
ISSN: 2584-0495 Vol. 2, Issue 3, pp. 651-657

International Journal of Microsystems and IoT

ISSN: (Online) Journal homepage: https://www.ijmit.org

Enhancing Image Segmentation with Optimized
Winograd Algorithm for Convolution Neural Network

Ambati Sathvik, Mitul Tyagi, Shubham Kar, Brajesh Pandey and Sachin B Patkar

Cite as: Ambati, S., Tyagi, M., Kar, S., Pandey, B., & Patkar, S. B. (2024). Enhancing Image

Segmentation with Optimized Winograd Algorithm for Convolution Neural Network. International

Journal of Microsystems and IoT, 2(3), 651–657. https://doi.org/10.5281/zenodo.10884657

 © 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 11 March 2024

 Submit your article to this journal:

 Article views:

 View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.10884657

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.10884657
https://doi.org/10.5281/zenodo.10884657
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

651

International Journal of Microsystems and IoT
 Vol. 2, Issue 3, pp. 651-657; DOI: https://doi.org/10.5281/zenodo.10884657

Enhancing Image Segmentation with Optimized Winograd Algorithm for
Convolution Neural Network

Ambati Sathvik, Mitul Tyagi, Shubham Kar, Brajesh Pandey and Sachin B Patkar

Department of Electrical Engineering, Indian Institute of Technology Bombay, India

KEYWORDS

Convolution pooling engine
(CPE), upsampling convolution
engine (UCE), visual geometric
group (VGG)

1. INTRODUCTION

U-Net architecture is computationally demanding. Its major

constituent is convolution layers. Faster algorithms for the

convolutional computations reduce overall timing of neural

networks. This can be achieved by use of minimal filtering

algorithms. Use of such approaches minimizes the number

of multiplications [1]-[2]. Input feature of the convolution

layer can be transformed once and be re-used for convolving

with all the filters, thereby reducing the time. Such designs

are implemented using HLS [3]-[4].

 There are multiple algorithms that can be employed for

transformation of the convolution layer. Some of those are

Strassen, Winograd, FFT-based convolution and so on. A

normal n x n multiplication algorithm requires (n3 + O(n2))

arithmetic operations. Strassen algorithm for n x n matrix

multiplication reduces the total number of operations by

O(n2.82) by recursively multiplying 2n x 2n matrices using

7 n x n matrices. Winograd algorithm on the other hand

almost halves the number of multiplications but also adds

more addition operations. [5] FFT-based convolutions

require more floating-point operations than its Winograd

alternative for a moderate matrix size. [6] Strassen algorithm

outperforms Winograd’s algorithm when n is sufficiently

large but for all practical cases of moderate matrix size,

Winograd’s algorithm performs 20% faster than Strassen’s

algorithm in the best-case scenario.

Therefore, we focus our attention on improving the

efficiency to perform Winograd multiplication for our U-Net

implementation rather than develop a general solution for all

the transformation algorithms.

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

It is widely acknowledged that the fast Fourier transform

(FFT) significantly reduces computational complexity for

filter sizes comparable to input feature size. However, many

modern-day filters are of size 3x3. The Winograd algorithm,

based on the Chinese remainder theorem (CRT), utilizes the

minimum number of multiplications for convolution and is

suitable for small filters with a stride of 1 [7]. Efforts have

been made to extend the Winograd algorithm to

accommodate stride-2 convolution [8]. It is to be noted that

pooling layer succeeding a convolution layer can be smartly

avoided by performing the maximum operation at the end of

the convolution layer itself [9]. We have used U-Net

architecture to segment images pixel-wise [10]. In encoding

stage, convolution layers are followed by 2 × 2 max-pooling

layers. We introduce CPE which reduces number of sub/add

operations. Further, introduction of UCE, eliminates the

latency and hardware requirements associated with the

upsampling layer. This enhancement contributes to faster

and more efficient segmentation results. Additionally, the

UCE also reduces the memory requirement and the latency

of convolution layer in the UCE. By minimizing the memory

footprint, the UCE enables the U-Net architecture to be more

compatible with resource-limited environments. We used

dataset from [11] – [12].

