
ISSN: 2584-0495 Vol. 2, Issue 4, pp.714- 721

International Journal of Microsystems and IoT

ISSN: (Online) Journal homepage: https://www.ijmit.org

Design of an Efficient Selective Stochastic Model for
Delay-Aware Digital Classification using Nexys A7
FPGA

Sachin D. Kohale, Trapti Sharma

Cite as: Kohale, S. D., & Sharma, T. (2024). Design of an Efficient Selective Stochastic

Model for Delay-Aware Digital Classification using Nexys A7 FPGA. International Journal

of Microsystems and IoT, 2(4), 714–721. https://doi.org/10.5281/zenodo.11221335

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 22 April 2024

 Submit your article to this journal:

 Article views:

 View related articles:

 View Crossmark data:

 DOI: https://doi.org/10.5281/zenodo.11221335

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.11221335
https://doi.org/10.5281/zenodo.11221335
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

714

International Journal of Microsystems and IoT

 Vol. 2, Issue 4, pp. 714-721; DOI: https://doi.org/10.5281/zenodo.11221335

Design of an Efficient Selective Stochastic Model for Delay-Aware Digital
Classification using Nexys A7 FPGA
Sachin D. Kohale1, Trapti Sharma2

1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
2School of Computing science and Engineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, India

KEYWORDS

Message Digest 5 (MD5); Mel
Frequency Cepstral Coefficients
(MFCC); Pseudo Stochastic Number
Generator (PSNG); Speech
Classification.

1. INTRODUCTION

In a microarray dataset, the rows and columns indicate the

number of entries and the dimensions to be evaluated. The

work required to determine what is most important grows

proportionally with the number of dimensions in a dataset.

The hardest part of big feature space datasets (i.e., microarray

datasets) is projecting a vast feature space into a smaller one

while preserving as much information as feasible [1]-[5].

Preprocessing such massive volumes of data may be costly

since each record in a microarray dataset may include up to

450,000 attributes. Furthermore, data sparsity and the quantity

of relevant data diminish as the dimensionality of a dataset

rises exponentially. Datasets with a wide feature space and

few records or observations tend to exhibit this more

frequently. Because of the rapid change in available data, a

model built using overfitted data runs the risk of producing

significant classification mistakes. Problems might be further

exacerbated by the presence of noise. Noisy data is

information that either contains errors or varies significantly

from the expected value. It is also worth noticing that the

machine learning algorithm's performance may hampered if

fed with inaccurate or otherwise flawed data [6]. To reduce

the model’s complexity and improve its machine-learning

performance, noisy input must be filtered out. The reasons to

select suitable feature selection methods include huge dataset

dimensions, high cost of computing, the presence of irrelevant

data, the risk of overfitting, and manual feature extraction.

The accessible data is preserved while a vast feature space is

narrowed down to its most crucial characteristics using the

feature selection method. By focusing on the features that

matter most, we may get accurate classifications in less time

[7]. Task-relevant data is significant in determining the

efficiency of the data mining approach. Thus, there is a linear

relationship established between the input and output.

Learning across a large feature space would be difficult, if a

data mining approach is applied to irrelevant data, such as data

containing redundant information or noise. As data mining

grows in popularity, more researchers are focusing on feature

selection because of its importance [8]. Feature selection is

the process of narrowing down a large feature space, such as

a dataset, to a manageable subset that may be used in model

building. By filtering out irrelevant information about the

data, feature selection helps in the fast and efficient

functioning of the data mining process [9]. Filters, wrappers,

and embedding techniques are a few examples of feature-

selection methods.

As the filtering method does not use any pre-defined pattern

it selects the most distinguishing and relevant features of a

product. The filter assessment methods include relief,

information gain, and chi-square tests. The “wrapper

approach” is a method for selecting features that consider the

classification algorithm used to make the ultimate decision

[10]-[14].

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

ABSTRACT

As the dimension of the speech recognition dataset increases while performing the classification of the
same, results in an increment of several features as well as its classification delay. Therefore, to reduce
the delay required during the classification, this paper proposes the Selective Stochastic Model for delay-
aware Digital Classification (SSMDC) which consists of a Gold Code-based Intelligent Pseudo Stochastic
Number Generator (GCI PSNG) followed by Message Digest 5 (MD5) model. The role of the PSNG
model is to generate efficient sample indices for classification into different categories followed by a low-
complexity truncated MD5 model for the generation of sample-selection indices. These indices are
sequentially given to feature memory blocks for the selection of samples, which are classified by the
underlying classifiers. The SSMDC model performance is tested on auditory Mel-Frequency Cepstral
Coefficients (MFCC) component features with k-Nearest Neighbors (k-NN) classifier but can be
extended to any other application with minimal configurations, thereby making it useful for a wide variety
of real-time scenarios. The proposed model is implemented using Verilog HDL on Xilinx Vivado Design
Suite 2023.1, and simulation results are obtained considering the device xc7a100tcsg324-1 Nexys A7
FPGA. Also, with SSMDC, the proposed model reduces the delay of classification by 27.35% when
compared with other classification models.

