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1. INTRODUCTION 

U-Net architecture is computationally demanding. Its major 

constituent is convolution layers. Faster algorithms for the 

convolutional computations reduce overall timing of neural 

networks. This can be achieved by use of minimal filtering 

algorithms. Use of such approaches minimizes the number 

of multiplications [1]-[2]. Input feature of the convolution 

layer can be transformed once and be re-used for convolving 

with all the filters, thereby reducing the time. Such designs 

are implemented using HLS [3]-[4]. 

 There are multiple algorithms that can be employed for 

transformation of the convolution layer. Some of those are 

Strassen, Winograd, FFT-based convolution and so on. A 

normal n x n multiplication algorithm requires (n3 + O(n2)) 

arithmetic operations. Strassen algorithm for n x n matrix 

multiplication reduces the total number of operations by 

O(n2.82) by recursively multiplying 2n x 2n matrices using 

7 n x n matrices. Winograd algorithm on the other hand 

almost halves the number of multiplications but also adds 

more addition operations. [5] FFT-based convolutions 

require more floating-point operations than its Winograd 

alternative for a moderate matrix size. [6] Strassen algorithm 

outperforms Winograd’s algorithm when n is sufficiently 

large but for all practical cases of moderate matrix size, 

Winograd’s algorithm performs 20% faster than Strassen’s 

algorithm in the best-case scenario.  

Therefore, we focus our attention on improving the 

efficiency to perform Winograd multiplication for our U-Net 

implementation rather than develop a general solution for all 

the transformation algorithms. 
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It is widely acknowledged that the fast Fourier transform 

(FFT) significantly reduces computational complexity for 

filter sizes comparable to input feature size. However, many 

modern-day filters are of size 3x3. The Winograd algorithm, 

based on the Chinese remainder theorem (CRT), utilizes the 

minimum number of multiplications for convolution and is 

suitable for small filters with a stride of 1 [7]. Efforts have 

been made to extend the Winograd algorithm to 

accommodate stride-2 convolution [8]. It is to be noted that 

pooling layer succeeding a convolution layer can be smartly 

avoided by performing the maximum operation at the end of 

the convolution layer itself [9]. We have used U-Net 

architecture to segment images pixel-wise [10]. In encoding 

stage, convolution layers are followed by 2 × 2 max-pooling 

layers. We introduce CPE which reduces number of sub/add 

operations. Further, introduction of UCE, eliminates the 

latency and hardware requirements associated with the 

upsampling layer. This enhancement contributes to faster 

and more efficient segmentation results. Additionally, the 

UCE also reduces the memory requirement and the latency 

of convolution layer in the UCE. By minimizing the memory 

footprint, the UCE enables the U-Net architecture to be more 

compatible with resource-limited environments. We used 

dataset from [11] – [12]. 

By use of industry standard implementation of IPs using 

Winograd algorithm as well as use of HLS4ML we have 

implemented and compared IPs [13]. To generate test 

pattern, we have used RBM [14]. On the contrary, if GAN is 

used for test pattern generation, Wino-transCONV can be 

used to make the GAN efficient [15]. 

This paper is organised as follows. Section 2 describes in 

 
       
      ABSTRACT 

The U-Net architecture has emerged as a popular choice for image segmentation, encompassing 
convolution, max pooling, upsampling, and concatenation layers. The work aims on enhancing the 
Winograd algorithm used for convolutions, by introducing a Convolution Pooling Engine that 
incorporates alterations in the data transformation stage and integrates bias adjustments into the 
existing adaptations of Winograd convolution. This approach leads to a notable reduction of 7% in 
sub/add operations. Besides, the convolution computation immediately after an upsampling layer is 
often inefficient due to redundant data. To address this issue, we propose a novel Upsampling 
Convolution Engine that results in 25% reduction in add operations. Using HLS4ML flow, we have 
compared results of custom U-Net IP with HLS4ML IP. These IPs were integrated with MicroBlaze 
processor on Kintex (KC705 REV 1.2) board. We found that customised IP is having 3.2 times better 
latency. 
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detail, the proposed methodologies, HLS4ML flow and 

implementation details. Section 3 presents observed results 

while section 4 wraps this article with conclusion. 