By use of industry standard implementation of IPs using

Winograd algorithm as well as use of HLS4ML we have

implemented and compared IPs [13]. To generate test

pattern, we have used RBM [14]. On the contrary, if GAN is

used for test pattern generation, Wino-transCONV can be

used to make the GAN efficient [15].

This paper is organised as follows. Section 2 describes in

 ABSTRACT

The U-Net architecture has emerged as a popular choice for image segmentation, encompassing
convolution, max pooling, upsampling, and concatenation layers. The work aims on enhancing the
Winograd algorithm used for convolutions, by introducing a Convolution Pooling Engine that
incorporates alterations in the data transformation stage and integrates bias adjustments into the
existing adaptations of Winograd convolution. This approach leads to a notable reduction of 7% in
sub/add operations. Besides, the convolution computation immediately after an upsampling layer is
often inefficient due to redundant data. To address this issue, we propose a novel Upsampling
Convolution Engine that results in 25% reduction in add operations. Using HLS4ML flow, we have
compared results of custom U-Net IP with HLS4ML IP. These IPs were integrated with MicroBlaze
processor on Kintex (KC705 REV 1.2) board. We found that customised IP is having 3.2 times better
latency.

https://doi.org/10.5281/zenodo.10884657

652

detail, the proposed methodologies, HLS4ML flow and

implementation details. Section 3 presents observed results

while section 4 wraps this article with conclusion.

2. PROPOSED METHODOLOGY,

HLS4ML FLOW AND

IMPLEMENTATION DETAILS

2.1 Proposed methodology

Convolution Pooling Engine: The encoder stage of U-Net

architecture generally comprises convolution layers

followed by 2 × 2 max-pooling layers. The Convolution

engine proposed in [9] elaborates the incorporation of the

Winograd-based convolution to reduce the number of

multiplication operations significantly, the implementation

considered the input tile of 4 × 4 size. In this work, we aim

to build on the idea of adopting Winograd algorithm to

perform convolutions, thereby reducing the multiplication

operations and also propose optimizations to this idea, to

further reduce the number of sub/add operations involved at

the data transformation (also referred as input

transformation) and inverse transformation stages. Winograd

algorithm is being used here instead of other transformation

algorithms as the kernel size is not large enough to be

optimal for Strassen [5] and neither can we afford more

floating-point operations by using FFT-based convolution

here as we will be using integer based Winograd

transformation matrix. If instead, we were using a matrix of

the form [-1/c, -c, c, 1/c], then we would have benefited from

FFT-based convolution if the kernel as well as the image size

was large enough [16].

Using the Winograd algorithm, the input tile d of size 4×4 is

transformed into d′4×4 = BTdB, where B is also a 4×4

constant matrix [[1, 0, 0, 0], [0, 1,−1, 1], [−1, 1, 1, 0], [0, 0,

0,−1]]. The computation of d′ requires 32 sub/add

operations. After computing the convolution of current input

tile, the neighbouring 4×4 tile (say e) with stride 2 is then

selected to transform. The overlap of such adjacent input

tiles is thus 2 × 4 values. The sub/add operations performed

amongst these common values can only be applied once for

both the neighbouring tiles to reduce the overall sub/add

operations. d′= BTdB =

Clearly the term di,j+2 is same as term ei,j for i ϵ {0, 3}, j ϵ

{0, 1}. Without having to calculate afresh, operations among

such similar terms can be reused. There are 8 such operations

that can be bypassed for each input tile. Hence, only 24

sub/add operations will be required for the input

transformation step of input tile, except for the first one of

each row.

Element-wise multiplication is performed on the

transformed input with the transformed filter and the

channel-wise obtained 4 × 4 products are accumulated as

single o′4×4 matrix.

At the inverse transformation step, the accumulated product

term o′4×4 is multiplied with constant matrices A and AT,

where A is a fixed matrix [[1, 0], [1, 1], [1, −1], [0, −1]], to

obtain output of convolution o2×2, to which a pre decided

bias value is added to all the four output values there by

requiring 4 add operations for the bias addition step.