https://doi.org/10.5281/zenodo.11221335
https://www.isve.in/default?page=adminisve&pid=home

715

The application of the wrapper method for the classification

algorithm may generate a complete and well-tuned set of

features to be used for several families of algorithms, such as

Principal Component Analysis (PCA), Particle Swarm

Optimization (PSO), etc. The model fitting in embedded

techniques needs feature selection, with the resulting

methodology choice depending on the embedded approach’s

target model. Some of the examples of embedded algorithms

include Random forests, singular value decompositions, and

accurate Bayes approximations. Since external methods do

not consider all possible combinations of characteristics, it has

been shown that filter and wrapper techniques are insufficient

as a solution [11]. Selecting many candidate feature subsets

allows a feature selection method to cover more ground and

learn more about the feature space. There is no connection

between search terms and metrics used for assessment.

Searches may be conducted in one of three ways:

exhaustively, sequentially, or at random [15]

.

An in-depth search, often called an exhaustive search provides

more accurate results. Nonetheless, when applied to a big

feature space, W(2n) (W stands for exhaustive search)

becomes computationally expensive (n). Since the best

answer or subset relies on the rankings generated by previous

methods, it cannot be found using sequential search. The

computational cost is still lower than that of W. Also, the best

results are not always guaranteed by random search, which

uses a sequential search technique and picks a random part of

the feature space, to begin with. After picking an option, the

process begins again, creating a new random group [16]-[20].

Most often researchers use feature selection methods when

there are many features but few samples to work with (or data

points). The two classic examples of feature selection, which

frequently involve thousands of features and tens to hundreds

of samples, are text analysis and DNA microarray data [14].

The capability to limit the available features to those that are

most relevant for the present task may improve the

classification's effectiveness and efficiency. Restricting

model overfitting to a confined feature space also enhances

the generalization capacity of classifiers. To prevent it from

becoming distracted by unrelated information, the model or

classifier is trained using the most pertinent features of the

data. Many of them could be useful in treating various

artifacts. The disease profiling may improve in terms of

classification and sickness prediction accuracy by using even

a small gene microarray dataset based on a feature set. To

reduce the massive amounts of information different methods

have been developed often seen in gene microarray datasets.

Improving illness classification and forecasting is the main

goal. Feature selection can be used to limit the feature space

to a more manageable subset, which will further enhance the

responsiveness of the model. Currently, images, radiological

reports, prescription profiles, signals, patient histories,

pathology reports, and treatment records are all contained in

the organized and semi-structured databases of healthcare

institutions. This dataset has a wide feature space,

heterogeneity, complexity, ambiguity, and noise. As a result,

data mining offers a wide range of approaches that offer

appropriate and correct feature selection methods and

classification algorithms, which may help unearth previously

buried patterns and information in such datasets. The clinical

researchers and practitioners may benefit widely from these

patterns and data as well as more wise decisions for early

disease detection can be taken.

This establishes a formal connection between the number of

feature sets and computational complexity, and it explains

why state-of-the-art classification and feature selection

models like the Support Vector Machine (SVM), k-nearest

Neighbor (k-NN), and others need N-clock cycles. When

there are more attributes to consider, more time and resources

are needed to train these classifiers. To address these issues,

the researchers have reported a variety of feature reduction

strategies [26], but their implementation is costly and time-

consuming preventing them from using moderately advanced

Field Programmable Gate Arrays (FPGAs). Furthermore,

feature reduction is quite energy-intensive, which restricts the

scalability of such methods. To overcome these limitations, a

further part of this paper proposed a powerful stochastic

model for the delay-aware digital classification of FPGAs.

Also, we analyze the model's efficacy in a variety of scenarios

by comparing in terms of computing metrics such as

latency(delay), energy(power), and area (Look Up Tables –

LUTs) to those of existing techniques in [1,5,10,27]. The

paper is organized as follows: Section II describes the details

of existing works. The proposed SSMDC model which is an

integration of PSNG [28-29] and MD5 details are covered in

Section III. Section IV covers the results and comparison with

the existing work. Finally, the article is summarized.

2. PROPOSED MODEL

Fig. 1 Proposed Intelligent Stochastic Classification Process

Figure 1 proposes the design of a Gold Code-based Intelligent

Pseudo Stochastic Number Generator (GCI PSNG). It generates

sample-selection indices using a Message-Digest 5 (MD5) Model

with reduced complexity. These indices are sequentially provided

716

to feature memory blocks to select samples for classification by

the underlying classifiers. To ensure non-repetitive features, an

in-memory cache of computed numbers is maintained, which

helps to reduce index calculations. To maintain track of sample-

to-class mapping counts for individual classes, the proposed

design converges when counts for any class exceed fifty percent

of the total number of samples. To perform this task, the data is

initially loaded into the memory, which consists of selected

feature samples, and their individual classes. This data is

segregated into training, testing & validation samples. The

training samples are used to identify classes of testing and

validation samples. For each of the testing and validation

samples, an intelligent and stochastic set of indices is initially

generated via gold sequences. The Gold sequence generator is a

type of linear feedback shift register (LFSR) that uses two shift

registers and an XOR operation to generate a sequence of pseudo-

random bits. The sequence generator output is a binary sequence

with good statistical properties and can be used to generate

stochastic numbers. A binary fraction expansion method is used

to convert binary output sequence into decimal value lies in the

range (0,255) which is employed in stochastic number generation

and utilized in the gold sequence generator.