 

2. PROPOSED METHODOLOGY, 

HLS4ML FLOW AND 

IMPLEMENTATION DETAILS  

 

2.1 Proposed methodology 

Convolution Pooling Engine: The encoder stage of U-Net 

architecture generally comprises convolution layers 

followed by 2 × 2 max-pooling layers. The Convolution 

engine proposed in [9] elaborates the incorporation of the 

Winograd-based convolution to reduce the number of 

multiplication operations significantly, the implementation 

considered the input tile of 4 × 4 size. In this work, we aim 

to build on the idea of adopting Winograd algorithm to 

perform convolutions, thereby reducing the multiplication 

operations and also propose optimizations to this idea, to 

further reduce the number of sub/add operations involved at 

the data transformation (also referred as input 

transformation) and inverse transformation stages. Winograd 

algorithm is being used here instead of other transformation 

algorithms as the kernel size is not large enough to be 

optimal for Strassen [5] and neither can we afford more 

floating-point operations by using FFT-based convolution 

here as we will be using integer based Winograd 

transformation matrix. If instead, we were using a matrix of 

the form [-1/c, -c, c, 1/c], then we would have benefited from 

FFT-based convolution if the kernel as well as the image size 

was large enough [16]. 

Using the Winograd algorithm, the input tile d of size 4×4 is 

transformed into d′4×4 = BTdB, where B is also a 4×4 

constant matrix [[1, 0, 0, 0], [0, 1,−1, 1], [−1, 1, 1, 0], [0, 0, 

0,−1]]. The computation of d′ requires 32 sub/add 

operations. After computing the convolution of current input 

tile, the neighbouring 4×4 tile (say e) with stride 2 is then 

selected to transform. The overlap of such adjacent input 

tiles is thus 2 × 4 values. The sub/add operations performed 

amongst these common values can only be applied once for 

both the neighbouring tiles to reduce the overall sub/add 

operations. d′= BTdB = 

 

 

 

Clearly the term di,j+2 is same as term ei,j for i ϵ {0, 3}, j ϵ 

{0, 1}. Without having to calculate afresh, operations among 

such similar terms can be reused. There are 8 such operations 

that can be bypassed for each input tile. Hence, only 24 

sub/add operations will be required for the input 

transformation step of input tile, except for the first one of 

each row. 

Element-wise multiplication is performed on the 

transformed input with the transformed filter and the 

channel-wise obtained 4 × 4 products are accumulated as 

single o′4×4 matrix. 

At the inverse transformation step, the accumulated product 

term o′4×4 is multiplied with constant matrices A and AT, 

where A is a fixed matrix [[1, 0], [1, 1], [1, −1], [0, −1]], to 

obtain output of convolution o2×2, to which a pre decided 

bias value is added to all the four output values there by 

requiring 4 add operations for the bias addition step. 

However, the term o′11 is present in all the four output terms, 

so the bias can be directly initialised at corresponding index 

of the accumulator. The 4 × 4 product accumulator can now 

be initialised with all zeroes except the second column, 

second row, that is initialised with the bias itself. 

 

The abstract view of the Convolution Pooling Engine CPE, 

consisting of the optimized input/data transform engine 

(PE1*), element-wise multiplication engine (PE2), 

accumulator, and the optimized inverse transform (PE3*), 

and the maximum function is shown in Fig. 1. 
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Fig. 1. Convolution Pooling Engine abstract view 

  

Upsampling Convolution Engine: At the decoder stage of U-

Net architecture [17] – [18], convolution layers often follow 

upsampling layers. The upsampling layer typically includes 

a line buffer with a single row and the same number of 

channels as the input channels. This line buffer serves to 

store the original input values and produces duplicates in a 2 

× 2 fashion (nearest neighbour upsampling). In this scenario, 

the immediate convolution layer also has a line buffer with 

at least four rows and the same channels as in the upsampling 

layer buffer, shown in Fig.2.  

