
ISSN: 2584-0495                                                                                                                         Vol. 2, Issue 1, pp. 492- 499 

 

International Journal of Microsystems and IoT 

ISSN: (Online) Journal homepage: https://www.ijmit.org 

 

Potato Leaf Disease Detection Using YOLOv8n with a 
Handheld Device 

Simanta Hazra, Sunil Karforma, Debasis Chakraborty, Sayantani Chakraborty, and 
Sandip Haldar 

Cite as: HAZRA, S., KARFORMA, S., CHAKRABORTY, D., CHAKRABORTY, S., & HALDAR, S. (2024). 

Potato Leaf Disease Detection Using YOLOv8n with a Handheld Device. In International Journal of 

Microsystems and IoT (Vol. 2, Number 1, pp. 492–499). Zenodo. 

https://doi.org/10.5281/zenodo.10700359  

 

© 2024 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India 

  

  Published online: 22 January 2024 

 

 Submit your article to this journal: 

 

 Article views:  

 

     View related articles: 

    

 View Crossmark data: 

 

 DOI:  https://doi.org/10.5281/zenodo.10700359  

 

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php 
 

 

 

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.10700359
https://doi.org/10.5281/zenodo.10700359
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29


492  

International Journal of Microsystems and IoT  
 Vol. 2, Issue 1, pp. 492- 499; DOI: https://doi.org/10.5281/zenodo.10700359  

  

Potato Leaf Disease Detection Using YOLOv8n with a 
Handheld Device 
 

Simanta Hazra1, Sunil Karforma2, Debasis Chakraborty1, Sayantani Chakraborty3, and Sandip Haldar4 
 

1Department of Computer Science and Engineering, Asansol Engineering College, Asansol, West Bengal, India   
2Department of Computer Science, University of Burdwan, Burdwan, West Bengal, India    
3Department of Computer Application, Asansol Engineering College, Asansol, West Bengal, India   
4Department of BS&HU (Physics), Asansol Engineering College, Asansol, West Bengal, India   

 
KEYWORDS 

Computer Vision, Deep learning, 
Image Classification, Object 
Detection, Plant leaf disease 
detection, Precision Agriculture, 
YOLOv8n. 

 

 

 

 

1. INTRODUCTION 

A lot of developing countries rely heavily on agriculture as 

their main economic driver. The notable increase in food 

production has been instrumental in enabling the growth of 

the world population throughout the 21st century. Hence, 

employing machine learning (ML) algorithms to precisely 

forecast healthy crop yields or crop types emerges as a 

pivotal concern in agricultural advancement [1]. The 

development of agricultural products depends on pesticides. 

Farmers have employed them to manage insects and weeds, 

and it is said that they have made a substantial contribution 

to higher agricultural productivity [2].   

However, there is a serious risk to agricultural productivity 

from the spread of plant diseases. An increase in food 

insecurity may result from a delayed identification of 

certain illnesses [3]. Early identification is essential for the 

effective prevention and control of illnesses and is a key 

component in agricultural production management and 

decision-making. In recent times, there has been a growing 

urgency to identify these illnesses. Usually, the leaves, 

flowers, fruits, or stems of the affected plants have lesions 

or markings on them; each disease has a characteristic 

pattern that helps with identification. Plant illnesses are 

typically first symptomatic in the leaves, hence these are 

frequently the main signs of the disease. Recent 

developments in computer vision have made it feasible to 
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promptly recognize and address these issues [4]. 

 

Numerous techniques have been developed by the scientific 

community to diagnose and classify plant diseases. 

Traditional methods of processing images still exist, 

involving the manual extraction and segmentation of features. 

Even with the promise of these methods, disease detection is 

still a labor- and time-intensive procedure [5]. Moreover, 

models that depend on spot segmentation and classification 

require human involvement. The progression of artificial 

intelligence has resulted in the utilization of deep learning 

and ML models to improve the accuracy of computer vision 

recognition [6]. With the use of these techniques, feature 

extraction and automatic categorization have improved and 

can now correctly represent the original image features. The 

shift from classical methods to deep-learning platforms has 

been made easier by the availability of datasets, GPU 

processors, TPU processors, and software. This has allowed 

complex deep-learning architectures to be created with less 

complexity. The capacity of convolutional neural networks 

(CNNs) to extract low-level complicated characteristics from 

images has attracted a lot of attention since it significantly 

improves detection and classification capabilities [7].  
 

Plant leaf diseases are difficult for deep neural networks to 

detect in natural environments because of dense foliage, 

large-scale modifications, and complicated backgrounds. 