However, the term o′11 is present in all the four output terms,

so the bias can be directly initialised at corresponding index

of the accumulator. The 4 × 4 product accumulator can now

be initialised with all zeroes except the second column,

second row, that is initialised with the bias itself.

The abstract view of the Convolution Pooling Engine CPE,

consisting of the optimized input/data transform engine

(PE1*), element-wise multiplication engine (PE2),

accumulator, and the optimized inverse transform (PE3*),

and the maximum function is shown in Fig. 1.

653

Fig. 1. Convolution Pooling Engine abstract view

Upsampling Convolution Engine: At the decoder stage of U-

Net architecture [17] – [18], convolution layers often follow

upsampling layers. The upsampling layer typically includes

a line buffer with a single row and the same number of

channels as the input channels. This line buffer serves to

store the original input values and produces duplicates in a 2

× 2 fashion (nearest neighbour upsampling). In this scenario,

the immediate convolution layer also has a line buffer with

at least four rows and the same channels as in the upsampling

layer buffer, shown in Fig.2.

Fig. 2. Upsampling layer and convolution layer pair

Moreover, these many buffers are solely used for duplicating

data. In order to mitigate the need for these additional buffers

and leverage the duplicated data more efficiently, we bypass

the upsampling layer and accept the inputs without being

upsampled. Instead, we modify the input transformation of

the convolution layer. The proposed implementation

overview is shown in Fig.3.

Fig. 3. Upsampling and convolution layers merged into a

single convolution layer

To modify the input transform of the convolution, we first

assume each 2 × 2 data is upsampled to form d4×4, and find

the transformed input d′. Let e = (d00+d10), f = (d00−d10),

g = (d01 + d11), h = (d01 − d11), then

The input transform requires only 11 sub/add operations on

the inputs. Though the input matrix d is considered for

transformation, we require only the values d00, d01, d10 and

d11. So instead of upsampling each 2 × 2 input tile to 4 × 4

and then transforming them, we now directly accept 2 × 2

input tile and apply the transformation as shown above by

first evaluating the terms e, f, g, h.

After finding the convolution for this 2 × 2 input tile, we shall

accept the next tile that is only 1 pixel distant from the

previous. As the upsampled 4 × 4 inputs should have been 2

pixels apart, the actual versions should be 1 pixel apart.

Similar to the input transformation of proposed CPE, the

adjacent input tiles overlap can be utilized to decrease the

operations count to only 9 from 11.

Implementing the upsampling, convolution layers using the

proposed UCE minimizes the storage requirement greatly

and also reduces the operation count of the input

transformation stage from initial 32 to almost 9.

Convolution layer after concatenation: In the U-Net

654

architecture, there are skip connections from convolution

layers in the encoder stage to the convolution layers in

decoder stage. These skip connections are meant to reuse the

features learnt by the network at the pre-decoded stage for

the encoded result and reduce noise in the final generated

output. Such Winograd-based convolution layers results are

computed tile-wise, meaning that the output values are first

computed for out[i][j][c], out[i][j+1][c], out[i+1][j][c], and

out[i+1][j+1][c] before out[i][j][c+1], out[i][j+1][c+1],

out[i+1][j][c+1], and out[i+1][j+1][c+1]. Therefore, when

these results are received at the decoder convolution layer,

the data cannot be immediately processed as each input tile

is of size 2 × 2. To start convolving the first 4 × 4 input tile,

all the channels and the columns of the first row should be

received totally. Moreover, if the corresponding encoder

convolution is at the architecture beginning, the output

channel count is usually very huge, thereby requiring to

increase the storage capacity and wait time for its decoder

stage convolution layer. In order to reduce the storage

elements in such layers, which is a potential bottleneck, we

utilized the following approach.

