
ISSN: 2584-0495 Vol. 2, Issue 2, pp. 538-547

International Journal of Microsystems and IoT

ISSN: (Online) Journal homepage: https://www.ijmit.org

Comparative analysis of efficient implementation of
CNN on CPU and GPU for image processing and
implementation of basic CNN operations in Verilog

Seema H. Rajput, Prachi Mukherji, Shriya Avachat, Aditi Chitnis, Neha Deodhar,
Purva Godse

Cite as: Rajput, S. H., Mukherji, P., Avachat, S., Chitnis, A., Deodhar, N., & Godse, P. (2024).

Comparative analysis of efficient implementation of CNN on CPU and GPU for image processing

and implementation of basic CNN operations in Verilog. In International Journal of Microsystems

and IoT (Vol. 2, Number 2, pp. 538–547). https://doi.org/10.5281/zenodo.10792152

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 20 February 2024

 Submit your article to this journal:

 Article views:

 View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.10792152

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.10792152
https://doi.org/10.5281/zenodo.10792152
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29

538

International Journal of Microsystems and IoT
 Vol. 2, Issue 2, pp. 538-547; DOI: https://doi.org/10.5281/zenodo.10792152

Comparative analysis of efficient implementation of CNN on CPU and GPU
for image processing and implementation of basic CNN operations in Verilog

Seema H. Rajput 1, Prachi Mukherji1, Shriya Avachat1, Aditi Chitnis1 ,Neha Deodhar1 , Purva Godse1

1Department of Electronics and Communication Engineering, Cummins College of Engineering for Women, Pune, India

KEYWORDS

CNN, CPU, GPU, Verilog, FPGA, Pneumonia detection CNN, CPU, GPU, VERILOG, FPGA

 Pneumonia Detection

1. INTRODUCTION

Neural networks are computing systems with nodes

which are interconnected and they work much like

neurons in the human brain. They are ideal to solve

complex problems in real-life situations [3][22]. Using

various algorithms, these networks can identify hidden

relationships, correlations, patterns and predictions in a

dataset, then it clusters and classifies it, and

continuously learns and evolves accordingly[24]

Biomedical field is making use of machine-learning

techniques, such as ANNs, to improve the quality of

medical care provided to the needy at an effectively

reduced cost. ANNs are best known for diagnosis of

diseases, but nowadays, ANNs are increasingly being

used to make decisions and predictions in health

care[11][12].

Pneumonia is a severe infection that causes

inflammation of air sacs in lungs in humans.

Symptoms from pneumonia include chest pain when

breathing, confusion, cough, fatigue, fever, nausea, and

shortness of breath. Pneumonia is a common condition

and is diagnosed using medical imaging.

The chest X-Rays required for its diagnosis need the help of

expert radiotherapists for evaluation. The adoption and

standardization of machine learning in the health industry is

expected to improve the likelihood of correct diagnosis and

prioritize treatment[6][25]. The application of machine learning

has the potential to impact how health care systems approach

diagnostics and the availability of rapid diagnosis and therefore

faster treatment. Due to the increasing help and success of deep

learning algorithms for the analysis of medical images, CNNs

have gained much popularity for classification of

diseases[22][24]. Also, features learned by pre-trained CNN

models on huge datasets can be used in image classification

applications[4][26]. This will have a significant impact on

traditional procedures improving diagnosis speed and possibly

correctness for pneumonia and other diseases.

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

ABSTRACT

Artificial Neural Networks can assist machines make intelligent and smart decisions with very limited

human interference. This is because these networks can learn quickly and build a model based on

relationships between input and output data which are nonlinear and complex in nature. The main

goal of implementing these neural networks is to obtain the highest possible accuracy of output with

low latency along with low training and testing period. ANNs have shown their potential particularly

for the analysis of image data, which is the base in the biomedical field for detection of diseases. CNN

(Convolutional Neural Network) is a proven neural network for image dataset according to many

studies, in this paper we use CNN model on biomedical dataset- for detection of pneumonia using

real chest scans. In this paper we have compared performances of the same algorithm on CPU and

GPU based on a few parameters. Research in the area of hardware implementation of CNN using

FPGA (Field Programmable Gate Array) has received attention due to the inherent advantages of

FPGA. There are several hardware descriptive languages for FPGA like VHDL, Verilog, System

Verilog etc. We have implemented certain basic building blocks of CNN in Verilog (a hardware

descriptive language used to model electronic systems). In this paper we successfully implemented

selected tasks on FPGA which can be adapted to increase the speed and reduce the cost of the system.

https://doi.org/10.5281/zenodo.10792152
https://ijmit.org/call-for-paper.php

539
2. About CNN

Since Convolutional Neural Networks (CNN) are in

applications like image classification and object detection, we

have chosen CNN to work on the dataset [4][29].

The major components of any CNN are its convolutional

layers. In convolutional layers, filters/kernels are applied to the

input image for extracting features like edges, shapes, textures,

etc. This output of the convolutional layers is then fed to the

pooling layers of CNN, which performs the down- sampling of

the feature maps and hence it reduces the spatial dimensions

without losing the most important information of the input image.

CNNs look for features such as straight lines, edges, or even

objects. The pooling layers are followed by fully connected layers

(FNNs) which can be one or more. These are used to predict or

classify the image. Large dataset consisting of labeled images can

be used to train CNNs [12]. CNN model is trained to learn to

recognize patterns, relationships, correlations and features. After

a model is trained, it can be used for testing i.e. classify new

images in the dataset [29].

