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1. INTRODUCTION 

Neural networks are computing systems with nodes 

which are interconnected and they work much like 

neurons in the human brain. They are ideal to solve 

complex problems in real-life situations [3][22]. Using 

various algorithms, these networks can identify hidden 

relationships, correlations, patterns and predictions in a 

dataset, then it clusters and classifies it, and 

continuously learns and evolves accordingly[24] 

Biomedical field is making use of machine-learning 

techniques, such as ANNs, to improve the quality of 

medical care provided to the needy at an effectively 

reduced cost. ANNs are best known for diagnosis of 

diseases, but nowadays, ANNs are increasingly being 

used to make decisions and predictions in health 

care[11][12]. 

Pneumonia is a severe infection that causes 

inflammation of air sacs in lungs in humans.  

Symptoms from pneumonia include chest pain when 

breathing, confusion, cough, fatigue, fever, nausea, and 

shortness of breath. Pneumonia is a common condition 

and is diagnosed using medical imaging. 

 

The chest X-Rays required for its diagnosis need the help of 

expert radiotherapists for evaluation. The adoption and 

standardization of machine learning in the health industry is 

expected to improve the likelihood of correct diagnosis and 

prioritize treatment[6][25]. The application of machine learning 

has the potential to impact how health care systems approach 

diagnostics and the availability of rapid diagnosis and therefore 

faster treatment. Due to the increasing help and success of deep 

learning algorithms for the analysis of medical images, CNNs 

have gained much popularity for classification of 

diseases[22][24]. Also, features learned by pre-trained CNN 

models on huge datasets can be used in image classification 

applications[4][26]. This will have a significant impact on 

traditional procedures improving diagnosis speed and possibly 

correctness for pneumonia and other diseases. 
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ABSTRACT 

Artificial Neural Networks can assist machines make intelligent and smart decisions with very limited 

human interference. This is because these networks can learn quickly and build a model based on 

relationships between input and output data   which are nonlinear and complex in nature. The main 

goal of implementing these neural networks is to obtain the highest possible accuracy of output with 

low latency along with low training and testing period. ANNs have shown their potential particularly 

for the analysis of image data, which is the base in the biomedical field for detection of diseases.  CNN 

(Convolutional Neural Network) is a  proven  neural network for image dataset according to many 

studies, in this    paper we use CNN model on biomedical dataset- for detection of pneumonia using 

real chest scans. In this paper we have compared performances of the same algorithm on CPU and 

GPU based on a few parameters. Research in the area of hardware implementation of CNN using 

FPGA (Field Programmable Gate Array) has received attention due to the inherent advantages of 

FPGA. There are several hardware descriptive languages for FPGA like VHDL, Verilog, System 

Verilog etc. We have implemented certain basic building blocks of CNN in Verilog (a hardware  

descriptive language used to model electronic systems). In this paper we successfully implemented 

selected tasks on FPGA which can be adapted to increase the speed and reduce the cost of the system. 

https://doi.org/10.5281/zenodo.10792152
https://ijmit.org/call-for-paper.php
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2. About CNN 

Since Convolutional Neural Networks (CNN) are in 

applications like image classification and object detection, we 

have chosen CNN to work on the dataset [4][29]. 

The major components of any CNN are its convolutional 

layers. In convolutional layers, filters/kernels are applied to the 

input image for extracting features like edges, shapes, textures, 

etc. This output of the convolutional layers is then fed to the 

pooling layers of CNN, which performs the down- sampling of 

the feature maps and hence it reduces the spatial dimensions 

without losing the most important information of the input image. 

CNNs   look for features such as straight lines, edges, or even 

objects. The pooling layers are followed by fully connected layers 

(FNNs) which can be one or more. These are used to predict or  

classify the image. Large dataset consisting of labeled images can 

be used to train CNNs [12]. CNN model is trained to learn to 

recognize patterns, relationships, correlations and features. After 

a model is trained, it can be used for testing i.e. classify new 

images in the dataset [29]. 