Alternatively, we use the output sequence directly as a

stochastic sequence by treating each 0 as a "heads" outcome and

each 1 as a “tails” outcome via the following operations,

• Initialize two seed values seed1 ,and seed2 𝑎𝑠

 seed1 = Nt /2 (1)

 seed2 = Nt /4 (2)

where 𝑁𝑡 represents the total number of samples available in the

training sets.

• Now, define two binary polynomials P1 and P2 as

P1 = x14 + x1 + 1 (3)

P2=x28+x24+ x22+ 1 (4)

In both these equations, the output will be obtained via low-

complexity shifting operations.

• Extract the Least Significant Bits (LSBs) from both seeds

using

LSBi = seedi >> 7 (5)

where, 𝑖 ∈ (1,2) for the two seed value sets.

• Generate an output bit Outputi as

Outputi = LSB1 XOR LSB2 (6)

Shift the registers by one bit using the generator polynomials,

using following;

 seed(new)i = Pi (7)

to calculate the new value sets.

• Update the shift registers with the new values using

 seed(new)i=(seed(new)i+ seed(old)i) >> 1 (8)

 Based on these operations, the 𝑂𝑢𝑡𝑝𝑢𝑡 value is returned for

an individual set of bits. A set of 8 bits is aggregated to form a

stochastic byte, which is used by the Message-Digest 5 (MD5)

[3] Model for the calculation of next & consecutive memory

index sets. An input message is fed into the cryptographic hash

function MD5, which outputs a fixed-size, 128-bit (16-byte)

hash result. The 16 bytes are often non-repetitive and can be

used as classification indices.
 To perform this task, initially, a set of auxiliary functions are

defined using the following

 F(X,Y,Z) = (X & Y) | (�̅� & Z) (9)

 G(X,Y,Z) = (X & Z) | (Y &�̅�) (10)

 H(X,Y,Z)= X ^ Y ^ Z (11)

 I(X,Y,Z)=Y ^(X & �̅�) (12)

Using these functions, a set of rounds Roundi(A,B,C,D,X,S,T)

are defined as

Roundi(A,B,C,D,X,S,T) =B+LR((A+ Funi(B,C,D)+ X + T),S)
 (13)

where, 𝐿𝑅 represents left rotation operations, while 𝑖 ∈ (1, 4),

and 𝐹𝑢𝑛𝑖 ∈ (𝐹, 𝐺, 𝐻, 𝐼) for individual set of rounds. To setup

the MD5 constants of 32-bit words each denoted as A, B, C, and

D

 A =Nt * 2 (14)

B = Nt * 4 (15)

 C = Nt * 8 (16)

D=Nt * 16 (17)

Pre-process the generated stochastic number by appending a

single "1" bit and padding it with zeros. Now generate updated

constant values A(New), B(New), C(New), and D(New) as

 A(New)=Roundi(A,B,C,D,SI[j],7,Ntest) (18)

 B(New)=Roundi(A,B,C,D,SI[j+1],12,Ntest) (19)

 C(New)=Roundi(A,B,C,D,SI[j+2],17,Ntest) (20)

 D(New)=Roundi(A,B,C,D,SI[j+3],22,Ntest) (21)

where Ntest are total number of testing samples

 j is the input bit number

 SI is the stochastically generated number

 i ∈ (1,4), representing 4 different rounds.

This process is repeated for each round, and new values of

constants A(New), B(New), C(New), and D(New) are estimated

as

 A(New) =A(New)+A(Old)%N(Prime) (22)

where, N(Prime) is a large prime number, used to limit the value

of 𝐴 to 32 bits.

 B(New) =B(New)+B(Old)%N(Prime) (23)

 C(New)=C(New)+C(Old)% N(Prime) (24)

 D(New)=D(New)+D(Old) % N(Prime) (25)

Hash is formed after processing each bit of stochastically

generated input numbers by concatenating the constants

A(New), B(New), C(New), and D(New) as

 Hash =A(New), B(New), C(New), D(New) (26)

Individual bytes (or words) are extracted from this hash value

and checked for uniqueness. This is done as per the following

process,

• Create an Nt bit long register, and set all its bits to ‘0’

• Bits are set to ‘1’, depending upon which set of training

samples have been used for the classification operations.

• If a bit is found to be ‘0’, then its corresponding hash-byte

is given to the k-Nearest Neighbors (k-NN) classifier.

• This ensures that there are a minimum number of

comparisons to obtain the final class.