3. About CPU and GPU

By default, we run programs on CPU (Central Processing

Unit), at the same time, it is also possible to run those on GPU

(Graphics Processing Unit) [13]. GPU can perform every

computation done by CPU and inverse is also true. Same code

can be executed on both CPU and GPU on platforms like CUDA,

OpenCL, etc. but their processing abilities, efficiency,

performance, characteristics and costs are different. CPU has 3

components which are arithmetic logic unit (ALU), control unit

(CU) and memory unit[17]. ALU stores the information and

executes calculations. CU carries out instruction sequencing

along with branching. CPU interacts with other components of

the machine such as memory, input and output to execute

instructions. The GPU is used to provide images in gaming

systems. GPU is faster as compared to CPU[21]. Also, GPU is

more focused on high throughput[13][17].

When the efficiency of CPU and GPU training deep learning

algorithms are compared, it is observed that GPUs have faster

training speeds and are more energy-efficient, but compared to

CPUs, they are more expensive[26][28]. On the other hand

CPUs are comparatively slower and are not as efficient for

performing complex functions. Table1 shows the comparison of

CPU and GPU[13]. The parameters which we are considering

for comparison between CPU and GPU for the same CNN

model on the Pneumonia dataset are as follows: time required

for training and accuracy[24][30].

Table .1 Comparison o f CPU & GPU
Sr.
No.

Parameter CPU GPU

1. Memory
Requirement

 More Less

2. Speed Less More

3. Instruction
processing

 Serial Parallel

4. Strengths Low
latency

High
throughput

4. About FPGA

FPGA stands for Field Programmable Gate Array and is

a microchip which contains thousands of configurable logic

blocks and programmable interconnects [18]. It is called

“Field Programmable” since it is not an application

specific IC (Integrated Circuit) [1][2]. This means that we

can program and reprogram the FPGA to perform different

functions; they are cost-effective as well. Due to the many

advantages of FPGAs, they are used for a wide range of

applications in fields like medical, image and video

processing, digital communications, etc. Languages used to

program hardware are called “Hard- ware Description

Language”. Verilog is one of the HDL used to program

FPGA [18].

5. About CNN on FPGA

Implementing CNN on an FPGA has its own advantages

because of characteristics of FPGA like high flexibility,

great balance between performance and power [1][22].

CNN or in fact all neural networks main task is to work on

and synthesize complex data, learn effectively and the most

important- give the correct output (detection, prediction,

etc) [2][29]. With increasing complexity of data and

patterns increases the computational complexity; thus,

hardware acceleration can be made use of. FPGA has the

added advantage of reconfigurability and massive

parallelism [9][10].

6. METHODOLOGY

1. Select an appropriate biomedical image dataset -

Pneu-monia dataset (2GB, 5863 images)[2].

2. Analyze the dataset.

3. Implement preprocessing technique - image

normaliza- tion.

4. Build a CNN model using Python and train the

model on both CPU and GPU platforms[13][9].

5. Note the training accuracies and time durations for

implementation.

6. Test the model and obtain the accuracies.

7. Identify the downfalls of the model and search for

suitable improvising techniques.

8. Implement the improvising technique - image

normaliza- tion, reduction of learning rate, change

number of epochs (8 and 5 epochs) and modify the

model[7][10].

9. Carry out the same procedure as before and note the

differences in results.

10. Compare the results of previous and improved

models for each platform.

11. Compare the performance of CPU and

GPU[13][21].

12. Analyze the obtained comparison results and its

deter- mining factors[14][30].

13. Implement the basic CNN operations in Verilog

540
such as convolution, max pooling and activation

function

𝟕 . Dataset

Dataset used for the study has Chest X-ray images for diagnosis

of Pneumonia. It contains 3 directories (train, test, val) for

training, testing and validation respectively, each consisting of

sub-directories for each image category (Pneu-

monia/Normal)[14]. It consists of a total 5,863 X-Ray images in

JPEG format.

Chest X-ray images were selected to create a dataset by

performing X-ray imaging at Guangzhou Women and Chil-

dren’s Medical Center, Guangzhou. Data was collected from

pediatric patients’ routine medical checkup for the duration of one

to five years. The images comprise of both anterior and posterior

chest X-rays[14].

All the selected images were initially checked and low qual- ity

and unreadable images were eliminated for further study. Also,

the result of diagnosis was examined by two experts and further

was again graded by a third expert before the dataset was

permitted to be trained by an artificial intelligence model.

Fig. 1 Image credits: Kaggle. Illustrative Examples of Chest X-
Rays in Patients with Pneumonia.

𝟖. Dataset analysis and Preprocessing
The pre-processing methods include noise removal, image

normalization, and image enhancement.

Image normalization is a crucial pre-processing step that makes

sure that each input value is in the format of a standard

distribution[3][12]. This basically implies that the pixel values of

two images are the same. From each pixel value, the average is

subtracted and further the result is divided by standard deviation.

The range is frequently selected to be 0 to 1 or 0 to 255 because

the input is an image and the pixel values are positive.

𝟗. CNN Model Basics

a) CNN basically contains three types of layers:

Convolution, Pooling and Fully-Connected[23]. In addition to

these layers there are two important layers or parameters that

are Activation function and Dropout layer[5]. Convolutional

Layer: The initial layer and main com- ponent of a CNN, the

convolutional layer is executed to extract the various

information from the input images. Convolution is a

mathematical operation in which a filter/kernel of a specific

size NxN is applied on the input image. The output of this

operation is called the Feature map which gives the features of

the image like its edges, corners, patterns, shapes, etc. Feature

map/Activation map is fed to the next layers to help extract

more features from the image[23].