 

3. About CPU and GPU 

By default, we run programs on CPU (Central Processing 

Unit), at the same time, it is also possible to run those on GPU 

(Graphics Processing Unit) [13]. GPU can perform every 

computation done by CPU and inverse is also true. Same code 

can be executed on both CPU and GPU on platforms like CUDA, 

OpenCL, etc. but their processing abilities, efficiency, 

performance, characteristics and costs are different. CPU has 3 

components which are arithmetic logic unit (ALU), control unit 

(CU) and memory unit[17]. ALU stores the information and 

executes calculations. CU carries out instruction sequencing 

along with branching. CPU interacts with other components  of 

the machine such as memory, input and output to execute 

instructions. The GPU is used to provide images in gaming 

systems. GPU is faster as compared to CPU[21]. Also, GPU is 

more focused on high throughput[13][17]. 

When the efficiency of CPU and GPU training deep learning 

algorithms are compared, it is observed that GPUs have faster 

training speeds and are more energy-efficient, but compared to 

CPUs, they are more expensive[26][28]. On the other hand 

CPUs are comparatively slower and are not as efficient for 

performing complex functions. Table1 shows the comparison of 

CPU and GPU[13]. The parameters which we are considering 

for comparison between CPU and GPU for the same CNN 

model on the Pneumonia dataset are as follows: time required 

for training and accuracy[24][30]. 

Table .1 Comparison o f CPU & GPU 
Sr. 
No. 

Parameter  CPU GPU 

1. Memory 
Requirement 

 More Less 

2. Speed  Less More 

3. Instruction 
processing 

 Serial Parallel 

4. Strengths  Low 
latency 

High 
throughput 

 

4. About FPGA 

FPGA stands for Field Programmable Gate Array and is 

a microchip which contains thousands of configurable logic 

blocks and programmable interconnects [18]. It is called 

“Field    Programmable” since it is not an application 

specific IC (Integrated Circuit) [1][2]. This means that we 

can program and reprogram the FPGA to perform different 

functions; they are cost-effective as well. Due to the many 

advantages of FPGAs, they are used for a wide range of 

applications in fields like medical, image and video 

processing, digital communications, etc. Languages used to 

program hardware are called “Hard- ware Description 

Language”. Verilog is one of the HDL used to program 

FPGA [18]. 

 

5. About CNN on FPGA 

Implementing CNN on an FPGA has its own advantages 

because of characteristics of FPGA like high flexibility, 

great balance between performance and power [1][22]. 

CNN or in fact all neural networks main task is to work on 

and synthesize complex data, learn effectively and the most 

important- give the correct output (detection, prediction, 

etc) [2][29]. With increasing complexity of data and 

patterns increases the computational complexity; thus, 

hardware acceleration can be made use of. FPGA has the 

added advantage of reconfigurability and massive 

parallelism [9][10]. 

 

6. METHODOLOGY 

1. Select an appropriate biomedical image dataset - 

Pneu-monia dataset (2GB, 5863 images)[2]. 

2. Analyze the dataset. 

3. Implement preprocessing technique - image 

normaliza- tion. 

4. Build a CNN model using Python and train the 

model on both CPU and GPU platforms[13][9]. 

5. Note the training accuracies and time durations for 

implementation. 

6. Test the model and obtain the accuracies. 

7. Identify the downfalls of the model and search for 

suitable improvising techniques. 

8. Implement the improvising technique - image 

normaliza- tion, reduction of learning rate, change 

number of epochs (8 and 5 epochs) and modify the 

model[7][10]. 

9. Carry out the same procedure as before and note the 

differences in results. 

10. Compare the results of previous and improved 

models for each platform. 

11. Compare the performance of CPU and 

GPU[13][21]. 

12. Analyze the obtained comparison results and its 

deter- mining factors[14][30]. 