 Each of the pseudo stochastic number generator operations,

MD5 operations, and selective indices operations are simple to

deploy on FPGAs as they contain only shifting & logical

operations. Extending to this simplicity, the k-nearest Neighbors

(k-NN) Model is used here for the classification task.

717

3. COMPARATIVE PERFORMANCE

ANALYSIS
In this section, the proposed SSMDC model is implemented using

Verilog HDL, and all the simulations are performed using Xilinx

Vivado Design Suite 2023.1. For the result analysis, a set of 1300

different samples were recorded using audacity at 16 kHz

sampling frequency and stored in the dataset. These speech

keyword samples are categorized as 665 samples of Indian-Male,

127 of Indian-Female, 127 of Taiwanese-Male, 127 of Uganda-

Male, 127 of Indonesian Female, and 127 of Indonesian Male

respectively. Mel Frequency Cepstral Component (MFCC)

features were extracted using MATLAB for “Forward”,

“Reverse”, “Left”, “Right”, “Start”, and “Stop” speech keywords

and the converted samples were classified using k-NN classifier

to evaluate its performance [35]-[40]. Based on this, the average

delay needed for classification was estimated and compared with

different models by normalizing the results via. the following

equation

 P(Norm) =P(Obtained) / Maximum_Samples (27)

where, P(Norm) and P(Obtained) are the values of the

normalized and obtained parameters, and Maximum_Samples

represents the maximum number of samples for which the

model is evaluated in the reference text for different input sets.

In a linear classifier, the normalized values are calculated by

performing the division operation of the obtained parameters

with the maximum number of samples. Based on this strategy,

the area needed for deploying the design on standard FPGA is

evaluated and compared with existing models in Table 1.

Table. 1 Comparison of Normalized Area Utilization for

Different Models

Classification Models
Look Up Table

(LUTs)

Deep Neural Network (DNN) [1] 14964

Convolutional Neural Network (CNN) [5] 63968

Convolutional Neural Network (CNN) [10] 43675

RF Signal Classification [27] 158435

SSMDC Proposed 13.98

According to the Table 1 results, the proposed model shows an

improvement in terms of LUTs as compared to other models

such as Deep Neural Network [1], Convolutional Neural

Network [5,10], and RF Signal Classification [27]. This is

mainly due to the sample-by-sample processing of speech inputs

processed by the integration of PSNG [28-29] and MD5

components in the proposed SSMDC model.

The comparison of normalized area utilization in terms of LUTs

required for the proposed SSMDC model with and without

optimization for the k-NN classifier has been illustrated in Table

2.

Table. 2 Comparison of Normalized Area Utilization with

and without Optimization

No. of Test Samples (NTS)
LUT required

without SSMDC

LUT required

with SSMDC

100 1351 1474
200 1829 2500

300 4100 3778

400 3456 14732
500 6754 6734

600 8127 7907

700 6827 8353
800 7975 10573

900 10603 10267

1000 10132 9165
1100 9358 13415

1200 13893 13186

1300 10610 12248

Average LUT required per

sample

10.91 13.98

Similarly, the power consumed while simulating the proposed

SSMDC model, the following results are obtained as shown in

Table 3. As it is clearly observed from the tabular results, the

power consumption improvement for the proposed model is

96% as compared to the least reported values of the DNN [1]

model. Likewise, the computation results for the power

consumption with and without optimization are demonstrated in

Table 4.

Table. 3 Comparison of Power Consumption for Different

Models

Classification Models Power (in watts)

Deep Neural Network (DNN) [1] 0.74
Convolutional Neural Network (CNN) [5] 2.41

Convolutional Neural Network (CNN) [10] 2.41

RF Signal Classification [27] 1.152
SSMDC Proposed 0.025

Table. 4 Comparison of Power Consumption with and

without Optimization

No. of Test Samples (NTS)
Power Consumed
(in watts) without

SSMDC

Power Consumed
(in watts) with

SSMDC

100 0.316 1.564

200 0.304 1.730

300 11.727 15.554

400 0.268 22.399

500 31.470 16.273
600 18.569 1.625

700 8.880 20.597

800 6.495 37.346
900 12.147 21.034

1000 25.860 18.068

1100 19.022 37.853
1200 19.112 9.150

1300 28.588 2.078

718

Average LUT required per

sample

0.019 0.025

Additionally, the suggested SSMDC model's delay computation

results are computed, and Table 5 displays a comparison with

previous studies. According to the findings, the suggested

model classifies speech keyword signals more quickly than

other models that are currently in use [1,5,10,27].

Table. 5 Comparison of Normalized Delay for Different

Models

Classification Models
Delay

(In microseconds)

Deep Neural Network (DNN) [1] 15.3

Convolutional Neural Network (CNN) [5] 70,000

Convolutional Neural Network (CNN) [10] 71,000

RF Signal Classification [27] 24

SSMDC Proposed 0.03648

The proposed SSMDC model can be deployed for multiple real-

time scenarios and can be used to update the performance of

existing models [1,5,10,27] that perform comparisons of full-

length datasets and samples for the purpose of classifications.