A basic convolution operation consists of applying a

filter to the input, multiplying each element separately,

and adding the results. The entire step is repeated after

shifting the overlaps in accordance with the stride.

 Stride indicates the number of positions the filter should

be moved relative to the input. Padding can also be added

to the output to prevent changes in the output’s height and

width.

b) Activation Functions: Activation functions are

neces- sary components of CNN[15]. We use an activation

function in a CNN after the convolutional layer. They

determine whether or not to activate a neuron. After

accepting an input, an activation layer applies the defined

activation function. The result of an activation layer is

always the same as the input dimension because the

activation function acts in an element- wise manner.

1. Nowadays, ReLU (Rectified Linear Unit) is the

activation function that is used the most extensively. The

range for ReLU function is from 0 to infinity.

2. Log Softmax activation function: Softmax function

converts numerical values into probabilities[7]. Log

softmax is the logarithm of the softmax function which is

used as an ad- vantageous alternative due to its

mathematical simplicity and better performance in

optimizing the gradient. As probabilities are multiplied in

the softmax function, log softmax computes them by

addition thus reducing the complexity.

c) Pooling Layer: Max Pooling is a crucial

component of the CNN Architecture in Convolutional

Neural Networks, where it is utilized to both decrease the

size of the image and enhance its features. Different

pooling operations can be carried out[8]. Feature map

provides the largest element of the image. Average

pooling computes the average of elements for a

predetermined size/part of the image. Pooling layer is a

mediator between Convolutional layer and Fully

Connected layer.

Due to MaxPooling the cost of computing and the

number of operations needed to process the image are

decreased as the image’s dimension is reduced. Also,

improving the features makes it easier for our model to

recognize and interpret features[19].In order for Max

Pooling to work, a filter is used as a sliding window from

which the maximum value is extracted.

d) Fully Connected Layer: Each and every neuron of

one layer is connected to all other layers in FC layers. FC

layers are always placed towards the end of the

network[19].

The FC layer receives a flattened copy of the input image from

the preceding layers which undergoes operations when passed

through more FC layers.

10. CNN operations in Verilog

We have implemented three basic building blocks of CNN

in Verilog- Convolution, Activation Function, Pooling

Function[16].

1) Convolution: We considered a 3*3 Laplacian Filter and

performed convolution on a 3*3 matrix. The basic

convolution operation goes like this:

begin

541
 if(enable)

 begin

 out1<=0; //multiply by 0

 out2<=in2*(-1); //multiply by -1

 out3<=0; // multiply by 0

 out4<=in4*(-1); // multiply by -1

 out5<=in5*4 b0100; //multiply by 4

 out6<=in6* (-1); //multiply by -1

 out7<=0; //multiply by 0

 out8<=in8*(-1); //multiply by -1

 out9<=0; //multiply by 0

 end

else

 begin

 out1<=0;

 out2<=in2*(-1);

 out3<=0;

 out4<=in4*(-1);

 out5<=in5*4 b0100;

 out6<=in6* (-1);

 out7<=0;

 out8<=in8*(-1);

 out9<=0;

Fig. 2 Convolution snippet

There is element by element multiplication and once all

elements of the filter are covered, the products are added.

Laplacian Filter we considered:

Fig. 3 Laplacian filter

2) Activation Function: Since we’ve used ReLU function a

lot in our work, we implemented ReLU using a simple assign

statement with ternary operator.

So we can see that by this assign statement, if the 32nd bit

(ordered as 31st) is 1, the number is negative and thus the answer

of the ReLU operation would be 0, else the answer would be the

number as it is.

“timescale”=lns/lps

module relu(din_relu,dout_relu);

input [31:0] din_relu;

output [31:0] dout_relu;

 assign dout_relu = (din_relu[31]==0)? din_relu:0;
 endmodule

Fig. 4. ReLU activation function code

3) Pooling Function: Here, we have performed max pooling,

which is choosing the maximum number of your pooling

window of your input matrix.

11. Specifications

Resources required are :

 1. Hardware : GPU compatible system.

2. Software :

• Kaggle Dataset

• For implementation on GPU and CPU : Pytorch

frame- work, CUDA toolkit, code editor - Jupyter or

Kaggle Notebook[2][21].

• For implementation in Verilog : Xilinx ISE 8.1i

12. RESULTS

This paper aims to implement the CNN model on

different platforms; CPU and GPU[17][21]. As well as the

comparison of the results based on speed of the

execution and accuracy of the model Operations in Verilog.

Initially the model was trained for 8 epochs (iterations)

and then improvisation methods were applied and results

were compared for CPU and GPU[13]. Then, the epochs

were reduced to 5 and the same procedure was carried out.