 

 

Fig. 2. Upsampling layer and convolution layer pair 

 

Moreover, these many buffers are solely used for duplicating 

data. In order to mitigate the need for these additional buffers 

and leverage the duplicated data more efficiently, we bypass 

the upsampling layer and accept the inputs without being 

upsampled. Instead, we modify the input transformation of 

the convolution layer. The proposed implementation 

overview is shown in Fig.3. 

 

 
 

Fig. 3. Upsampling and convolution layers merged into a 

single convolution layer 

To modify the input transform of the convolution, we first 

assume each 2 × 2 data is upsampled to form d4×4, and find 

 
 

the transformed input d′. Let e = (d00+d10), f = (d00−d10), 

g = (d01 + d11), h = (d01 − d11), then 

 

 

The input transform requires only 11 sub/add operations on 

the inputs. Though the input matrix d is considered for 

transformation, we require only the values d00, d01, d10 and 

d11. So instead of upsampling each 2 × 2 input tile to 4 × 4 

and then transforming them, we now directly accept 2 × 2 

input tile and apply the transformation as shown above by 

first evaluating the terms e, f, g, h. 

After finding the convolution for this 2 × 2 input tile, we shall 

accept the next tile that is only 1 pixel distant from the 

previous. As the upsampled 4 × 4 inputs should have been 2 

pixels apart, the actual versions should be 1 pixel apart. 

Similar to the input transformation of proposed CPE, the 

adjacent input tiles overlap can be utilized to decrease the 

operations count to only 9 from 11. 

Implementing the upsampling, convolution layers using the 

proposed UCE minimizes the storage requirement greatly 

and also reduces the operation count of the input 

transformation stage from initial 32 to almost 9. 

Convolution layer after concatenation: In the U-Net 
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architecture, there are skip connections from convolution 

layers in the encoder stage to the convolution layers in 

decoder stage. These skip connections are meant to reuse the 

features learnt by the network at the pre-decoded stage for 

the encoded result and reduce noise in the final generated 

output. Such Winograd-based convolution layers results are 

computed tile-wise, meaning that the output values are first 

computed for out[i][j][c], out[i][j+1][c], out[i+1][j][c], and 

out[i+1][j+1][c] before out[i][j][c+1], out[i][j+1][c+1], 

out[i+1][j][c+1], and out[i+1][j+1][c+1]. Therefore, when 

these results are received at the decoder convolution layer, 

the data cannot be immediately processed as each input tile 

is of size 2 × 2. To start convolving the first 4 × 4 input tile, 

all the channels and the columns of the first row should be 

received totally. Moreover, if the corresponding encoder 

convolution is at the architecture beginning, the output 

channel count is usually very huge, thereby requiring to 

increase the storage capacity and wait time for its decoder 

stage convolution layer. In order to reduce the storage 

elements in such layers, which is a potential bottleneck, we 

utilized the following approach. 

     Instead of storing 4 input rows, each 2 × 2 input is 

assumed as 4 different inputs of size 4 × 4. Each of these 4 

inputs contain the actual 2 × 2 input at one of the four 

corners, and zeroes as the remaining values. This way, we 

account for all the four configurations possible by that 

particular 2 × 2 input chunk. The Winograd engines are used 

to calculate the convolutions of all four 4 × 4 inputs. So, each 

input is received, processed immediately, the intermediate 

outputs are stored and the inputs can be discarded. Because 

the size of decoder stage convolutions is very small 

compared to their encoder counterparts, this technique 

results in overall storage savings. The configuration of such 

inputs having three quadrants of zero values simplifies the 

input transform to only sign reversal operations. Hence, we 

get rid of the input buffers by using more DSP blocks to 

perform the same task. Thus, we can trade off storage 

elements with computing elements which have good 

headroom. 