This analysis is illustrated in Table 6, where the delay is

compared with and without optimization for a standard k-NN

classifier.

Table. 6 Comparison of Delay with and without

Optimization

No. of Test Samples (NTS)
Delay

(in microseconds)

without SSMDC

Delay
(in microseconds)

with SSMDC

100 0.99 0.82

200 7.56 3.72

300 10.36 9.82

400 16.78 13.54

500 25.45 16.52
600 29.67 21.25

700 40.50 27.97

800 43.40 31.30
900 50.50 36.97

1000 60.40 45.43

1100 75.90 53.77

1200 85.40 58.63

1300 89.50 63.79

Average Delay required

per sample

0.050936 0.03648

The analysis of Table 6 results indicates that the proposed

SSMDC model shows a classification delay improvement of

27.35% as compared to without SSMDC (without optimization)

model. Further, this optimized classification (SSMDC model)

delay results can assist in deploying these models for different

real-time high-speed use cases.

Figure 2 represents the comparative analysis of various

performance parameters such as Area Utilization (in 2(A),

Power Consumption (in 2(B)), and Classification delay (in

2(C)) of the proposed SSMDC model with other models

[1,5,10,27].

Fig. 2 (A) Comparison of Area Utilization for various models.

Fig. 2 (B) Comparison of Power consumption for various

models.

719

Fig. 2 (C) Comparison of Classification Delay for various models.

Fig. 3 Comparative Analysis of Classification Delay with and without optimization of SSMDC Model.

Likewise, the comparative estimation of classification delay

with and without the SSMDC model for the speech keyword

dataset is represented in Figure 3. The figure indicates that the

classification delay with the SSMDC model provides superior

results in all the test samples in contrast to those without

SSMDC model. Hence, the proposed SSMDC model

outperforms in terms of classification delay, power

consumption, and LUT as compared to other state-of-the-art

models [1,5,10,27]. Therefore, the proposed optimized SSMDC

model which provides a minimum classification delay can be a

suitable classifier for dense speech processing FPGA-

based datasets.

4. CONCLUSION
This work presents the unique SSMDC model, which is ideal

for delay-aware classification of the limited datasets related to

720

recorded speech processing. It is generated by integrating the

PSNG and MD5 models. In order to help create useful sample

indices that fall into a number of categories, the paper describes

the creation of an Intelligent Pseudo Stochastic Number

Generator (GCI PSNG) based on the Gold Code. The low-

complexity truncated Message Digest 5 (MD5) model aids in

the development of sample-selection indices in the GCI PSNG

model. The suggested SSMDC model lowers the classification

time by roughly 27.35% when compared to alternative feature

classification models. Our suggested model performed better in

delay-aware deployments in a variety of applications, including

wireless communication, industrial automation, speech, and

picture recognition, and so forth, then other current models,

such as DNN, Convolutional Neural Networks, and RF

Classifiers. In conclusion, the suggested approach is a

noteworthy advancement in the field of FPGA-based digital

categorization. It provides an effective and innovative way to

boost the functionality of FPGA-based systems, make digital

classification quicker and more accurate, and make it easier to

design new applications across a range of industries and their

deployment use cases.

REFERENCES

1. Maedeh Nobari, and Hadi Jahanirad, “FPGA-based implementation of

deep neural network using stochastic computing”, in Applied Soft

Computing, vol. 137, April 2023, doi:

https://doi.org/10.1016/j.asoc.2023.110166.

2. Matheus M. de A. Kotaki et al., “FPGA implementation of a

Pseudorandom Number Generator Based on k-Logistic Map”, in 2020
IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS),

Feb. 2020, doi: https://doi.org/10.1109/LASCAS45839.2020.9068999.

3. J. Deepakumara et al., “FPGA implementation of MD5 hash algorithm”,

in Canadian Conference on Electrical and Computer Engineering 2001,

pp. 919-924, May 2001, doi:
https://doi.org/10.1109/CCECE.2001.933564.

4. K. -Y. Chou, and Y. P. Chen, "Real-Time and Low-Memory Multi-Faces
Detection System Design with Naive Bayes Classifier Implemented on

FPGA," in IEEE Transactions on Circuits and Systems for Video

Technology, vol. 30, no. 11, pp. 4380-4389, Nov. 2020, doi:
https://doi.org/10.1109/TCSVT.2019.2955926.

5. Lunyi Guo, Shining Mu, Yijie Deng, Chaofan Shi, Bo Yan, and Zhuoling
Xiao, “Efficient Binary Weight Convolutional Network Accelerator for

Speech Recognition”, Sensors 2023, vol.23, no. 3, Jan. 2023, doi:

https://doi.org/10.3390/s23031530.

6. J. Arias-Garcia et al., "Enhancing Performance of Gabriel Graph-Based

Classifiers by a Hardware Co-Processor for Embedded System
Applications," in IEEE Transactions on Industrial Informatics, vol. 17, no.