Following are the results obtained for 5 epochs[30]

13. Implementation 1

After implementing the same CNN model (learning rate

= 0.01) on CPU and GPU, the results obtained are as

follows: epochs = 5
CPU -
epoch: 0 batch: 163 [2608/5216] loss: 0.49275011 accuracy:
74.425%
epoch: 0 batch: 326 [5216/5216] loss: 0.56257927 accuracy:
73.869%
epoch: 1 batch: 163 [2608/5216] loss: 0.56494689 accuracy:
74.233%
epoch: 1 batch: 326 [5216/5216] loss: 0.90838754 accuracy:
74.291%
epoch: 2 batch: 163 [2608/5216] loss: 0.56239396 accuracy:
73.926%
epoch: 2 batch: 326 [5216/5216] loss: 0.62790281 accuracy:
74.291%
epoch: 3 batch: 163 [2608/5216] loss: 0.56254911 accuracy:
73.428%
epoch: 3 batch: 326 [5216/5216] loss: 0.70221806 accuracy:
74.291%
epoch: 4 batch: 163 [2608/5216] loss: 0.49016133 accuracy:
73.696%
epoch: 4 batch: 326 [5216/5216] loss: 0.49767214 accuracy:
74.291%
Duration: 1462 seconds

Test accuracy: 390/624 = 62.500 percent
GPU -

epoch: 0 batch: 163 [2608/5216] loss: 0.56242651 accuracy:
72.584%
epoch: 0 batch: 326 [5216/5216] loss: 0.48984113 accuracy:
73.677%
epoch: 1 batch: 163 [2608/5216] loss: 0.53277415 accuracy:
74.387%
epoch: 1 batch: 326 [5216/5216] loss: 0.42750421 accuracy:
74.291%
epoch: 2 batch: 163 [2608/5216] loss: 0.56366879 accuracy:
73.965%
epoch: 2 batch: 326 [5216/5216] loss: 0.56312734 accuracy:
74.291%
epoch: 3 batch: 163 [2608/5216] loss: 0.62495297 accuracy:
74.156%
epoch: 3 batch: 326 [5216/5216] loss: 0.56256855 accuracy:
74.291%
epoch: 4 batch: 163 [2608/5216] loss: 0.34337136 accuracy:
74.271%
epoch: 4 batch: 326 [5216/5216] loss: 0.75661707 accuracy:
74.291%
Duration: 532 seconds

Test accuracy: 390/624 = 62.500 percent

14. Implementation 2

Methods to Improve Accuracy:

Observed training accuracy for CPU and GPU before were

542
74.291 percent for both[13][17]. Overfitting is a negative effect

which means that a model performs great while training but

performs poorly while testing. To increase both training and

testing accuracy of CNN model without overfitting there are

several methods[23]: data normalization, data augmentation,

batch normalization, learning rate scheduling, weight decay[27].

Image normalization:

Image normalization is a common preprocessing technique in

computer vision and image processing. Its primary goal is to

standardize the pixel values of an image, ensuring that they fall

within a specific range. This process helps in achieving better

convergence during training of machine learning models and

improves the overall performance of the model[25].

Learning Rate: In each epoch, the learning rate represents the step

size of the learning process for a neural network. It can control

how quickly the model learns within an appro- priate duration of

time. There is no fixed or ideal value of learning rate. Determining

an optimal learning rate is highly experimental[20]. Generally it

is chosen between 0.001 to 0.01.

After implementation of image normalized model on CPU and

GPU, the results obtained are as follows: epochs = 5

CPU -
epoch: 0 batch: 163 [2608/5216] loss: 0.50710011 accuracy: 73.505%
epoch: 0 batch: 326 [5216/5216] loss: 0.69760519 accuracy: 73.965%
epoch: 1 batch: 163 [2608/5216] loss: 0.62548077 accuracy: 74.233%
epoch: 1 batch: 326 [5216/5216] loss: 0.42510208 accuracy: 74.291%
epoch: 2 batch: 163 [2608/5216] loss: 0.56274945 accuracy: 74.578%
epoch: 2 batch: 326 [5216/5216] loss: 0.56421262 accuracy: 74.291%
epoch: 3 batch: 163 [2608/5216] loss: 0.63094747 accuracy: 74.310%
epoch: 3 batch: 326 [5216/5216] loss: 0.43467468 accuracy: 74.291%
epoch: 4 batch: 163 [2608/5216] loss: 0.68591964 accuracy: 73.428%
epoch: 4 batch: 326 [5216/5216] loss: 0.48937252 accuracy: 74.291%
Duration: 1825 seconds

Test accuracy: 390/624 = 62.500 percent

GPU -
epoch: 0 batch: 163 [2608/5216] loss: 0.27248743 accuracy: 79.371%
epoch: 0 batch: 326 [5216/5216] loss: 0.14000969 accuracy: 84.758%
epoch: 1 batch: 163 [2608/5216] loss: 0.20482257 accuracy: 91.910%
epoch: 1 batch: 326 [5216/5216] loss: 0.32073060 accuracy: 91.833%
epoch: 2 batch: 163 [2608/5216] loss: 0.15548374 accuracy: 92.485%
epoch: 2 batch: 326 [5216/5216] loss: 0.18335041 accuracy: 92.561%
epoch: 3 batch: 163 [2608/5216] loss: 0.33973581 accuracy: 93.213%
epoch: 3 batch: 326 [5216/5216] loss: 0.18034536 accuracy: 92.791%
epoch: 4 batch: 163 [2608/5216] loss: 0.29077676 accuracy: 92.446%
epoch: 4 batch: 326 [5216/5216] loss: 0.11109190 accuracy: 92.044%
Duration: 725 seconds