Further, weight pruning is a technique that can be applied to 

CPE or UCE to reduce the number of active connections in 

the network. This can be done by identifying and removing 

the filters and inputs that have the least impact on the 

network's output. As a result, the network requires less area 

and computation to run [19]. 

 

2.2 Proposed methodology HLS4ML Flow 
 

To write HDL code for complex systems like U-Net 

architectures takes time. To circumvent it, we have used 

HLS4ML platform to generate IP [20]. HLS4ML is used for 

generating HLS code for synthesizing based on the high-

level model architecture defined in 

Keras/TensorFlow/PyTorch model, helping us in abstracting 

the model creation phase from the IP synthesis. 

CNN implementation in HLS4ML is based on streams in 

HLS code, which in turn is synthesized as First In First Out 

(FIFO) buffers. Shift registers are used to track the track the 

last (h - 1) rows of input pixel where h is kernel height. We 

can maintain a shifting snapshot of the convolutional kernel 

as they are filled into the FIFO buffers via an I/O stream. As 

soon as the kernel is filled, the element-wise multiplication 

operation is carried out followed by the addition operations 

for each element of the convolutional kernel. We can prune 

the architecture for nodes with weights almost negligible 

before using the HLS code generated by HLS4ML for 

synthesis which can result in a reduced usage of 

multiplication operations but that would also result in a 

similar effect for the proposed IP implementation. Therefore, 

we have not pruned the model architecture by default in our 

comparison. HLS4ML implements the hardware design such 

that each layer of output values is calculated independently 

in a pipelined fashion to increase the throughput of the 

design.  

The activation layer is implemented using LUTs for 

exponentials that are calculated for each input element to the 

activation layer. The LUT here is used with the input to the 

activation node being used as the lookup value in the table. 

This helps in using pre-computed values of activation if they 

are non-trivial in nature.  

HLS4ML framework allows to set configurations such as 

input and filter dimensions, input padding (if required), 

strides, resolution of output feature maps for each layer of 

ML model. A flow depicting HLS4ML is shown in Fig.4. 

We used HLS4ML to generate IP which uses standard 

convolution. There are a multitude of other parameters we 

can change in HLS4ML itself which helps in us controlling 

the way the IP is synthesized. Some of them which are 

pertinent to our experiment are discussed here. 

 

Fig. 4. HLS4ML flow for IP generation 

We can set precision to be used for calculations in each 

convolution layer individually. We are using the default 
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precision of fixed point<16,6> for models imported over 

from Keras since it is quite accurate out of the box. 

Increasing precision might yield diminishing returns with 

higher resource utilization.  

Resources used for implementing the multiplication and the 

addition operations can be reused to reduce resource 

utilization at the expense of layer latency. The reuse factor 

can be explained easily using the following diagram. Using 

a reuse factor higher than one helps in increasing the IP usage 

while also implementing a sequential circuit rather than a 

combinational circuit for carrying out the arithmetic 

operations. We used the default reuse factor of one for our 

HLS4ML IP implementation to decrease the latency 

observed upon synthesis as shown in Fig.5. 

 

 

Fig. 5. Illustration of the reuse factor in HLS4ML 

 

We have also not used a quantized Keras model for IP 

generation to keep the implementation strategy consistent 

with respect to the accuracy afforded by each arithmetic 

operation. 

The suggested changes in the decoder of the proposed model 

were not modelled in HSL4ML as it requires a custom layer 

which performs upsampling along with convolution with no 

extra buffers being synthesized for the upsampling layer. 

Modelling that in HLS4ML as two separate layers one after 

the other would not work as that will result in FIFO buffers 

getting generated for each layer separately. Since our 

motivation is to reduce the memory requirement, we would 

be needed to program the layers at the HLS granularity rather 

than in the Python layer of abstraction. Hence, the original 

U-Net model was generated using HLS4ML using standard 

convolutional layer settings rather than the custom IP 

proposed for upsampling in the decoder stage. 