Comparing one-stage algorithms to other deep learning 

models, they have proven to perform better [8]. Recent 
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advances in deep learning-based image identification 

networks set two-stage and single-stage image identification 

networks apart. Regional ideas are intended for two-stage 

networks, including the SPPNet, Region-based CNN 

algorithms family (Mask R-CNN, Faster R-CNN, Fast R-

CNN, R-CNN, etc.). Conversely, single-stage algorithms are 

best represented by the SSD from the YOLO series [9]. 

 

The method of object detection known as "You Only Look 

Once," or YOLO, is utilized for this purpose. 2015 saw the 

release of YOLOv1, the program's initial iteration [10]. For 

YOLO to operate, the image is partitioned into a grid of 

equally sized cells with dimensions m × m. If an object's 

center is inside a cell, then that cell is in charge of 

recognizing the object. Furthermore, a fixed number of 

bounding boxes can be predicted by each cell, and each 

forecast comes with a confidence score. Five values make up 

these predictions: x, y, w, h, and a confidence level, where, 'w' 

represents the width, 'h' represents the height, and 'x' and 'y' 

denote the central point of the enclosing box. 

 

When bounding boxes are predicted, YOLO uses an approach 

known as Intersection Over Union (IOU) to determine which 

bounding box within a grid cell is the most accurate for a 

given object. Then, Non-Maximum Suppression is applied to 

get rid of unnecessary bounding boxes. Following the first 

release of YOLO, YOLOv2 and YOLOv3 were released in 

2016 and 2017, correspondingly [11]. YOLOv4 was later 

unveiled by Alexey Bochkovskiy in 2020 [12]. Following 

YOLOv4, Glenn Jocher created YOLOv5 [13], which is 

entirely constructed using the PyTorch framework. The 

detection models for YOLOv6 [14] and YOLOv7 [15] were 

made available in June and July of 2022, respectively. 

Finally, in January 2023, Ultralytics published YOLOv8 [16].  
 

Several research studies have concentrated on detecting 

diseases in potato leaves. In [17], the authors devised a model 

based on image segmentation employing SVM for potato leaf 

detection, utilizing the PlantVillage dataset, and attained a 

95% accuracy. Similarly, the authors in [18] introduced a 

hybrid technique for identifying diseases in apples, 

incorporating image segmentation through k-means clustering 

followed by classification using the random forest algorithm. 

They reported accuracy of their model ranging from 60 to 

100%. The authors in [19] employed the PlantVillage dataset 

to identify early blight in potato within a real-time system 

using VGGNet, GoogleNet, and EfficientNet. They obtained 

best accuracy of 99% employing EfficientNet. VGG16 is 

suggested in [20] as a more effective model for detecting 

early late blight leaf diseases of potato. They evaluated 

VGG16, VGG19, MobileNet, and ResNet50 using the 

PlantVillage dataset, with VGG16 yielding superior results 

after fine-tuning. Their approach resulted in an accuracy of 

approximately 97.89% in classifying between the two disease 

classes. In another notable study [21], the author introduced a 

MobileNet model for detecting potato leaf diseases. The 

lightweight MobileNet V2 achieved a high accuracy of 

97.73% in predicting potato leaf diseases. 

 

In this investigation, YOLOv8 models for detecting potato 

leaf disease in several agricultural field settings were 

evaluated.  
 

A pivotal moment in the evolution of artificial intelligence for  

object detection is marked by the emergence of the YOLO 

neural network. Real-time image processing is made possible 

by its remarkable inference speed, which makes it ideal for a 

variety of applications like augmented reality, robotics, video 

surveillance, self-driving cars, road fracture detection, and 

precision agriculture. Ultralytics' most recent version, 

YOLOv8, brings many improvements over earlier iterations. 

The features of YOLOv8 go beyond those of the original 

YOLO and include image categorization, object 

identification, and instance segmentation. These tools give 

farmers a way to quickly detect plant illnesses and suggest 

preventative actions to reduce losses in crop yield.  

 

In this study, we employ the Ultralytics YOLOv8n model  

for object detection. We trained this model using a dataset  

compiled from images sourced from the PlantVillage dataset.  

Our results showcase the effectiveness of training the 

YOLOv8n model from the ground up, validating its 

performance on a dataset of plant leaf diseases. This 

highlights the potential of leveraging the advanced object  

detection capabilities offered by YOLOv8n to address the 

significant challenge of identifying plant diseases.  To the 

best of our knowledge, YOLOv8n's application in plant 

disease detection has not been investigated in previous study.  