Test accuracy: 466/624 = 74.679 percent

Implementation 3

After implementation of reduced learning rate model (learn- ing

rate = 0.001) on CPU and GPU , the results obtained are as

follows: epochs = 5

CPU -
epoch: 0 batch: 163 [2608/5216] loss: 0.11790308 accuracy: 96.971%
epoch: 0 batch: 326 [5216/5216] loss: 0.02284684 accuracy: 97.143%
epoch: 1 batch: 163 [2608/5216] loss: 0.04813021 accuracy: 97.469%
epoch: 1 batch: 326 [5216/5216] loss: 0.01034636 accuracy: 97.373%
epoch: 2 batch: 163 [2608/5216] loss: 0.00588292 accuracy: 96.702%
epoch: 2 batch: 326 [5216/5216] loss: 0.00894325 accuracy: 96.933%
epoch: 3 batch: 163 [2608/5216] loss: 0.00138907 accuracy: 97.124%
epoch: 3 batch: 326 [5216/5216] loss: 0.03107080 accuracy: 97.335%
epoch: 4 batch: 163 [2608/5216] loss: 0.05117567 accuracy: 97.623%
epoch: 4 batch: 326 [5216/5216] loss: 0.05375537 accuracy: 97.508%
Duration: 1600 seconds

Test accuracy: 469/624 = 75.160 percent

GPU -
epoch: 0 batch: 163 [2608/5216] loss: 0.37603298 accuracy: 89.225%
epoch: 0 batch: 326 [5216/5216] loss: 0.16190936
accuracy: 91.775%epoch: 1 batch: 163 [2608/5216] loss: 0.03967999
accuracy: 95.936%
epoch: 1 batch: 326 [5216/5216] loss: 0.01595522 accuracy: 95.533%
epoch: 2 batch: 163 [2608/5216] loss: 0.09628659 accuracy: 96.396%
epoch: 2 batch: 326 [5216/5216] loss: 0.00185688 accuracy: 96.204%
epoch: 3 batch: 163 [2608/5216] loss: 0.02254109 accuracy: 96.434%

epoch: 3 batch: 326 [5216/5216] loss: 0.14738376 accuracy: 95.840%
epoch: 4 batch: 163 [2608/5216] loss: 0.24484700 accuracy: 96.549%
epoch: 4 batch: 326 [5216/5216] loss: 0.03344190 accuracy: 96.626%
Duration: 701 seconds

Test accuracy: 512/624 = 82.051 percent

This was observed to be the best model that we implemented

i.e. GPU trained model with accuracy of 96.626 percent in

701 secs and testing accuracy of 82.051 percent.

For this model, Losses chart :

Fig. 5. GPU Training and Testing Losses after each Epoch

(5 Epochs)

Accuracy chart :

Fig. 6. GPU Training and Testing Accuracy after each Epoch

(5 Epochs)

Accuracy confusion matrix :

Table ii shows the comparison of training accuracies for CPU

and GPU (8 epochs and 5 epochs) table iii shows the

comparison of testing accuracies for CPU and GPU (8 epochs

and 5 epochs) table iv shows the Comparison of training

durations for CPU and GPU (8epochsand5epochs)[17].

543

Fig. 7 Confusion Matrix of GPU Trained Model Testing

Table .2 Comparison of training accuracies for CPU and GPU (8

epochs and 5 epochs)

Parameters 8 Epochs 5 Epochs

CPU(%) GPU(%) CPU(%) GPU(%)

LR: 0.01 74.291 74.291 74.291 74.291

Img Normalized 74.291 74.291 74.291 92.044

LR: 0.001 96.952 97.373 97.508 96.626

Table .3 Comparison of testing accuracies for CPU and GPU (8

epochs and 5 epochs)

Parameters 8 Epochs 5 Epochs

CPU
trained(

%)

GPU
trained(

%)

CPU
trained(

%)

GPU
trained(

%)
LR: 0.01 62.500 62.500 62.500 62.500

Img
Normalized

62.500 62.500 62.500 74.679

LR: 0.001 71.795 80.128 75.160 82.051

Table .4 Comparison of training durations for CPU and GPU (8

epochs and 5 epochs)

Parameters 8 Epochs 5 Epochs

CPU (sec) GPU (sec) CPU (sec) GPU (sec)
LR: 0.01 2398 865 1462 532

Img
Normalized

2975 1170 1835 725

LR: 0.001 2873 1112 1600 701

15. Observations:
For CPU, the training as well as testing accuracy in- creased only

after reducing the learning rate for both 8 and 5 epochs.

Despite achieving 95 percent+ accuracy in training, the accuracy

for testing was not improved to expected level. This could be

because overfitting still exists in the model even though

improvisation techniques were implemented[27]. Also, the

dataset was less diverse.

For GPU, the same was observed in the case of 8 epochs. But for

5 epochs, the accuracy for training and testing immediately

improved after image normalization without any change in

learning rate. Thus for GPUs, by reducing iterations, overfitting

was reduced immediately with the same learning rate. Further

after reducing the learning rate, the most efficient model

implementation was obtained.

Fig. 8 Comparison of Testing Accuracies

Fig. 9 Comparison of Training Accuracies

GPU performs better in terms of speed for all variations of

implementations carried out. It was observed that on an

average GPU performed 2.57 times faster than CPU.

For the most efficient model implemented, the accuracy for

GPU was 6.891 percent more than CPU and the speed was

2.28 times that of CPU.

Fig. 10. Comparison of Training Duration

Implementation of CNN components in Verilog:

1. Convolution operation:

544

Fig. 11. Convolution Testbench

Fig. 12. Convolution Output

545

2. ReLU activation function:

Fig. 13. ReLU Activation Function Testbench

Fig. 14. ReLU Activation Function Output

3. Max pooling operation:

Fig. 15. Max-Pooling Testbench

Fig. 16. Max-Pooling Output

These convolution operations can be used as building

blocks for the design of CNN model in Verilog for the

implementation on an FPGA.

