficiency of SPH simulations. APR involves 

refining particle resolution in critical regions, while de-

refinement reduces resolution in less essential areas, aiming for 

better computational efficiency and accuracy. However, the de-

refinement technique is still under development, facing 

challenges such as the need for effective flow stabilization and 

managing varying rates of refinement and de-refinement. These 

issues can affect overall simulation stability and accuracy, 

making it necessary to refine these techniques further. 

 

Domínguez et al. [12] developed a multi-GPU implementation 

for SPH on heterogeneous clusters, leveraging the 

computational power of both CPUs and GPUs to achieve high 

performance. The approach utilized parallel programming 

languages such as MPI, CUDA, and OpenMP, incorporating 

dynamic load balancing and overlapping data communication to 

optimize performance. The implementation demonstrated 

significant improvements in efficiency and scalability, handling 

various particle numbers and GPU configurations. However, its 

heavy reliance on modern high-performance computing 

architectures might limit its applicability in less specialized or 

conventional systems. Efforts to adapt this implementation for 

a broader range of hardware configurations could enhance its 

usability. 

 

Holmes et al. [13] proposed a comprehensive framework for 

parallel computational physics algorithms on multi-core 

architectures. Their method addresses challenges in achieving 

efficient parallel computing within shared-memory 

environments, focusing on mitigating race conditions and 

optimizing memory usage. The framework includes a spatial 

sub-division algorithm that ensures thread safety by operating 

on isolated memory blocks. Microsoft's concurrency and 

coordination runtime (CCR) facilitates multi-core 

programming, allowing for the effective management of parallel 

tasks. Despite its innovative design, the framework's complexity 

and focus on shared-memory systems might limit its application 

in distributed memory environments where alternative 

strategies might be necessary. 

 

Oger et al. [14] presented an MPI-based parallelization scheme 

specifically for high-performance computing (HPC) 

environments using the DualSPHysics code. They focused on 

enhancing the scalability and efficiency of SPH simulations 

across various test problems. The implementation achieved 

notable scalability improvements, facilitating efficient 

simulations on large HPC clusters. However, the scheme's 

dependence on MPI as the primary communication protocol 

could restrict its flexibility, particularly when integrating with 

other parallelization methods or adapting to less sophisticated 

computing infrastructures. Future work may explore hybrid 

approaches to address these limitations. 

 

Liu et al. [15] introduced an MPI-based parallel framework 

designed for SPH simulations of extreme mechanic problems, 

such as high-speed impacts and large deformations. The 

framework emphasizes optimized memory management, 

including cache-friendly data storage and spatial/temporal 

locality improvements. A two-step load-balancing method 

enhances parallel efficiency, achieving a maximum efficiency 

of 97% on 10,020 CPU cores. While this framework effectively 

addresses extreme conditions and achieves high performance, 

its specialization and substantial computational resource 

requirements may limit its applicability to less intensive 

simulations. Broader applicability might require adjustments to 

handle a wider range of scenarios. 

 

Zhu et al. [16] proposed a novel MPI-based parallel framework 

to address computational challenges in SPH for modeling free 

surface flows. This framework incorporates domain 

decomposition, a regular background grid, and an index 

ordering method to enhance scalability on high-performance 

computing systems. A dynamic load-balancing strategy is 

introduced to optimize computational load distribution based on 

particle numbers and running times. Although this framework 

significantly reduces computational costs for large-scale 

simulations, its complexity and dependence on HPC systems 

could limit its use in smaller-scale or non-HPC environments. 

Adapting this framework to a broader range of computing 

environments could expand its utility. 

 

Antonelli et al. [17] developed a CUDA-based implementation 

of an enhanced SPH method on GPUs to improve accuracy and 

computational efficiency for fluid dynamics simulations. Their 

approach uses a Taylor series expansion to refine the SPH 

method, achieving substantial speedups and enhanced accuracy 

through parallelization on NVIDIA GPUs. While the method 

demonstrates impressive performance improvements, its 

reliance on CUDA and specific NVIDIA GPU architectures 

limits its general applicability. Systems without NVIDIA 

hardware might not benefit from these advancements, 

suggesting a need for alternative implementations compatible 

with different hardware platforms. 