13. Implement the basic CNN operations in Verilog 



540  
such as convolution, max pooling and activation 

function 

𝟕 .   Dataset  
 
Dataset used for the study has Chest X-ray images for diagnosis 

of Pneumonia. It contains 3 directories (train, test, val) for 

training, testing and validation respectively, each consisting of 

sub-directories for each image category (Pneu- 

monia/Normal)[14]. It consists of a total 5,863 X-Ray images in 

JPEG format. 

Chest X-ray images were selected to create a dataset by 

performing X-ray imaging at Guangzhou Women and Chil- 

dren’s Medical Center, Guangzhou. Data was collected from 

pediatric patients’ routine medical checkup for the duration of one 

to five years. The images comprise of both anterior and posterior 

chest X-rays[14]. 

All the selected images were initially checked and low qual- ity 

and unreadable images were eliminated for further study. Also, 

the result of diagnosis was examined by two experts and further 

was again graded by a third expert before the dataset was 

permitted to be trained by an artificial intelligence model. 

 

 

Fig. 1 Image credits: Kaggle. Illustrative Examples of Chest X-
Rays in Patients with Pneumonia. 

 

𝟖.  Dataset analysis and Preprocessing 
The pre-processing methods include noise removal, image 

normalization, and image enhancement. 

Image normalization is a crucial pre-processing step that makes 

sure that each input value is in the format of a standard 

distribution[3][12]. This basically implies that the pixel values of 

two images are the same. From each pixel value, the average is 

subtracted and further the result is divided by standard  deviation. 

The range is frequently selected to be 0 to 1 or 0 to 255 because 

the input is an image and the pixel values are positive. 
 

𝟗.  CNN Model Basics 

a) CNN basically contains three types of layers: 

Convolution, Pooling and Fully-Connected[23]. In addition to 

these layers there are two important layers or parameters that 

are Activation function and Dropout layer[5]. Convolutional 

Layer: The initial layer and main com- ponent of a CNN, the 

convolutional layer is executed to extract the various 

information from the input images. Convolution is a 

mathematical operation in which a filter/kernel of a specific 

size NxN is applied on the input image. The output of this 

operation is called the Feature map which gives the features of 

the image like its edges, corners, patterns, shapes, etc. Feature 

map/Activation map is fed to the next layers to help extract 

more features from the image[23]. 

A basic convolution operation consists of applying a 

filter to the input, multiplying each element separately, 

and adding the results. The entire step is repeated after 

shifting the overlaps in accordance with the stride. 

  Stride indicates the number of positions the filter should 

be moved relative to the input. Padding can also be added 

to the output to prevent changes in the output’s height and 

width. 

b) Activation Functions: Activation functions are 

neces- sary components of CNN[15]. We use an activation 

function in a CNN after the convolutional layer. They 

determine whether or not to activate a neuron. After 

accepting an input, an activation layer applies the defined 

activation function. The result of an activation layer is 

always the same as the input dimension because the 

activation function acts in an element- wise manner. 

1. Nowadays, ReLU (Rectified Linear Unit) is the 

activation function that is used the most extensively. The 

range for ReLU function is from 0 to infinity. 

2. Log Softmax activation function: Softmax function 

converts numerical values into probabilities[7]. Log 

softmax is the logarithm of the softmax function which is 

used as an ad- vantageous alternative due to its 

mathematical simplicity and better performance in 

optimizing the gradient. As probabilities are multiplied in 

the softmax function, log softmax computes them by 

addition thus reducing the complexity. 

c) Pooling Layer: Max Pooling is a crucial 

component of the CNN Architecture in Convolutional 

Neural Networks, where it is utilized to both decrease the 

size of the image and enhance its features. Different 

pooling operations can be carried out[8]. Feature map 

provides the largest element of the image. Average 

pooling computes the average of elements for a 

predetermined size/part of the image. Pooling layer is a 

mediator between Convolutional layer and Fully 

Connected layer. 