Our Contribution:

To find the most efficient implementation based on

parame- ters such as training and testing accuracies and

time durations among CPU and GPU[13]. Implement

basic operations of CNN like convolution, max pooling

and ReLu activation functions in Verilog also. These can

be used as basic building blocks for developing a CNN

model in Verilog which can be implemented on an

FPGA. Further its performance can be compared with that

of CPU and GPU [17].

16. CONCLUSION

Training a model requires a huge amount of data, thus a

large amount of memory is needed for large computational

operations. GPU performs all these large computations in

parallel. GPU has much more parallelism as compared to

CPU. Latency on GPU is very low compared to CPU. Thus

GPU bandwidth is very high under thread parallelism.

Accuracy of the CNN model remains the same irrespective

of the platform of implementation. GPU can process data

faster than the CPU because of low latency and parallelism.

The accuracy of implementing the CNN model can be

enhanced by using various improvement methods like

reducing overfitting/ underfitting, implementing image

normaliza tion, lowering learning rate, etc.

After improvisation of the model, the testing accuracy for the

CPU trained model is observed to be better than CPU trained

model. GPU performs better in terms of speed (more than

2.5X) because while training GPU can process data faster than

the CPU because of low latency and parallelism. Thus, the

most efficient implementation of the CNN model for the

Pneumonia data is the GPU because of its accuracy and

speed.

Novelty of the work in this paper is the distribution of the tasks

based on nature of operations to be performed on CPU, GPU

and FPGA. We have considered real-time processing

capabilities, shedding light on the practical implications of our

implementations in applications with stringent timing

requirements. Breaking new ground, we delved into hardware

description languages and successfully implemented basic

CNN operations in Verilog.

The major challenge we found was in optimization and

utilization of the sharing of the processing units with CPU,

GPU and FPGA. Previous work done requires more

computational power and time, potentially slowing down the

training and inference processes. Also some work mentions

that the proposed system has advantages in terms of

computational speed. While specific speed measurements or

metrics are not provided, it suggests that the system offers

improved speed in executing CNN models compared to other

solutions.

 Our paper indicates that GPU training is faster than CPU

training due to low latency and parallelism. It mentions that

GPU processing can be more than 2.5 times faster. It mentions

that GPU training is faster due to low latency and parallelism,

which can imply potential power efficiency. It focuses on the

advantages of GPU parallelism and low latency. Operations

that are moved over to FPGA further increase the speed and

reduce the cost of the system.

17. FUTURE WORK

Further we can carry out the implementation of the entire

CNN model on an FPGA using HDL (Verilog). We can

compare the performance of various platforms i.e. CPU, GPU

and FPGA based on various parameters like memory

requirements, speed, efficiency, etc. Thus, we can obtain the

most efficient implementation platform for the CNN model.

Also, other CNN models can also be implemented on these

different platforms. We can also use different datasets such as

more diverse dataset, different size dataset and observe the

performance. Hardware acceleration techniques, such as

546

FPGA-based solutions or dedicated hardware accelerators can

be implemented to further enhance the performance of CNNs.

Acknowledgement:
 This work has been carried out under the C2S Grant of

MeitY. We are grateful for the support provided to us.

REFERENCES

1. Mohammad Samragh, Mohammad Ghasemzadeh, Farinaz Koushanfar.

(2017) Customizing Neural Networks for Efficient FPGA

Implementation IEEE. https://doi.org/10.1109/FCCM.2017.43

2. C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong (2016).

Energyefficient cnn implementation on a deeply pipelined fpga cluster

in ISLPED, ACM. http://dx.doi.org/10.1145/2934583.2934644

3. M. Samragh, M. Imani, F. Koushanfar, and T. Rosing. (2017). Looknn:

Neural network with no multiplication in DATE, IEEE.

.http://dx.doi.org/10.23919/DATE.2017.7927280

4. B. D. Rouhani, A. Mirhoseini, and F. Koushanfar. (2017). Deep3:

Leveraging three levels of parallelism for efficient deep learning in

DAC, ACM. .http://dx.doi.org/10.1145/3061639.3062225

5. Reagen et al. (2016). Minerva: Enabling low-power, highly- accurate

deep neural network accelerators in Proceedings of ISCA.

https://doi.org/10.1109/ISCA.2016.32

6. Mevlut Ersoy, Cem Deniz Kumral. (2020). Realization of Artificial

Neural Networks on FPGA. http://dx.doi.org/10.1007/978-3-030-36178-

5_31

7. Abrol, S., Mahajan, R. (2015) Artificial neural network implementation

on FPGA chip. Int. J. Comput. Sci. Inform. Technol.