 

Li et al. [18] designed "petaPar," a scalable petascale framework 

for meshfree and particle simulations, including SPH and the 

material point method (MPM). Implemented within a unified 

object-oriented structure, petaPar uses MPI and Pthreads for 
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dynamic load balancing and fully overlapping communication 

and computation. Evaluated on various HPC platforms, 

including the Titan supercomputer, petaPar demonstrated 

excellent scalability. However, its current design is optimized 

for CPU-based platforms, with plans to extend support to GPU-

based systems. The framework's immediate applicability to 

GPU environments is limited, though its expansion could 

enhance its utility across diverse computing platforms. 

 

Table. 1 MPI-Based Parallel Computing 
 

Author Approach Metrics Limitation 

Barcarolo 

et al. [11]  

Adaptive Particle 

Refinement and 
Coarsening method in 

SPH 

 Numerical 

Validation  

Flow stabilization 

requirement, 
Derefinement 

technique under 

develop 

Domíngu

ez et al. 

[12] 

Multi-GPU 

Implementation for 

SPH on Heterogeneous 

Clusters using MPI, 
CUDA, OpenMP 

Efficiency 

and 

Scalability 

on Different 
Clusters 

Only available for 

heterogeneous 

clusters 

Holmes et 

al. [13] 

Spatial Sub-Division 

Algorithm, Load-
Balanced Spatial 

Distribution for Parallel 

Computing in 
MultiCore Shared-

Memory Environment 

Scalability, 

Memory 
Efficiency, 

Load 

Balancing, 
Robustness 

Bottleneck in 

Distributed 
Computing, Thread 

Safety Challenges, 

Complexity in 
Implementation 

Oger et al. 

[14] 

Distributed Memory 

MPI-Based 
Parallelization Scheme 

for SPH in 

DualSPHysics 

Scalability, 

Efficiency on 
Test 

Problems 

Only implemented 

in DualSPHysics 
code 

Liu et al. 

[15]  

MPI-based 

Parallelization, 

Memory Management, 
Load Balancing for 

SPH  

Numerical 

Validation, 

Scalability 
Tests  

Hardware 

Dependence, 

Complexity, 
Specific Use Cases, 

Computational 

Resources 

Zhu et al. 

[16] 

Parallel MPI 

Framework 

Incorporating Regular 
Background Grids and 

Dynamic Load 

Balancing for SPH 
Simulations. 

Benchmarks, 

Numerical 

Experiments, 
Parallel 

Performance 

Specificity to SPH, 

Computational 

Costs, Hardware 
Dependence, 

Complexity 

Antonelli 

et al. [17] 

CUDA Implementation 

of Improved SPH 
Method 

Runtime 

Evaluation, 
Water Entry, 

Shock Wave 

Interaction 

GPU-specific 

implementation 

Li et al. 
[18] 

PI and P-threads for 
Overlapping 

Communication and 

Computation, Dynamic 
Load Balancing in 

Particle Simulation 

Scalability 
Evaluation 

on HPC 

Platforms 

CPU-based 
platform, potential 

GPU extension 

 

These studies underscore the importance of integrating 

advanced computational strategies to enhance SPH simulation 

performance. This paper builds on these foundational works by 

introducing a novel MPI-based parallel SPH code optimized for 

CPU and GPU architectures, providing detailed insights into the 

implementation and performance benefits mentioned in Table 1. 

 

3. PROPOSED METHODOLOGY 

 
This section focuses on developing a new MPI-based parallel 

SPH code designed to run on both CPUs and GPUs. The goal is 

to address the computational challenges faced by existing MPI-

based parallel SPH codes, which are primarily designed for 

CPU-based computers. GPUs can accelerate SPH simulations 

significantly, but their programming complexity poses a hurdle. 

The proposed work aims to bridge this gap and achieve an 

efficient distribution of the computational load between CPUs 

and GPUs. 

 

3.1 Code Design and Implementation 

A new MPI-based parallel SPH code has been designed and 

optimized for CPU and GPU architectures. This involves 

exploring techniques for efficient load balancing, data 

communication, and task distribution to harness the parallel 

processing capabilities of both types of processors. The 

implementation leverages the CUDA parallel programming 

architecture to utilize GPU capabilities efficiently. The three 

core processes of SPH—neighbor search, force calculation, and 

system updates—are parallelized on the GPU through the use of 

execution threads. After transferring particle data from the CPU 

to the GPU, all particle information is retained on the GPU for 

the entire duration of the simulation [4] [19]. Occasional data 

transfers from GPU to CPU are performed when saving 

simulation information, minimizing computationally expensive 

data transfers. The GPU implementation utilizes a neighbor list 

analogous to those employed in serial CPU approaches, such as 

the cell-linked list. CUDA's radix-sort algorithm enhances the 

parallelization of operations involved in constructing the cell-

linked list [20]. Particle properties are updated using separate 

execution threads on the GPU, and CUDA's reduction algorithm 

further optimizes parallelization for certain tasks. The most 

computationally expensive part of particle interaction uses one 

thread per particle to calculate the forces arising from 

interactions with neighboring particles. 