Due to MaxPooling the cost of computing and the 

number of operations needed to process the image are 

decreased as the image’s dimension is reduced. Also, 

improving the features makes it easier for our model to 

recognize and interpret features[19].In order for Max 

Pooling to work, a filter is used as a sliding window from 

which the maximum value is extracted. 

d) Fully Connected Layer: Each and every neuron of 

one layer is connected to all other layers in FC layers. FC 

layers are always placed towards the end of the 

network[19]. 

The FC layer receives a flattened copy of the input image from 

the preceding layers which undergoes operations when passed 

through more FC layers. 

10. CNN operations in Verilog 

We have implemented three basic building blocks of CNN 

in Verilog- Convolution, Activation Function, Pooling 

Function[16]. 

1) Convolution: We considered a 3*3 Laplacian Filter and 

performed convolution on a 3*3 matrix. The basic 

convolution operation goes like this: 

begin 
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   if(enable) 

      begin 

      out1<=0; //multiply by 0 

      out2<=in2*(-1); //multiply by -1 

      out3<=0; // multiply by 0 

      out4<=in4*(-1); // multiply by -1 

      out5<=in5*4 b0100; //multiply by 4  

      out6<=in6* (-1); //multiply by -1 

      out7<=0; //multiply by 0 

      out8<=in8*(-1); //multiply by -1 

      out9<=0; //multiply by 0 

      end   

else 

       begin 

      out1<=0; 

      out2<=in2*(-1);  

      out3<=0;  

      out4<=in4*(-1);  

      out5<=in5*4 b0100;  

      out6<=in6* (-1);  

      out7<=0;   

      out8<=in8*(-1);  

      out9<=0;  

Fig. 2 Convolution snippet 
 

There is element by element multiplication and once all 

elements of the filter are covered, the products are added. 

Laplacian Filter we considered: 

 

 
Fig. 3 Laplacian filter 

 
2) Activation Function: Since we’ve used ReLU function a 

lot in our work, we implemented ReLU using a simple assign 

statement with ternary operator. 

So we can see that by this assign statement, if the 32nd bit 

(ordered as 31st) is 1, the number is negative and thus the answer 

of the ReLU operation would be 0, else the answer would be the 

number as it is. 

“timescale”=lns/lps 

module relu(din_relu,dout_relu); 

input [31:0] din_relu; 

output [31:0] dout_relu; 

     assign dout_relu = (din_relu[31]==0)? din_relu:0; 
    endmodule 

 

Fig. 4. ReLU activation function code 

 

3) Pooling Function: Here, we have performed max pooling, 

which is choosing the maximum number of your pooling 

window of your input matrix. 

11. Specifications 

Resources required are :  

  1. Hardware : GPU compatible    system. 

2. Software : 

• Kaggle Dataset 

• For implementation on GPU and CPU : Pytorch 

frame- work, CUDA toolkit, code editor - Jupyter or 

Kaggle Notebook[2][21]. 

• For implementation in Verilog : Xilinx ISE 8.1i 

12. RESULTS 

This paper aims to implement the CNN model on 

different platforms; CPU and GPU[17][21]. As well as the 

comparison of the results based on speed of the 

execution and accuracy of the model Operations in Verilog. 

Initially the model was trained for 8 epochs (iterations) 

and then improvisation methods were applied and results 

were compared for CPU and GPU[13]. Then, the epochs 

were reduced to 5 and the same procedure was carried out. 