Res.https://iopscience.iop.org/article/10.1088/1757-

899X/224/1/012054#:~:text=10.1088/1757%2D899X/224/1/012054

8. AlHajri, M.I., Ali, N.T., Shubair, R.M. (2018). Classification of indoor

environments for IoT applications: a machine learning approach. IEEE

AntennasWirel.Propag.Lett

.http://dx.doi.org/10.1109/LAWP.2018.2869548

9. T.Q. Vinh, D.V. Hai (2021). Optimizing convolutional neural network

accelerator on low-cost FPGA J. Circ. Syst. Comput

.http://dx.doi.org/10.1142/S0218126621501930

10. Pettersson, Linus. (2020). Convolutional Neural Networks on FPGA and

GPU on the Edge: A Comparison.

http://dx.doi.org/10.1109/ICCRD54409.2022.9730377

11. A. Durg, W. V. Stoecker, J. P. Cookson, S. E. Umbaugh, and R. H. Moss

(2018). "Identification of Variegating Coloring in Skin Tumors: Neural

Network vs. Rule-Based Induction Methods", IEEE Eng. in Med. and

Biol .http://dx.doi.org/10.1109/51.232345

12. B. H. Mulsant . (1990) A Neural Network as an Approach to Clinical

Diagnosis"M.D.Computing..https://doi.org/10.1177/0272989X9301300

402

13. P Siva Raj, Ch. Sekhar (2020). Comparative Study on CPU, GPU and

TPU .http://dx.doi.org/10.21742/IJCSITE.2020.5.1.04

14. George-Peter K Economou, E.P. Mariatos, N.M. Economopoulos, Dim-

itris Lymperopoulos, C.E. Gout. (2002). FPGA implementation of

artificial neural networks: an application on medical expert systems,”

Proceedings of the Fourth International Conference on Microelectronics

for Neural Networks and Fuzzy Systems.

https://doi.org/10.1109/ICMNN.1994.593722

15. Eric Lind, A velin Pantigoso. (2019). A performance comparison

between CPU and GPU in TensorFlow KTH Royal Institute of

Technology,Stockholm,Sweden.https://www.researchgate.net/publicati

on/366412066_Comparative_Analysis_of_CPU_and_GPU_Profiling_f

or_Deep_Learning_Models

16. Khader Mohammad, Sos Again. (2009). Efficient FPGA implementation

of convolution IEEE Int. Conf. on Syst., Man, and Cybernetic.

.http://dx.doi.org/10.1109/ACCESS.2019.2924330

17. Anna Syberfeldt, Tom Ekblom (2017). A Comparative Evaluation of the

GPU vs The CPU for Parallelization of Evolutionary Algorithms

Through Multiple Independent Runss International Journal of

InformationTechnologyandComputerScience
.http://dx.doi.org/10.5121/ijcsit.2017.9301

18. C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong. (2016).

Energyefficient cnn implementation on a deeply pipelined FPGA cluster

in ISLPED. http://dx.doi.org/10.1145/2934583.2934644

19. M. Samragh, M. Imani, F. Koushanfar, and T. Rosin. (2017). Looknn:

Neural network with no multiplication in DATE, IEEE.

http://dx.doi.org/10.23919/DATE.2017.7927280

20. B. D. Rouhani, A. Mirhoseini, and F. Koushanfar (2017). Deep3:

Leveraging three levels of parallelism for efficient deep learning,” in

DAC, ACM .http://dx.doi.org/10.1145/3061639.3062225

21. I. Alkaabwi. (2021). Comparison between cpu and gpu for parallel

implementation for a neural network model using tensorflow and a big

dataset.InElectronicThesesandDissertations.http://dx.doi.org/10.1109/H

IS.2010.5600028

22. D. Gyawali, A. Regmi, A. Shakya, A. Gautam, and Shrestha. (2020).

Comparative analysis of multiple deep cnn models for waste

classification.https://doi.org/10.48550/arXiv.2004.02168

23. A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. (2020). A survey

of the recent architectures of deep convolutional neural networks,

Artificial Intelligence

Review.https://doi.org/10.48550/arXiv.1901.06032

24. Yuan Meng, Sanmukh Kuppannagari, Rajgopal Kannan, and Viktor

Prasanna. (2021). Dynamap: Dynamic algorithm mapping framework

for low latency cnn inference. ACM/SIGDA International Symposium

on Field Programmable Gate Arrays.https://doi.org/10.1145/3431920

25. Rozenwald MB, Galitsyna AA, Sapunov GV, Khrameeva EE, Gelfand

MS. (2020) . A machine learning framework for the prediction of

chromatin folding in Drosophila using epigenetic features. PeerJ Comput

Sci.http://dx.doi.org/10.7717/peerj-cs.307

26. Adeel A, Gogate M, Hussain A. (2020). Contextual deep learning-based

audio-visual switching for speech enhancement in real-world

environments.Inf Fusion.http://dx.doi.org/10.1016/j.inffus.2019.08.008

27. Tian H, Chen SC, Shyu ML. (2020) . Evolutionary programming based

deep learning feature selection and network construction for visual data

classification.InfSystFront.http://dx.doi.org/10.1109/MIPR49039.2020.

00020

28. Koppe G, Meyer-Lindenberg A, Durstewitz D. (2021). Deep learning

for smallandbigdatainpsychiatry.Neuropsychopharmacology.

http://dx.doi.org/10.1038/s41386-020-0767-z

29. Dhillon A, Verma GK. (2020) . Convolutional neural network: a review

of models, methodologies and applications to object detection. Prog Artif

Intell. http://dx.doi.org/10.1007/s13748-019-00203-0

30. Anusha Jayasimhan, P. Pabitha (2022). A comparison between CPU

and GPU for image classification using Convolutional Neural

Networks.http://dx.doi.org/10.1145/3372790

31. I. Alkaabwi. (2021) . Comparison between cpu and gpu for parallel

implementation for a neural network model using tensorflow and a big

dataset.InElectronicThesesandDissertations.https://digitalcommons.libr

ary.umaine.edu/etd/3524.

AUTHORS

Dr. Seema Hemantkumar Rajput is

presently working as an Associate Professor

at CCOEW, Pune. She has Completed

BE(Electronics) in 1997, ME(Electronics) in

2008 and PhD.(Electronics &

Telecommunications) in 2016 from Nagpur

University. She has total working experience

of more than 23 Years. She has published

several papers in reputed international and national journals.