2, pp. 1186-1196, Feb. 2021, doi:

https://doi.org/10.1109/TII.2020.2987329.

7. N. Attarmoghaddam, and K. F. Li, "An Area-Efficient FPGA
Implementation of a Real-Time Multi-Class Classifier for Binary Images,"

in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69,

no. 4, pp. 2306-2310, April 2022, doi:
https://doi.org/10.1109/TCSII.2022.3148228.

8. M. Elnawawy, A. Sagahyroon and T. Shanableh, "FPGA-Based Network
Traffic Classification Using Machine Learning," in IEEE Access, vol. 8,

pp. 175637-175650, 2020, doi:

https://doi.org/10.1109/ACCESS.2020.3026831.

9. D. Peng and J. Sha, "Efficient HLS Implementation of Fast Linear

Discriminant Analysis Classifier," in IEEE Embedded Systems Letters,

vol. 13, no. 4, pp. 214-217, Dec. 2021, doi:

https://doi.org/10.1109/LES.2021.3078180.

10. Yuexuan Luo, Xiang Cai, Jiandong Qi, Dongdong Guo, and Wenqing

Che, “FPGA-accelerated CNN for real-time plant disease identification”,
Computers and Electronics in Agriculture, vol. 207, April 2023, doi:

https://doi.org/10.1016/j.compag.2023.107715.

11. M. Sahani, and P. K. Dash, "FPGA-Based Deep Convolutional Neural

Network of Process Adaptive VMD Data with Online Sequential RVFLN

for Power Quality Events Recognition," in IEEE Transactions on Power
Electronics, vol. 36, no. 4, pp. 4006-4015, April 2021, doi:

https://doi.org/10.1109/TPEL.2020.3023770.

12. R. Li, Q. Yang, Y. Li, X. Gu, W. Xiao, and K. Li, "HeteroYARN: A

Heterogeneous FPGA-Accelerated Architecture Based on YARN," in

IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 12,
pp. 2968-2980, 1 Dec. 2020, doi:

https://doi.org/10.1109/TPDS.2019.2905201.

13. X. Wang et al., "Design of a Real-Time Movement Decomposition-Based

Rodent Tracker and Behavioral Analyzer Based on FPGA," in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30,
no. 9, pp. 1133-1143, Sept. 2022, doi:

https://doi.org/10.1109/TVLSI.2022.3168783.

14. Z. Zheng, Y. Zhong, A. Ma, and L. Zhang, "FPGA: Fast Patch-Free Global

Learning Framework for Fully End-to-End Hyperspectral Image
Classification," in IEEE Transactions on Geoscience and Remote Sensing,

vol. 58, no. 8, pp. 5612-5626, Aug. 2020, doi:

https://doi.org/10.1109/TGRS.2020.2967821.

15. O. Mujahid, and Z. Ullah, "High Speed Partial Pattern Classification

System Using a CAM-Based LBP Histogram on FPGA," in IEEE
Embedded Systems Letters, vol. 12, no. 3, pp. 87-90, Sept. 2020, doi:

https://doi.org/10.1109/LES.2019.2956154.

16. N. Rezaei, M. N. Uddin, I. K. Amin, M. L. Othman, M. B. Marsadek, and

M. M. Hasan, "A Novel Hybrid Machine Learning Classifier-Based

Digital Differential Protection Scheme for Intertie Zone of Large-Scale

Centralized DFIG-Based Wind Farms," in IEEE Transactions on Industry

Applications, vol. 56, no. 4, pp. 3453-3465, July-Aug. 2020, doi:

https://doi.org/10.1109/TIA.2020.2990584.

17. L. Andrade Maciel, M. Alcântara Souza, and H. Cota de Freitas,

"Reconfigurable FPGA-Based K-Means/K-Modes Architecture for
Network Intrusion Detection," in IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 67, no. 8, pp. 1459-1463, Aug. 2020, doi:

https://doi.org/10.1109/TCSII.2019.2939826.

18. A. K. Jameil, and H. Al-Raweshidy, "Efficient CNN Architecture on

FPGA Using High Level Module for Healthcare Devices," in IEEE
Access, vol. 10, pp. 60486-60495, 2022, doi:

https://doi.org/10.1109/ACCESS.2022.3180829.

19. H. Liu, A. Panahi, D. Andrews, and A. Nelson, "An FPGA-Based Upper-

Limb Rehabilitation Device for Gesture Recognition and Motion

Evaluation Using Multi-Task Recurrent Neural Networks," in IEEE

Sensors Journal, vol. 22, no. 4, pp. 3605-3615, 15 Feb.15, 2022, doi:

https://doi.org/10.1109/JSEN.2022.3141659.

20. J. C. Fabero et al., "Single Event Upsets Under 14-MeV Neutrons in a 28-

nm SRAM-Based FPGA in Static Mode," in IEEE Transactions on

Nuclear Science, vol. 67, no. 7, pp. 1461-1469, July 2020, doi:
https://doi.org/10.1109/TNS.2020.2977874.