Following are the results obtained for 5 epochs[30] 

13. Implementation 1 

After implementing the same CNN model (learning rate 

= 0.01) on CPU and GPU, the results obtained are as 

follows: epochs = 5 
CPU - 
epoch: 0 batch: 163 [ 2608/5216] loss: 0.49275011 accuracy: 
74.425% 
epoch: 0 batch: 326 [ 5216/5216] loss: 0.56257927 accuracy: 
73.869% 
epoch: 1 batch: 163 [ 2608/5216] loss: 0.56494689 accuracy: 
74.233% 
epoch: 1 batch: 326 [ 5216/5216] loss: 0.90838754 accuracy: 
74.291% 
epoch: 2 batch: 163 [ 2608/5216] loss: 0.56239396 accuracy: 
73.926% 
epoch: 2 batch: 326 [ 5216/5216] loss: 0.62790281 accuracy: 
74.291% 
epoch: 3 batch: 163 [ 2608/5216] loss: 0.56254911 accuracy: 
73.428% 
epoch: 3 batch: 326 [ 5216/5216] loss: 0.70221806 accuracy: 
74.291% 
epoch: 4 batch: 163 [ 2608/5216] loss: 0.49016133 accuracy: 
73.696% 
epoch: 4 batch: 326 [ 5216/5216] loss: 0.49767214 accuracy: 
74.291% 
Duration: 1462 seconds 

Test accuracy: 390/624 = 62.500 percent 
GPU - 

epoch: 0 batch: 163 [ 2608/5216] loss: 0.56242651 accuracy: 
72.584% 
epoch: 0 batch: 326 [ 5216/5216] loss: 0.48984113 accuracy: 
73.677% 
epoch: 1 batch: 163 [ 2608/5216] loss: 0.53277415 accuracy: 
74.387% 
epoch: 1 batch: 326 [ 5216/5216] loss: 0.42750421 accuracy: 
74.291% 
epoch: 2 batch: 163 [ 2608/5216] loss: 0.56366879 accuracy: 
73.965% 
epoch: 2 batch: 326 [ 5216/5216] loss: 0.56312734 accuracy: 
74.291% 
epoch: 3 batch: 163 [ 2608/5216] loss: 0.62495297 accuracy: 
74.156% 
epoch: 3 batch: 326 [ 5216/5216] loss: 0.56256855 accuracy: 
74.291% 
epoch: 4 batch: 163 [ 2608/5216] loss: 0.34337136 accuracy: 
74.271% 
epoch: 4 batch: 326 [ 5216/5216] loss: 0.75661707 accuracy: 
74.291% 
Duration: 532 seconds 

Test accuracy: 390/624 = 62.500 percent 

14. Implementation 2 
 
Methods to Improve Accuracy: 

Observed training accuracy for CPU and GPU before were 
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74.291 percent for both[13][17]. Overfitting is a negative effect 

which means that a model performs great while training but 

performs   poorly while testing. To increase both training and 

testing   accuracy of CNN model without overfitting there are 

several methods[23]: data normalization, data augmentation, 

batch normalization, learning rate scheduling, weight decay[27]. 

Image normalization: 

Image normalization is a common preprocessing technique in 

computer vision and image processing. Its primary goal is to 

standardize the pixel values of an image, ensuring that they fall 

within a specific range. This process helps in achieving better 

convergence during training of machine learning models and 

improves the overall performance of the model[25]. 

 

Learning Rate: In each epoch, the learning rate represents the step 

size of the learning process for a neural network. It can control 

how quickly the model learns within an appro- priate duration of 

time. There is no fixed or ideal value of learning rate. Determining 

an optimal learning rate is highly experimental[20]. Generally it 

is chosen between 0.001 to 0.01. 