3.2 Algorithm Flowchart 

The flowchart depicted in Figure 2 visually represents the 

sequential order of these steps and their links to one another. 
 

3.2.1 Initialize MPI Processes   
     

Enable parallel computation, set up communication channels 

among processes, and determine the total number of processes 

in the MPI communicator [20]. 

 
3.2.2 Initialize SPH Parameters 

 

Set fundamental parameters for SPH simulation, including 

particle properties, simulation domain specifications, and the 

time step definition. 

 

3.2.3 Domain Subdivision 
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Divide the physical domain into subdomains, assigning each to 

a specific MPI process. Ensure adjacent MPI processes handle 

neighbouring subdomains for efficient communication during 

force calculations [21]. 

 

 
 

Fig. 2 Abstract view of Proposed Framework 

 
 

3.2.4 Overlapping Communication and 

Computation 

 

Implement a strategy for overlapping communication and 

computation to minimize idle time. Optimize force calculations 

to occur concurrently with data exchanges between MPI 

processes, enhancing overall simulation efficiency. 

 

3.2.5 Load Balancing 

 
Incorporate a load balancing strategy to distribute the 

computational load evenly. This may involve dynamically 

adjusting the time step based on the workload of each MPI 

process, minimizing computational time differences. 
 

3.2.6 Compute Density and Kernel 

Approximation 

 
Calculate particle density using the SPH density equation and 

kernel approximation for particles within the assigned 

subdomain. Sum contributions from neighboring particles 

within the kernel support an accurate density estimate. 

 

3.2.7 Compute Momentum 

 
Utilize the momentum equation to compute particle 

acceleration, considering pressure, density, gravitational 

effects, and viscous terms. This comprehensive evaluation 

accounts for particle motion. 

 

3.2.8 Update Density 

 
Update particle density based on the continuity equation. Sum 

contributions from neighboring particles within the interaction 

distance to reflect changes in density due to particle motion and 

interaction. 

 

3.2.9 Compute Pressure 

 
Tait's equation of state is applied to calculate the pressure of 

particles. Evaluate the equation to determine pressure based on 

the updated density [22]. 

3.3 Multi-GPU Implementation with MPI 

A secondary level of parallelization is achieved through the use 

of MPI, which enables inter-device communication and the 

integration of resources across multiple machines. The 

simulation's spatial domain is segmented into subdomains, with 

each MPI process responsible for managing and processing a 

portion of the particle data within its respective subdomain. This 

setup allows for effective computation across heterogeneous 

clusters, optimizing the utilization of all available processing 

resources. 

 

3.3.1 Domain Subdivision 

 

The physical domain is subdivided into subdomains, with each 

subdomain assigned to separate MPI processes. This 

subdivision scales the simulation to expand proportionally with 

the number of machines employed. The main factors 

contributing to inefficiency, such as data exchange and 

synchronization, are addressed through careful domain 

subdivision and load-balancing strategies. 

 

3.3.2 Subdivision Strategy 

 

The domain is partitioned into particle blocks, with each block 

assigned to a different MPI process. Each subdomain interacts 

with two neighboring subdomains, except those located at the 

edges of the simulation box. Data exchange between processes 

is necessary to calculate forces, and each process needs to obtain 

data on neighboring particles within the interaction distance 

(halo). Figure 3, as mentioned in [23], illustrates the division of 

a domain into three subdomains (0, 1, and 2) and highlights the 

halo concept, essential for force calculations. 



1166 
 

 

 

 

Fig. 3 Domain subdivision into three subdomains with halo 

regions 

 

3.3.3 Overlapping Communication and 

Computation 

 

To reduce communication time, forces on each subdomain are 

calculated so that communications and computations overlap. 

This optimization aims to enhance efficiency, especially with an 

increasing number of MPI processes. 

 

3.3.4 Load Balancing 

 
Load balancing is crucial for efficiency, and a variable time step 

computed following a specified method is employed. This 

variable time step minimizes the difference in computation time 

required for the fastest and slowest processes, mitigating 

efficiency loss during synchronizations. 