 Instead of storing 4 input rows, each 2 × 2 input is

assumed as 4 different inputs of size 4 × 4. Each of these 4

inputs contain the actual 2 × 2 input at one of the four

corners, and zeroes as the remaining values. This way, we

account for all the four configurations possible by that

particular 2 × 2 input chunk. The Winograd engines are used

to calculate the convolutions of all four 4 × 4 inputs. So, each

input is received, processed immediately, the intermediate

outputs are stored and the inputs can be discarded. Because

the size of decoder stage convolutions is very small

compared to their encoder counterparts, this technique

results in overall storage savings. The configuration of such

inputs having three quadrants of zero values simplifies the

input transform to only sign reversal operations. Hence, we

get rid of the input buffers by using more DSP blocks to

perform the same task. Thus, we can trade off storage

elements with computing elements which have good

headroom.

Further, weight pruning is a technique that can be applied to

CPE or UCE to reduce the number of active connections in

the network. This can be done by identifying and removing

the filters and inputs that have the least impact on the

network's output. As a result, the network requires less area

and computation to run [19].

2.2 Proposed methodology HLS4ML Flow

To write HDL code for complex systems like U-Net

architectures takes time. To circumvent it, we have used

HLS4ML platform to generate IP [20]. HLS4ML is used for

generating HLS code for synthesizing based on the high-

level model architecture defined in

Keras/TensorFlow/PyTorch model, helping us in abstracting

the model creation phase from the IP synthesis.

CNN implementation in HLS4ML is based on streams in

HLS code, which in turn is synthesized as First In First Out

(FIFO) buffers. Shift registers are used to track the track the

last (h - 1) rows of input pixel where h is kernel height. We

can maintain a shifting snapshot of the convolutional kernel

as they are filled into the FIFO buffers via an I/O stream. As

soon as the kernel is filled, the element-wise multiplication

operation is carried out followed by the addition operations

for each element of the convolutional kernel. We can prune

the architecture for nodes with weights almost negligible

before using the HLS code generated by HLS4ML for

synthesis which can result in a reduced usage of

multiplication operations but that would also result in a

similar effect for the proposed IP implementation. Therefore,

we have not pruned the model architecture by default in our

comparison. HLS4ML implements the hardware design such

that each layer of output values is calculated independently

in a pipelined fashion to increase the throughput of the

design.

The activation layer is implemented using LUTs for

exponentials that are calculated for each input element to the

activation layer. The LUT here is used with the input to the

activation node being used as the lookup value in the table.

This helps in using pre-computed values of activation if they

are non-trivial in nature.

HLS4ML framework allows to set configurations such as

input and filter dimensions, input padding (if required),

strides, resolution of output feature maps for each layer of

ML model. A flow depicting HLS4ML is shown in Fig.4.

We used HLS4ML to generate IP which uses standard

convolution. There are a multitude of other parameters we

can change in HLS4ML itself which helps in us controlling

the way the IP is synthesized. Some of them which are

pertinent to our experiment are discussed here.

Fig. 4. HLS4ML flow for IP generation

We can set precision to be used for calculations in each

convolution layer individually. We are using the default

655

precision of fixed point<16,6> for models imported over

from Keras since it is quite accurate out of the box.

Increasing precision might yield diminishing returns with

higher resource utilization.

Resources used for implementing the multiplication and the

addition operations can be reused to reduce resource

utilization at the expense of layer latency. The reuse factor

can be explained easily using the following diagram. Using

a reuse factor higher than one helps in increasing the IP usage

while also implementing a sequential circuit rather than a

combinational circuit for carrying out the arithmetic

operations. We used the default reuse factor of one for our

HLS4ML IP implementation to decrease the latency

observed upon synthesis as shown in Fig.5.

Fig. 5. Illustration of the reuse factor in HLS4ML

We have also not used a quantized Keras model for IP

generation to keep the implementation strategy consistent

with respect to the accuracy afforded by each arithmetic

operation.

The suggested changes in the decoder of the proposed model

were not modelled in HSL4ML as it requires a custom layer

which performs upsampling along with convolution with no

extra buffers being synthesized for the upsampling layer.

Modelling that in HLS4ML as two separate layers one after

the other would not work as that will result in FIFO buffers

getting generated for each layer separately. Since our

motivation is to reduce the memory requirement, we would

be needed to program the layers at the HLS granularity rather

than in the Python layer of abstraction. Hence, the original

U-Net model was generated using HLS4ML using standard

convolutional layer settings rather than the custom IP

proposed for upsampling in the decoder stage.