After implementation of image normalized model on CPU and 

GPU, the results obtained are as follows: epochs = 5 

CPU - 
epoch: 0 batch: 163 [ 2608/5216] loss: 0.50710011 accuracy: 73.505% 
epoch: 0 batch: 326 [ 5216/5216] loss: 0.69760519 accuracy: 73.965% 
epoch: 1 batch: 163 [ 2608/5216] loss: 0.62548077 accuracy: 74.233% 
epoch: 1 batch: 326 [ 5216/5216] loss: 0.42510208 accuracy: 74.291% 
epoch: 2 batch: 163 [ 2608/5216] loss: 0.56274945 accuracy: 74.578% 
epoch: 2 batch: 326 [ 5216/5216] loss: 0.56421262 accuracy: 74.291% 
epoch: 3 batch: 163 [ 2608/5216] loss: 0.63094747 accuracy: 74.310% 
epoch: 3 batch: 326 [ 5216/5216] loss: 0.43467468 accuracy: 74.291% 
epoch: 4 batch: 163 [ 2608/5216] loss: 0.68591964 accuracy: 73.428% 
epoch: 4 batch: 326 [ 5216/5216] loss: 0.48937252 accuracy: 74.291% 
Duration: 1825 seconds 

Test accuracy: 390/624 = 62.500 percent 

GPU - 
epoch: 0 batch: 163 [ 2608/5216] loss: 0.27248743 accuracy: 79.371% 
epoch: 0 batch: 326 [ 5216/5216] loss: 0.14000969 accuracy: 84.758% 
epoch: 1 batch: 163 [ 2608/5216] loss: 0.20482257 accuracy: 91.910% 
epoch: 1 batch: 326 [ 5216/5216] loss: 0.32073060 accuracy: 91.833% 
epoch: 2 batch: 163 [ 2608/5216] loss: 0.15548374 accuracy: 92.485% 
epoch: 2 batch: 326 [ 5216/5216] loss: 0.18335041 accuracy: 92.561% 
epoch: 3 batch: 163 [ 2608/5216] loss: 0.33973581 accuracy: 93.213% 
epoch: 3 batch: 326 [ 5216/5216] loss: 0.18034536 accuracy: 92.791% 
epoch: 4 batch: 163 [ 2608/5216] loss: 0.29077676 accuracy: 92.446% 
epoch: 4 batch: 326 [ 5216/5216] loss: 0.11109190 accuracy: 92.044% 
Duration: 725 seconds 

Test accuracy: 466/624 = 74.679 percent 

Implementation 3 

After implementation of reduced learning rate model (learn- ing 

rate = 0.001) on CPU and GPU , the results obtained are as 

follows: epochs = 5 

CPU - 
epoch: 0 batch: 163 [ 2608/5216] loss: 0.11790308 accuracy: 96.971% 
epoch: 0 batch: 326 [ 5216/5216] loss: 0.02284684 accuracy: 97.143% 
epoch: 1 batch: 163 [ 2608/5216] loss: 0.04813021 accuracy: 97.469% 
epoch: 1 batch: 326 [ 5216/5216] loss: 0.01034636 accuracy: 97.373% 
epoch: 2 batch: 163 [ 2608/5216] loss: 0.00588292 accuracy: 96.702% 
epoch: 2 batch: 326 [ 5216/5216] loss: 0.00894325 accuracy: 96.933% 
epoch: 3 batch: 163 [ 2608/5216] loss: 0.00138907 accuracy: 97.124% 
epoch: 3 batch: 326 [ 5216/5216] loss: 0.03107080 accuracy: 97.335% 
epoch: 4 batch: 163 [ 2608/5216] loss: 0.05117567 accuracy: 97.623% 
epoch: 4 batch: 326 [ 5216/5216] loss: 0.05375537 accuracy: 97.508% 
Duration: 1600 seconds 

Test accuracy: 469/624 = 75.160 percent 

GPU - 
epoch: 0 batch: 163 [ 2608/5216] loss: 0.37603298 accuracy: 89.225% 
epoch: 0 batch: 326 [ 5216/5216] loss: 0.16190936  
accuracy: 91.775%epoch: 1 batch: 163 [ 2608/5216] loss: 0.03967999 
accuracy: 95.936% 
epoch: 1 batch: 326 [ 5216/5216] loss: 0.01595522 accuracy: 95.533% 
epoch: 2 batch: 163 [ 2608/5216] loss: 0.09628659 accuracy: 96.396% 
epoch: 2 batch: 326 [ 5216/5216] loss: 0.00185688 accuracy: 96.204% 
epoch: 3 batch: 163 [ 2608/5216] loss: 0.02254109 accuracy: 96.434% 

epoch: 3 batch: 326 [ 5216/5216] loss: 0.14738376 accuracy: 95.840% 
epoch: 4 batch: 163 [ 2608/5216] loss: 0.24484700 accuracy: 96.549% 
epoch: 4 batch: 326 [ 5216/5216] loss: 0.03344190 accuracy: 96.626% 
Duration: 701 seconds 