Making a concatenated Upsampling Convolutional Engine 

would require a special layer that duplicates the same 2 x 2 

input tile over a 4 x 4 grid in the four separate corners to 

directly feed into the decoder layers, hence bypassing any 

storage elements being used in the encoder stage for holding 

the values over for modelling skip connections. If we notice 

the architecture implemented in HLS4ML closely, we notice 

that its slightly different from the target architecture of U-

Net wherein we are ignoring any skip connections in the 

HLS4ML IP since it does not model them properly as it 

interferes with the pipeline design generated by the tool. 

2.3 Implementation details 

For all reported results we have used Vivado tool kit for 

simulation purposes and used Kintex 7 FPGA KC705 kit for 

implementation of our IPs. 

 

3. RESULTS 
 

It is observed that by use of proposed modified Winograd 

convolutions CPE and UCE strategies there is reduction of 

around 9% and 25% respectively in the sub/add operations 

count over the standard Winograd convolution. For an input 

of size H × W, with C channels and K filters arithmetic 

complexity is shown in table I, Th is the number of 

horizontal tiles of a row. 

 

Table 1 Reduction in arithmetic complexity 

 

With encouraging results of proposed Winograd algorithm at 

algorithmic level implemented hardware, we incorporated 

proposed Winograd algorithm in U-Net architecture and 

checked the performance on implemented hardware. We 

observed that there is an increase in hardware resource 

utilization for modified Winograd based implementation 

with exception being FF. Even though there is increase in 

hardware resources, latency is better for proposed 

architecture by 4.8 times (according to HLS). Details of 

observations are summarised in table II. 

Table 2 Latencies and core utilization of U-Net architectures 

 

To show implication of our proposed modified Winograd 

algorithm work at IP level which mimic industry grade 



656  

complexity, we used Vivado tool kit to integrate our IP with 

modified Winograd algorithm to 32-bit MicroBlaze 

processor on Kintex 7 board and observed execution timings. 

We observed that time taken for software implementation of 

conv1 layer is 96 s Fig.6. 

 

 
 

Fig. 6. Output of a single convolution layer using int16 on 

MicroBlaze with proposed IP 

 

Estimated acceleration of IP is around 11,000 times. Screen 

grab of output is shown in Fig.7. 

 
 

Fig. 7. Execution time of Winograd algorithm-based IPs 

 

We observed these results at 70MHz. Further to this, we 

designed an IP with Winograd algorithm and integrated with 

MicroBlaze 32-bit processor on same hardware and 

compared results. We observed that latency is improved by 

3.2 times (on FPGA) for modified Winograd algorithm at 70 

MHz frequency, Fig.8. 

 

 

Fig. 8. Execution time of modified Winograd algorithm-

based IPs 

 

Comparison of IPs performances using HLS4ML 

We have compared results of 16-bit fixed point of default 

HLS4ML convolution scheme with 22-bit fixed point of 

proposed changes. Actual and normalized resource 

utilization as well latencies of IP generated from HLS4ML 

is given in Table III. Even though there are extra bits in our 

proposed IP hardware resources being utilized are very less 

compared to referenced IP. However, latency is higher. 

Further to this, we have compared our IP with other’s work 

[2]. Observed results are reported in Table 4. 

 

Table 3 Observed values of IPs generated by use of HLS4ML 

 

 
Table 4 Performance estimates of IPs 

 
 

4. CONCLUSION 

 
Our work focused on refining the implementation of the 

Winograd algorithm in the convolution layer of any CNNs, 

resulting in a significant reduction in the number of addition 

operations. Additionally, we introduced a novel and highly 

efficient approach tailored for handling upsampled 

convolutions in architectures similar to U-Net, leveraging an 

industry-grade environment for our experiments. With 

modified Winograd algorithm we have built IPs and 

compared results with Winograd IPs. Further to this we 

presented HLS4ML design methodology for IPs and results 

are compared for both the scenarios. Generated results are 

promising as our approach and framework to build IPs 

mimics industrial grade implementation practices. Compared 

results shows that modified Winograd algorithm could be an 

efficient way of implementing convolution algorithms. 
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