Making a concatenated Upsampling Convolutional Engine

would require a special layer that duplicates the same 2 x 2

input tile over a 4 x 4 grid in the four separate corners to

directly feed into the decoder layers, hence bypassing any

storage elements being used in the encoder stage for holding

the values over for modelling skip connections. If we notice

the architecture implemented in HLS4ML closely, we notice

that its slightly different from the target architecture of U-

Net wherein we are ignoring any skip connections in the

HLS4ML IP since it does not model them properly as it

interferes with the pipeline design generated by the tool.

2.3 Implementation details

For all reported results we have used Vivado tool kit for

simulation purposes and used Kintex 7 FPGA KC705 kit for

implementation of our IPs.

3. RESULTS

It is observed that by use of proposed modified Winograd

convolutions CPE and UCE strategies there is reduction of

around 9% and 25% respectively in the sub/add operations

count over the standard Winograd convolution. For an input

of size H × W, with C channels and K filters arithmetic

complexity is shown in table I, Th is the number of

horizontal tiles of a row.

Table 1 Reduction in arithmetic complexity

With encouraging results of proposed Winograd algorithm at

algorithmic level implemented hardware, we incorporated

proposed Winograd algorithm in U-Net architecture and

checked the performance on implemented hardware. We

observed that there is an increase in hardware resource

utilization for modified Winograd based implementation

with exception being FF. Even though there is increase in

hardware resources, latency is better for proposed

architecture by 4.8 times (according to HLS). Details of

observations are summarised in table II.

Table 2 Latencies and core utilization of U-Net architectures

To show implication of our proposed modified Winograd

algorithm work at IP level which mimic industry grade

656

complexity, we used Vivado tool kit to integrate our IP with

modified Winograd algorithm to 32-bit MicroBlaze

processor on Kintex 7 board and observed execution timings.

We observed that time taken for software implementation of

conv1 layer is 96 s Fig.6.

Fig. 6. Output of a single convolution layer using int16 on

MicroBlaze with proposed IP

Estimated acceleration of IP is around 11,000 times. Screen

grab of output is shown in Fig.7.

Fig. 7. Execution time of Winograd algorithm-based IPs

We observed these results at 70MHz. Further to this, we

designed an IP with Winograd algorithm and integrated with

MicroBlaze 32-bit processor on same hardware and

compared results. We observed that latency is improved by

3.2 times (on FPGA) for modified Winograd algorithm at 70

MHz frequency, Fig.8.

Fig. 8. Execution time of modified Winograd algorithm-

based IPs

Comparison of IPs performances using HLS4ML

We have compared results of 16-bit fixed point of default

HLS4ML convolution scheme with 22-bit fixed point of

proposed changes. Actual and normalized resource

utilization as well latencies of IP generated from HLS4ML

is given in Table III. Even though there are extra bits in our

proposed IP hardware resources being utilized are very less

compared to referenced IP. However, latency is higher.

Further to this, we have compared our IP with other’s work

[2]. Observed results are reported in Table 4.

Table 3 Observed values of IPs generated by use of HLS4ML

Table 4 Performance estimates of IPs

4. CONCLUSION

Our work focused on refining the implementation of the

Winograd algorithm in the convolution layer of any CNNs,

resulting in a significant reduction in the number of addition

operations. Additionally, we introduced a novel and highly

efficient approach tailored for handling upsampled

convolutions in architectures similar to U-Net, leveraging an

industry-grade environment for our experiments. With

modified Winograd algorithm we have built IPs and

compared results with Winograd IPs. Further to this we

presented HLS4ML design methodology for IPs and results

are compared for both the scenarios. Generated results are

promising as our approach and framework to build IPs

mimics industrial grade implementation practices. Compared

results shows that modified Winograd algorithm could be an

efficient way of implementing convolution algorithms.