Test accuracy: 512/624 = 82.051 percent 

This was observed to be the best model that we implemented 

i.e. GPU trained model with accuracy of 96.626 percent in 

701 secs and testing accuracy of 82.051 percent. 

For this model, Losses chart : 

Fig. 5. GPU Training and Testing Losses after each Epoch  

(5 Epochs) 

 

Accuracy chart : 

Fig. 6. GPU Training and Testing Accuracy after each Epoch 

(5 Epochs) 

 

Accuracy confusion matrix : 

Table ii shows the comparison of training accuracies for CPU 

and GPU (8 epochs and 5 epochs) table iii shows the 

comparison of testing accuracies for CPU and GPU (8 epochs 

and 5 epochs) table iv shows the Comparison of training 

durations for CPU and GPU (8epochsand5epochs)[17]. 
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Fig. 7 Confusion Matrix of GPU Trained Model Testing 

 

Table .2 Comparison of training accuracies for CPU and GPU (8 

epochs and 5 epochs) 

 
Parameters 8 Epochs 5 Epochs 

CPU(%) GPU(%) CPU(%) GPU(%) 

LR: 0.01 74.291 74.291 74.291 74.291 

Img Normalized 74.291 74.291 74.291 92.044 

LR: 0.001 96.952 97.373 97.508 96.626 

  

Table .3 Comparison of testing accuracies for CPU and GPU (8 

epochs and 5 epochs) 

 
Parameters 8 Epochs 5 Epochs 

CPU 
trained(

%) 

GPU 
trained(

%) 

CPU 
trained(

%) 

GPU 
trained(

%) 
LR: 0.01 62.500 62.500 62.500 62.500 

Img 
Normalized 

62.500 62.500 62.500 74.679 

LR: 0.001 71.795 80.128 75.160 82.051 

 

Table .4 Comparison of training durations for CPU and  GPU  (8  

epochs and 5 epochs) 

 
Parameters 8 Epochs 5 Epochs 

CPU (sec) GPU (sec) CPU (sec) GPU (sec) 
LR: 0.01 2398 865 1462 532 

Img 
Normalized 

2975 1170 1835 725 

LR: 0.001 2873 1112 1600 701 

 

15. Observations: 
For CPU, the training as well as testing accuracy in- creased only 

after reducing the learning rate for both 8 and 5 epochs. 

Despite achieving 95 percent+ accuracy in training, the accuracy 

for testing was not improved to expected level. This could be 

because overfitting still exists in the model even though 

improvisation techniques were implemented[27]. Also, the  

dataset was less diverse. 

For GPU, the same was observed in the case of 8 epochs. But for 

5 epochs, the accuracy for training and testing immediately 

improved after image normalization without any change in 

learning rate. Thus for GPUs, by reducing iterations, overfitting 

was reduced immediately with the same learning rate. Further 

after reducing the learning rate, the most efficient model 

implementation was obtained. 

 

 

Fig. 8 Comparison of Testing Accuracies                                                                          

Fig. 9 Comparison of Training Accuracies 

 

GPU performs better in terms of speed for all variations of 

implementations carried out. It was observed that on an 

average GPU performed 2.57 times faster than CPU. 

For the most efficient model implemented, the accuracy for 

GPU was 6.891 percent more than CPU and the speed was 

2.28 times that of CPU. 