 

3.4 Algorithm Description 

The proposed MPI-based parallel SPH algorithm utilizes the 

following equations to simulate fluid dynamics efficiently. It 

briefly overviews the fundamental equations, and their 

application in the algorithm is discussed below. 

 
3.4.1 Density and Kernel Approximation 

 

The density function 𝜌(𝑥) in equation 1 is discretized using the 

SPH method. The discrete form based on particles is expressed 

as follows, where the approximation is interpolated at a particle 

i, and a summation is executed over all particles located within 

the kernel's region of compact support. 

 

𝐹(𝑟𝑎) ≈ ∑ 𝐹

𝑏

(𝑟𝑏)𝑊(𝑟𝑎 − 𝑟𝑏 , ℎ)𝛥𝑣𝑏            (1) 

 
Here, 𝑚𝑗 is the mass of particle 𝑗, and 𝑊 is the kernel function. 

If 𝑊(𝑥𝑖 − 𝑥𝑗, ℎ) is chosen such that 𝑊 = 1 when 𝑥𝑖 − 𝑥𝑗, 

with 𝑚𝑗 − 𝑝𝑗 , equation 2 becomes: 

 

        𝐹(𝑟𝑎) ≈ ∑ 𝐹𝑏 (𝑟𝑏)
𝑚𝑏

𝜌𝑏
𝑊(𝑟𝑎 − 𝑟𝑏)                    (2)       

 
3.4.2 Momentum Equation 

 
The momentum equation in equation 3, as proposed by [4], is 

employed to determine the acceleration (𝑎𝑖) of a particle (𝑖) 

resulting from interactions with its neighbors (𝑗): 
 

𝑑𝑣𝑎

𝑑𝑡
= − ∑ 𝑚𝑏

𝑏

(
𝑝𝑏

𝜌𝑏
2 −

𝑝𝑎

𝜌𝑎
2 + 𝛱𝑎𝑏) 𝛻𝑎𝑊𝑎𝑏 + 𝑔    (3) 

 
Here 𝑣𝑖 is the velocity, 𝑝𝑖  is the pressure, 𝜌𝑖 is density, 𝑚𝑖 

denotes mass, 𝑔 stands for gravitational acceleration, 𝛱𝑖𝑗 is the 

viscous term based on the artificial viscosity model as proposed 

in [4]. 

 

3.4.3 Continuity Equation 

 
The continuity equation or mass conservation principle, as 

expressed in equation 4, in SPH form [4], is used to compute 

change in fluid density: 

 

 𝑑𝜌𝑎

𝑑𝑡
= − ∑ 𝑚𝑏

𝑏

𝑣𝑎𝑏 ∗ 𝛻𝑎𝑊𝑎𝑏                        (4) 

 
3.4.4 Pressure Calculation 

 

Pressure (𝑝𝑎) is computed from density based on Tait's 

equation [17]  of state, as specified in equation 5. 
 

             𝑃𝑎 = 𝐵 ((
𝜌𝑎

𝜌𝑜
)

𝛾
− 1)                                 (5)       

 

Where 𝐵 is the constant, 𝛾 is the adiabatic index, 𝜌0 is the 

reference density, and the speed of sound (𝑐𝑜)is determine by 

equation 6:  

 

𝑐0 = (𝑐𝜌0) = √(
𝜕𝑃

𝜕𝜌
)

𝜌𝑜

                     (6) 

 

3.4.5 Temporal Integration Method 
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A variable time-step Verlet algorithm [24-25] is utilized for 

time integration, with the step size determined by the Courant–

Friedrich–Levy (CFL) condition, the applied forces, and 

viscous diffusion, as outlined in [26]. 

 

3.5 MPI-Based Parallelization 

The algorithm is parallelized using MPI, where the physical 

domain is categorized into subdomains assigned to separate 

MPI processes. Communication between devices is 

established, allowing the combination of resources from 

multiple machines. The load-balancing strategy is employed 

to minimize computational time differences among processes. 

 

3.5.1 Domain Subdivision 

 

The domain is subdivided into particle blocks, each allocated 

to separate MPI processes. All subdomains are surrounded by 

two neighboring subdomains, except for those positioned at 

the boundaries of the simulation box. Data exchange between 

processes is necessary for force calculations, and each process 

needs to obtain data on neighboring particles within the 

interaction distance (halo). 