21. A. J. A. El-Maksoud, M. Ebbed, A. H. Khalil, and H. Mostafa, "Power
Efficient Design of High-Performance Convolutional Neural Networks

Hardware Accelerator on FPGA: A Case Study With GoogLeNet," in

IEEE Access, vol. 9, pp. 151897-151911, 2021, doi:
https://doi.org/10.1109/ACCESS.2021.3126838.

22. S. K. Mousavikia, E. Gholizadehazari, M. Mousazadeh, and S. B. O.
Yalcin, "Instruction Set Extension of a RiscV Based SoC for Driver

Drowsiness Detection," in IEEE Access, vol. 10, pp. 58151-58162, 2022,

doi: https://doi.org/10.1109/ACCESS.2022.3177743.

https://doi.org/10.1016/j.asoc.2023.110166
https://doi.org/10.1109/LASCAS45839.2020.9068999
https://doi.org/10.1109/CCECE.2001.933564
https://doi.org/10.1109/TCSVT.2019.2955926
https://doi.org/10.3390/s23031530
https://doi.org/10.1109/TII.2020.2987329
https://doi.org/10.1109/TCSII.2022.3148228
https://doi.org/10.1109/ACCESS.2020.3026831
https://doi.org/10.1109/LES.2021.3078180
https://doi.org/10.1016/j.compag.2023.107715
https://doi.org/10.1109/TPEL.2020.3023770
https://doi.org/10.1109/TPDS.2019.2905201
https://doi.org/10.1109/TVLSI.2022.3168783
https://doi.org/10.1109/TGRS.2020.2967821
https://doi.org/10.1109/LES.2019.2956154
https://doi.org/10.1109/TIA.2020.2990584
https://doi.org/10.1109/TCSII.2019.2939826
https://doi.org/10.1109/ACCESS.2022.3180829
https://doi.org/10.1109/JSEN.2022.3141659
https://doi.org/10.1109/TNS.2020.2977874
https://doi.org/10.1109/ACCESS.2021.3126838
https://doi.org/10.1109/ACCESS.2022.3177743

721

23. X. Wang, L. Gu, and Z. Wang, "Computer Medical Image Segmentation

Based on Neural Network," in IEEE Access, vol. 8, pp. 158778-158786,
2020, doi: https://doi.org/10.1109/ACCESS.2020.3015541.

24. M. Zeghid et al., "Modified Optical Burst Switching (OBS) Based Edge
Node Architecture Using Real-Time Scheduling Techniques," in IEEE

Access, vol. 9, pp. 167305-167321, 2021, doi:

https://doi.org/10.1109/ACCESS.2021.3132578.

25. Y. Cao, S. Jiang, S. Guo, W. Ling, X. Zhou, and Z. Yu, "Real-Time SAR

Imaging Based on Reconfigurable Computing," in IEEE Access, vol. 9,
pp. 93684-93690, 2021, doi:

https://doi.org/10.1109/ACCESS.2021.3093299.

26. Ayat Naji Hussain, et. al., “Impact of feature reduction techniques on

classification accuracy of machine learning techniques in leg

rehabilitation”, in Measurement: Sensors , vol. 25, Feb. 2023, doi:
https://doi.org/10.1016/j.measen.2022.100527.

27. S. Soltani, Y. E. Sagduyu, R. Hasan, K. Davaslioglu, H. Deng and T.
Erpek, "Real-Time and Embedded Deep Learning on FPGA for RF Signal

Classification," MILCOM 2019 - 2019 IEEE Military Communications

Conference (MILCOM), Norfolk, VA, USA, 2019, pp. 1-6, doi:
https://doi.org/10.1109/MILCOM47813.2019.9021098.

28. Mohamed Gafsi, et. al., “Hardware implementation of digital pseudo-

random number generators for real-time applications”, signal, image and

video processing, 2024, doi: https://doi.org/10.1007/s11760-024-03082-8.

29. Feali, M.S. Realization of a pseudo-random number generator utilizing

two coupled Izhikevich neurons on an FPGA platform. Analog Integr Circ
Sig Process 119, 57–68 (2024). https://doi.org/10.1007/s10470-023-

02223-2.

30. Fei Yu, et. al., “Design and FPGA implementation of a Pseudorandom

Number Generator Based on a Four-Wing Memristive Hyperchaotic

System and Bernoulli Map”, IEEE access, vol. 7, 2019, doi:
https://doi.org/10.1109/ACCESS.2019.2956573.

31. B. Deng, Y. Fan, J. Wang, and S. Yang, "Reconstruction of a Fully

Paralleled Auditory Spiking Neural Network and FPGA Implementation,"

in IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6,

pp. 1320-1331, Dec. 2021, doi:
https://doi.org/10.1109/TBCAS.2021.3122549.

32. R. Sayed, H. Azmi, A. M. Nassar, and H. Shawkey, "Design Automation
and Implementation of Machine Learning Classifier Chips," in IEEE

Access, vol. 8, pp. 192155-192164, 2020, doi:

https://doi.org/10.1109/ACCESS.2020.3032658.