 

Fig. 10. Comparison of Training Duration 

 

Implementation of CNN components in Verilog: 

1. Convolution operation: 
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Fig. 11. Convolution Testbench 

Fig. 12. Convolution Output 
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2. ReLU activation function: 
 

Fig. 13. ReLU Activation Function Testbench 

 

 

Fig. 14. ReLU Activation Function Output 

 

3. Max pooling operation: 

 

 
 

Fig. 15. Max-Pooling Testbench 

 

Fig. 16. Max-Pooling Output 
 

These convolution operations can be used as building 

blocks for the design of CNN model in Verilog for the 

implementation on an FPGA. 

 

Our Contribution: 

To find the most efficient implementation based on 

parame- ters such as training and testing accuracies and 

time durations among CPU and GPU[13]. Implement 

basic operations of CNN like convolution, max pooling 

and ReLu activation functions in Verilog also. These can 

be used as basic building blocks for developing a CNN 

model in Verilog which can be implemented on an 

FPGA. Further its performance can be compared with that 

of CPU and GPU [17]. 

 

16.  CONCLUSION 

Training a model requires a huge amount of data, thus a 

large amount of memory is needed for large computational 

operations. GPU performs all these large computations in 

parallel. GPU has much more parallelism as compared to 

CPU. Latency on GPU is very low compared to CPU. Thus 

GPU bandwidth is very high under thread parallelism. 

Accuracy of the CNN model remains the same irrespective 

of the platform of implementation. GPU can process data 

faster than the CPU because of low latency and parallelism. 

The accuracy of implementing the CNN model can be 

enhanced by using various improvement methods like 

reducing overfitting/ underfitting, implementing image 

normaliza tion, lowering learning rate, etc. 

After improvisation of the model, the testing accuracy for the 

CPU trained model is observed to be better than CPU trained 

model. GPU performs better in terms of speed (more than 

2.5X) because while training GPU can process data faster than 

the CPU because of low latency and parallelism. Thus, the 

most efficient implementation of the CNN model for the 

Pneumonia data is the GPU because of its accuracy and 

speed. 

 

Novelty of the work in this paper is the distribution of the tasks 

based on nature of operations to be performed on CPU, GPU 

and FPGA. We have considered real-time processing 

capabilities, shedding light on the practical implications of our 

implementations in applications with stringent timing 

requirements. Breaking new ground, we delved into hardware 

description languages and successfully implemented basic 

CNN operations in Verilog.  

 

The major challenge we found was in optimization and 

utilization of the sharing of the processing units with CPU, 

GPU and FPGA. Previous work done requires more 

computational power and time, potentially slowing down the 

training and inference processes. Also some work mentions 

that the proposed system has advantages in terms of 

computational speed. While specific speed measurements or 

metrics are not provided, it suggests that the system offers 

improved speed in executing CNN models compared to other 

solutions.  

 Our paper indicates that GPU training is faster than CPU 

training due to low latency and parallelism. It mentions that 

GPU processing can be more than 2.5 times faster. It mentions 

that GPU training is faster due to low latency and parallelism, 

which can imply potential power efficiency.  It focuses on the 

advantages of GPU parallelism and low latency. Operations 

that are moved over to FPGA further increase the speed and 

reduce the cost of the system. 

 
                                                                                             

17. FUTURE WORK 

Further we can carry out the implementation of the entire 

CNN model on an FPGA using HDL (Verilog). We can 

compare the performance of various platforms i.e. CPU, GPU 

and FPGA based on various parameters like memory 

requirements, speed, efficiency, etc. Thus, we can obtain the 

most efficient implementation platform for the CNN model. 

Also, other CNN models can also be implemented on these 

different platforms. We can also use different datasets such as 

more diverse dataset, different size dataset and observe the 

performance. Hardware acceleration techniques, such as 
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FPGA-based solutions or dedicated hardware accelerators can 

be implemented to further enhance the performance of CNNs. 
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