She has received grant of Rs. 86 Lakhs under Chip to Startup

program of Govt. of India as Co-Chief Investigator. She is Start

up and innovation cell, head faculty coordinator at CCOEW.

Awarded with “Best Teacher Award” in 2016 at Sinhgad

Academy of Engineering, Kondhwa, Pune.

Corresponding Author’s Email:

seema.rajput@cumminscollege.in

https://doi.org/10.1109/FCCM.2017.43
http://dx.doi.org/10.1145/2934583.2934644
http://dx.doi.org/10.23919/DATE.2017.7927280
http://dx.doi.org/10.1145/3061639.3062225
https://doi.org/10.1109/ISCA.2016.32
http://dx.doi.org/10.1007/978-3-030-36178-5_31
http://dx.doi.org/10.1007/978-3-030-36178-5_31
https://iopscience.iop.org/article/10.1088/1757-899X/224/1/012054#:~:text=10.1088/1757%2D899X/224/1/012054
https://iopscience.iop.org/article/10.1088/1757-899X/224/1/012054#:~:text=10.1088/1757%2D899X/224/1/012054
http://dx.doi.org/10.1109/LAWP.2018.2869548
http://dx.doi.org/10.1142/S0218126621501930
http://dx.doi.org/10.1109/ICCRD54409.2022.9730377
http://dx.doi.org/10.1109/51.232345
https://doi.org/10.1177/0272989X9301300402
https://doi.org/10.1177/0272989X9301300402
http://dx.doi.org/10.21742/IJCSITE.2020.5.1.04
https://doi.org/10.1109/ICMNN.1994.593722
https://www.researchgate.net/publication/366412066_Comparative_Analysis_of_CPU_and_GPU_Profiling_for_Deep_Learning_Models
https://www.researchgate.net/publication/366412066_Comparative_Analysis_of_CPU_and_GPU_Profiling_for_Deep_Learning_Models
https://www.researchgate.net/publication/366412066_Comparative_Analysis_of_CPU_and_GPU_Profiling_for_Deep_Learning_Models
http://dx.doi.org/10.1109/ACCESS.2019.2924330
http://dx.doi.org/10.5121/ijcsit.2017.9301
http://dx.doi.org/10.1145/2934583.2934644
http://dx.doi.org/10.23919/DATE.2017.7927280
http://dx.doi.org/10.1145/3061639.3062225
http://dx.doi.org/10.1109/HIS.2010.5600028
http://dx.doi.org/10.1109/HIS.2010.5600028
https://doi.org/10.48550/arXiv.2004.02168
https://doi.org/10.48550/arXiv.1901.06032
https://doi.org/10.1145/3431920
http://dx.doi.org/10.7717/peerj-cs.307
http://dx.doi.org/10.1016/j.inffus.2019.08.008
http://dx.doi.org/10.1109/MIPR49039.2020.00020
http://dx.doi.org/10.1109/MIPR49039.2020.00020
http://dx.doi.org/10.1038/s41386-020-0767-z
http://dx.doi.org/10.1007/s13748-019-00203-0
http://dx.doi.org/10.1145/3372790
https://digitalcommons.library.umaine.edu/etd/3524.
https://digitalcommons.library.umaine.edu/etd/3524.
mailto:seema.rajput@cumminscollege.in

547

Dr. Prachi Mukherji is currently the

dean,(R&D) of Cummins College of

Engineering for Women, Pune. She

graduated in the year 1991from MITS,

Gwalior and M. Tech. from MNIT,

Bhopal in 1994. She completed her PhD

from SPPU in 2009. She is the Chief

Investigator of the C2S project grant

received from MeitY. She is a National Level awardee of Smt.

Triveni Devi Gupta Memorial Award by IETE. She is a Senior

Member IEEE and Fellow, IETE. Her areas of research are

Signal Processing, Communication and Machine Learning.

Email: prachi.mukherji@cumminscollege.in

Ms. Shriya Ravindra Avachat is

presently working as a Software Engineer

in UBS Business Solutions (India), Pvt.

Ltd., Pune. She has completed her B.Tech

(Electronics and Telecommunication) from

MKSSS’s Cummins College of

Engineering, Pune.

Email: shriya,avchat@cumminscollege.in

Ms. Aditi Suhas Chitnis is currently

working at Ather Energy Pvt Ltd,

Bangalore as a Test Engineer- Embedded

Hardware. She completed her B.Tech

(Electronics and Telecommunication)

from MKSSS's Cummins College of

Engineering for Women, Pune in 2023.

Email: aditi.chitnis@cumminscollege.in

Ms. Neha Hrishikesh Deodhar is

presently working as Digital Design

Engineer in Synopsys India, Bangalore.

She recently completed her B.Tech in

Electronics and Telecommunication from

MKSSS’s Cummins College of

Engineering for women, Pune.

Email:

Neha.deodhar@cumminscollege.in

Ms. Purva Rahul Godse is currently

working as a Full Stack Software

Developer in SLB (formerly known as

Schlumberger Limited), Pune. She has

completed her Bachelor’s of Technology

(B.Tech Electronics and

Telecommunication) from MKSSS's

Cummins College of Engineering for

Women, Pune.

Email: purva.godse@cumminscollege.in

mailto:prachi.mukherji@cumminscollege.in
mailto:Neha.deodhar@cumminscollege.in