 

3.5.2 Overlapping Communication and 

Computation 

 

To reduce communication time, force calculation for each 

subdomain is structured in a way that allows communication 

and computation to occur simultaneously. This optimization 

aims to enhance efficiency, especially with an increasing 

number of MPI processes. 

 

3.5.3 Load Balancing 

 

It is crucial for efficiency, and a variable time step is used to 

minimize the difference in computation time between the 

fastest and slowest processes, mitigating efficiency loss during 

synchronizations. 

 

4. EXPERIMENT RESULTS 

 
This section presents the experimental outcomes from the 

smoothed particle hydrodynamics simulations. The simulations 

were performed on an 11th Gen Intel(R) Core(TM) i5-11500 @ 

2.70GHz processor with six cores and 12 threads, using the 

mpic++ compiler on a linux ubuntu system. The focus was on 

evaluating the computational time required for executing SPH 

simulations across multiple cores. The simulation parameters 

were set to 𝑇 = 5.0, 𝛥𝑡 = 0.0001,∧ ℎ = 0.01, with no 

compiler optimizations applied.  

 

Table 2 details the computational times, measured in 

milliseconds, for both serial and parallel implementations of the 

SPH simulations. These also include the number of processes 

used in the parallel simulations. These results provide a 

thorough assessment of the SPH model's efficiency and 

scalability, demonstrating its performance under the specified 

computational conditions. 

4.1 Simulation Output Analysis 

The SPH simulation was executed using the following 

command:𝑚𝑝𝑖𝑟𝑢𝑛 − 𝑛𝑝6 . 𝑆𝑃𝐻𝑚𝑎𝑖𝑛⁄ . 𝑜𝑢𝑡𝑖𝑐𝑑𝑟𝑜𝑝𝑙𝑒𝑡 −
−𝑑𝑡0.01 − −𝑇5 − −ℎ0.01. This command utilizes six 

processes for parallel execution, simulates the droplet scenario 

(− − 𝑖𝑐 − 𝑑𝑟𝑜𝑝𝑙𝑒𝑡), uses a time step (− − 𝑑𝑡) of 0.01, runs 

the simulation for a period (− − 𝑇) of 5 seconds, and sets the 

particle radius of influence (− − ℎ) to 0.01 shown in Figure 4. 

 

Fig. 4 Performance of the SPH model under different settings 

 

4.2 Performance Metrics 

The simulations employed varying numbers of processes to 

evaluate the model's performance. Table 2 presents millisecond 

running times for the Dam-break and Droplet scenarios, 

measured under different parallel processing conditions. These 

simulations are executed in an HPC environment to assess the 

scalability and efficiency of the implemented model. The 

number of particles for each simulation is also indicated in 

Table 2. 

 

The experimental results demonstrate significant improvements 

in computational efficiency with the MPI-based parallel SPH 

implementation. The adopted parallelization strategy effectively 

reduces computational times, as evidenced by the droplet 

simulation time decreasing from 2468 ms with a single process 

to 859 ms with six processes, an improvement factor of 

approximately 2.87. These results align with and extend the 

findings of others [5,8] who utilized multi-GPU and MPI 

techniques for SPH simulations. This implementation explicitly 

addresses overlapping communication and computation 

challenges and incorporates a load-balancing strategy to 

minimize computation time differences among processes. These 

enhancements position this work as a major contribution to the 
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field of SPH simulations, highlighting the effectiveness of MPI 

in enhancing computational performance in fluid dynamics and 

related fields. 

 

Table. 2 Simulation Performance Metrics (Times in (ms) 
 

 

5. CONCLUSION 

 
This paper presents a novel MPI-based parallel SPH code 

designed to leverage CPU and GPU architectures, addressing 

the computational challenges of large-scale SPH simulations. 

Results show substantial performance improvements, with 

parallel implementations reducing computational times by up to 

66% compared to serial approaches. The scalability of the 

approach is evident, with efficiency gains observed as the 

number of processes increased. For instance, the parallelization 

using six processes reduced the running time for the Dam-break 

scenario to 1118 milliseconds and the Droplet scenario to 859 

milliseconds. These results highlight the potential of MPI-based 

parallelization to optimize SPH simulations, facilitating more 

detailed and accurate fluid dynamics analysis in complex 

scenarios. The implementation's capability to handle large 

particle counts efficiently opens avenues for further exploration 

and refinement, particularly in adapting the methodology to a 

broader range of computational environments. 
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