33. Z. Xue, J. Wei, and W. Guo, "A Real-Time Naive Bayes Classifier

Accelerator on FPGA," in IEEE Access, vol. 8, pp. 40755-40766, 2020,
doi: https://doi.org/10.1109/ACCESS.2020.2976879.

34. N. Kishor, R. Singh H, S. R. Mohanty, and O. Yadav, "Evolving
Disturbances Detection and Classification in Real-time for Grid-

Connected System," in IEEE Transactions on Industrial Electronics, vol.

68, no. 9, pp. 8265-8273, Sept. 2021, doi:

https://doi.org/10.1109/TIE.2020.3013739.

35. A. Luiz Barbosa, G. Loureiro, S. Manea, J. Marcelo Lima Duarte, and G.
Paulineli Garbi, "Ranking of Fault Mitigation Techniques for Spatial

Radiation in Commercial Off-the-Shelf Field Programmable Gate Array,"

in IEEE Latin America Transactions, vol. 18, no. 04, pp. 736-743, April
2020, doi: https://doi.org/10.1109/TLA.2020.9082217.

36. T. Liang, Z. Huang, and V. Dinavahi, "Adaptive Real-Time Hybrid Neural
Network-Based Device-Level Modeling for DC Traction HIL

Application," in IEEE Access, vol. 8, pp. 69543-69556, 2020, doi:

https://doi.org/10.1109/ACCESS.2020.2986298.

37. D. Lee, and V. Bertacco, "Bypassing Multicore Memory Bugs With

Coarse-Grained Reconfigurable Logic," in IEEE Transactions on
Computers, vol. 71, no. 9, pp. 2191-2204, 1 Sept. 2022, doi:

https://doi.org/10.1109/TC.2021.3125188.

38. H. Fan, M. Ferianc, Z. Que, X. Niu, M. Rodrigues, and W. Luk,

"Accelerating Bayesian Neural Networks via Algorithmic and Hardware
Optimizations," in IEEE Transactions on Parallel and Distributed

Systems, vol. 33, no. 12, pp. 3387-3399, 1 Dec. 2022, doi:

https://doi.org/10.1109/TPDS.2022.3153682.

39. E. Youssef, H. A. Elsimary, M. A. El-Moursy, H. Mostafa, and A.

Khattab, "Energy-Efficient Precision-Scaled CNN Implementation With
Dynamic Partial Reconfiguration," in IEEE Access, vol. 10, pp. 95571-

95584, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3204704.

40. Xinlong Wang, et. al., "A Low-Resource-Cost FPGA implementation of

Population Threshold Coding for Spiking Neural Networks ," 2024 4th

International Conference on Neural Networks, Information and
Communication Engineering (NNICE), pp., Information and

Communication Engineering (NNICE), pp.-79, doi:

https://doi.org/0.1109/NNICE61279.2024.10498425.

Authors

Sachin D. Kohale received BE degree in

electronics engineering from R.T.M.

Nagpur University, Nagpur, India in 2008

and ME degree in embedded systems and

computing from G.H. Raisoni College of

Engineering, Nagpur, India in 2013. He is

currently pursuing PhD at the Department of

Electrical Engineering, National Taipei

University of Technology, Taipei, Taiwan in speech

classifications, and applications of speech based robotic control

systems.

E-mail: sdk26091986@gmail.com

Trapti Sharma received PhD degree from

Maulana Azad National Institute of

Technology, Bhopal, India. She is currently

an Assistant Professor at VIT Bhopal

University, Bhopal, India. Her research

interests include computer arithmetic

circuits, multi-valued logic design, nano-

electronics, speech processing, and low-power VLSI design.

E-mail: trapti16sharma@gmail.com

https://doi.org/10.1109/ACCESS.2020.3015541
https://doi.org/10.1109/ACCESS.2021.3132578
https://doi.org/10.1109/ACCESS.2021.3093299
https://doi.org/10.1016/j.measen.2022.100527
https://doi.org/10.1109/MILCOM47813.2019.9021098
https://doi.org/10.1007/s11760-024-03082-8
https://doi.org/10.1007/s10470-023-02223-2
https://doi.org/10.1007/s10470-023-02223-2
https://doi.org/10.1109/ACCESS.2019.2956573
https://doi.org/10.1109/TBCAS.2021.3122549
https://doi.org/10.1109/ACCESS.2020.3032658
https://doi.org/10.1109/ACCESS.2020.2976879
https://doi.org/10.1109/TIE.2020.3013739
https://doi.org/10.1109/TLA.2020.9082217
https://doi.org/10.1109/ACCESS.2020.2986298
https://doi.org/10.1109/TC.2021.3125188
https://doi.org/10.1109/TPDS.2022.3153682
https://doi.org/10.1109/ACCESS.2022.3204704
https://doi.org/0.1109/NNICE61279.2024.10498425
mailto:sdk26091986@gmail.com
mailto:trapti16sharma@gmail.com