REFERENCES

1. Lavin, A., & Gray, S. (2016). Fast algorithms for convolutional neural

networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4013-4021).

https://doi.org/10.48550/arXiv.1509.09308

2. Winograd, S. (1980). Arithmetic complexity of computations (Vol. 33).
Siam. https://doi.org/10.1137/1.9781611970364

https://doi.org/10.48550/arXiv.1509.09308
https://doi.org/10.1137/1.9781611970364

657

3. Lu, L., Liang, Y., Xiao, Q., & Yan, S. (2017, April). Evaluating fast

algorithms for convolutional neural networks on FPGAs. In 2017 IEEE
25th annual international symposium on field-programmable custom

computing machines (FCCM) (pp. 101-108). IEEE.

https://doi.org/10.1109/FCCM.2017.64
4. Huang, Y., Shen, J., Wang, Z., Wen, M., & Zhang, C. (2018, May). A

high-efficiency FPGA-based accelerator for convolutional neural

networks using Winograd algorithm. In Journal of Physics: Conference
Series (Vol. 1026, No. 1, p. 012019). IOP Publishing. doi :10.1088/1742-

6596/1026/1/012019

5. Brent, R. P. (1970, March). Algorithms for matrix multiplication.
https://maths-people.anu.edu.au/~brent/pd/rpb002.pdf

6. Liu, X., & Turakhia, Y. (2016). Pruning of winograd and fft based

convolution algorithm. In Proc. Convolutional Neural Netw. Vis.
Recognit. (pp. 1-7).
http://cs231n.stanford.edu/reports/2016/pdfs/117_Report.pdf

7. Cai, L., Wang, C., & Xu, Y. (2021). A real-time FPGA accelerator based
on winograd algorithm for underwater object detection. Electronics,

10(23), 2889. https://doi.org/10.3390/electronics10232889

8. Yepez, J., & Ko, S. B. (2020). Stride 2 1-D, 2-D, and 3-D Winograd for
convolutional neural networks. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 28(4), 853-863.

https://doi.org/10.1109/TVLSI.2019.2961602
9. Podili, A., Zhang, C., & Prasanna, V. (2017, July). Fast and efficient

implementation of convolutional neural networks on FPGA. In 2017
IEEE 28Th international conference on application-specific systems,

architectures and processors (ASAP) (pp. 11-18). IEEE.

http://dx.doi.org/10.1109/ASAP.2017.7995253
10. Cai, L., Wang, C., & Xu, Y. (2021). A real-time FPGA accelerator based

on winograd algorithm for underwater object detection. Electronics,

10(23), 2889. https://doi.org/10.3390/electronics10232889
11. Burguera, A. (2021). Multi-Class Segmentation of Side-Scan Sonar Data

using a Neural Network. Mallorca (Spain). Retrieved September 25,

2022, from https://github.com/aburguera/NNSSS
12. Burguera, A., & Bonin-Font, F. (2020). On-line multi-class

segmentation of side-scan sonar imagery using an autonomous

underwater vehicle. Journal of Marine Science and Engineering, 8(8),
557. https://doi.org/10.3390/jmse8080557

13. FastML Team. (2023). hls4ml (v0.7.1). Zenodo.

https://doi.org/10.5281/zenodo.7933047

14. Hebron, P. (2017). Learning machines.

https://www.patrickhebron.com/learning-machines/

15. Di, X., Yang, H. G., Jia, Y., Huang, Z., & Mao, N. (2020). Exploring
efficient acceleration architecture for winograd-transformed transposed

convolution of GANs on FPGAs. Electronics, 9(2), 286.

https://doi.org/10.3390/electronics9020286
16. Zlateski, A., Jia, Z., Li, K., & Durand, F. (2018). A Deeper Look at

FFT and Winograd Convolutions.

https://mlsys.org/Conferences/doc/2018/28.pdf
17. Nikhil, T. (2021). What is UNET? https://idiotdeveloper.com/what-is-

unet

18. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional
networks for biomedical image segmentation. In Medical image

computing and computer-assisted intervention–MICCAI 2015: 18th

international conference, Munich, Germany, October 5-9, 2015,
proceedings, part III 18 (pp. 234-241). Springer International Publishing.

https://doi.org/10.48550/arXiv.1505.04597

19. Lu, L., & Liang, Y. (2018, June). SpWA: An efficient sparse winograd

convolutional neural networks accelerator on FPGAs. In Proceedings of

the 55th Annual Design Automation Conference (pp. 1-6).

https://doi.org/10.1145/3195970.3196120
20. Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B.,

Ngadiuba, J., Pierini, M., Rivera, R., Tran, N. & Wu, Z. (2018). Fast

inference of deep neural networks in FPGAs for particle physics. Journal
of instrumentation, 13(07), P07027. https://doi.org/10.1088/1748-

0221/13/07/P07027

Ambati Sathvik received his BTech

degree in electrical engineering from IIT

Tirupati, India in 2021 and MTech

degree in integrated circuit and systems

from IIT Bombay, India in 2023. His

areas of interest are digital VLSI design

and cryptography.

Email: sathvikambati123@gmail.com

Mitul Tyagi is a Digital Design Engineer

in the TI Radar Business Unit, focusing on

the validation and verification of Radar

SoCs. He holds a B.Tech degree in

Electronics and Communication from

BIAS, India, and an M.Tech degree from

IIT Bombay, India. Mitul's expertise lies in

VLSI Design, Firmware Development,

and Embedded Software Development.

Email: mitultyagi45@gmail.com

Shubham Kar is currently a firmware

engineer in NVIDIA Graphics Private

Limited, primarily responsible for firmware

development for DGX GPU systems being

used by CSPs. He received his B.Tech

degree in Electrical Engineering from IIT

Bombay, India in 2022.His areas of interest

are VLSI Design, Graphics Programming,

and low level System Software.

Email: karshubham257@gmail.com

Brajesh Pandey possess more than two

decades of experience in the field of VLSI

Design. He has hand-on delivery of

Silicon proven products in academia as

well as MNCs. As faculty member of top

tier institutes, he has nurtured best talents

in India. He received his MSc degree in

Electronics from Gorakhpur University in 1998, M.Tech

degree in Microelectronics from Panjab University

Chandigarh in 2001 and PhD degree in VLSI Design from

IIT Bombay in 2011. His areas of interest include Hardware

Software Co-design, System Design, SoC design and

verification, ASIC development and Novel Device Design,

modeling and characterization.

Email: brajesh153@gmail.com

Sachin B Patkar is a Professor in the

Department of Electrical Engineering of IIT

Bombay. He is head of high performance

embedded computing (HePC) lab. He

received his B.Tech degree in Computer

science from IIT Bombay in 1986, M.Tech

degree in Computer Science from IIT

Madras in 1987 and PhD degree in Computer Science from

IIT Bombay in 1992. His research area of interest includes,

Combinatorial Optimization, High Performance Computing,

Algorithm Design and Analysis, Graph Theory, Geometric

Design and Graphics and Software/Hardware Development

projects.

Email: patkar@ee.iitb.ac.in

https://doi.org/10.1109/FCCM.2017.64
https://maths-people.anu.edu.au/~brent/pd/rpb002.pdf
http://cs231n.stanford.edu/reports/2016/pdfs/117_Report.pdf
https://doi.org/10.3390/electronics10232889
https://doi.org/10.1109/TVLSI.2019.2961602
http://dx.doi.org/10.1109/ASAP.2017.7995253
https://doi.org/10.3390/electronics10232889
https://github.com/aburguera/NNSSS
https://doi.org/10.3390/jmse8080557
https://doi.org/10.5281/zenodo.7933047
https://www.patrickhebron.com/learning-machines/
https://doi.org/10.3390/electronics9020286
https://mlsys.org/Conferences/doc/2018/28.pdf
https://idiotdeveloper.com/what-is-unet
https://idiotdeveloper.com/what-is-unet
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.1145/3195970.3196120
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
mailto:sathvikambati123@gmail.com
mailto:mitultyagi45@gmail.com
mailto:karshubham257@gmail.com
mailto:brajesh153@gmail.com
mailto:patkar@ee.iitb.ac.in

658