 

2. METHODOLOGY FRAMEWORK 

 

The methodology framed in this work comprises four 

key steps: acquisition of data, preprocessing of data, 

training, and evaluation, which collectively guide the 

execution of this study. The process flow diagram 

using YOLOv8n model for potato plant leaf disease 

detection presented in Fig. 1. is described as follows. 

First, the information is gathered and preprocessed 

using a variety of methods including image extraction, 

labeling, augmentation, and resizing of data.  The 

dataset is then partitioned into sets for training, 

validation, and testing. The YOLOv8n model is then 

thoroughly tested to assess its performance after being 

trained from scratch. 

 

 
Fig.1 Procedure for developing and implementing a 

YOLOv8n-based classification and localization of potato leaf 

disease model. 
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A. Acquisition of Data 

The popular online dataset PlantVillage is downloaded from 

https://www.kaggle.com/datasets/emmarex/plantdisease 

for the study. The dataset contains [22] 20,639 photos from 

the PlantVillage collection show three different crop species: 

pepper, tomato, and potato. These meticulously chosen 

photos from the internet depict both healthy and unhealthy 

crop leaves. We intentionally choose pictures of potato leaves 

for our investigation. After gathering these photos, we 

adjusted the leaf arrangement and removed the background. 

Our research focuses on a single crop species: potatoes, 

which comprise a class of healthy photos and two disease 

classes: early and late blight. The application of a targeted 

methodology enhances the coherence and precision of the 

analysis, hence increasing the importance and feasibility of 

the research findings. 

 

B. Preprocessing of Data 

The preprocessing pipeline is a set of operations shown in 

Fig. 1 intended to improve the data prior to training the 

detection model. The methods are described in brief. 

a) Image Frame Extraction: It is the process of identifying 

and extracting individual frames from a video sequence. This 

technique is commonly used in various fields, including 

computer vision, video processing, and multimedia 

applications. Extracting frames from a video allows for 

detailed analysis of each frame independently, enabling tasks 

such as object detection, tracking, and recognition. 

b) Data Labeling: It is the process of allocate relevant tags to 

crude data, as a rule in the context of machine learning and 

artificial intelligence. This labeling is crucial for training and 

validating machine learning models, as it provides the ground 

truth or correct output that the model aims to learn from. In 

particular, each image was painstakingly manually annotated 

to identify illnesses on individual leaves using the web 

platform RoboFlow. 

c) Data Augmentation: The technique of "data 

augmentation," which creates new data points from an 

existing dataset, is used to remedy this. As a countermeasure 

against overfitting, this may entail making minor adjustments 

to the current data or using machine learning techniques to 

generate brand-new data points. The data augmentation 

techniques used in this investigation is image rotation, 

flipping, brightness, and exposure adjustment. 

d) Data Resizing: It refers to the process of adjusting the 

dimensions of data, typically images, to a desired size. This 

technique is commonly used in various fields including 

computer vision, image processing, and ML to prepare data 

for analysis, visualization, or model training.  
. 

C. YOLOv8n Model 

The preprocessed data is utilized to train the model known as 

YOLOv8n, which is the subject of this work. The eighth 

version of this model, known as YOLOv8n, or You Only 

Look Once with nano architecture, is famous for its 

remarkable real-time object identification abilities. The 

YOLOv8n model's design includes a CSPDarknet53 feature 

extractor in its backbone. This part efficiently collects 

important information from the input photos, which is then 

applied to object detection tasks. 

 

The C2f module is an innovative module that replaces the 

traditional YOLO neck architecture after the feature 

extractor. It is possible that this C2f module is essential to the 

model's ability to do extra object detection tasks. Notably, 

YOLOv8 forecasts an object's placement central point 

directly instead of having to subtract it from a pre-decided 

anchor box. This is because the model functions as an anchor-

free model. This drastically lowers the quantity of box 

predictions, which accelerates the difficult Non-Maximum 

Suppression (NMS) post-processing step. 

 

YOLOv8n's end-to-end training and application in leaf 

disease detection are motivated by a number of significant 

benefits. With faster and more accurate performance than its 

predecessors, it offers cutting-edge functionality. Plant 

disease diagnosis and classification depend on picture 

classification, object detection, and instance segmentation, all 

of which are supported by its cohesive architecture across a 

wide range of computer vision AI tasks. Moreover, 

YOLOv8's intuitive API and effective training procedure 

enable simple adaptation for particular datasets, like photo 

sets of potatoes. Together, these characteristics make 

YOLOv8n a powerful instrument for identifying leaf diseases 

in comparison to other tools. Finally, performance evaluation 

is conducted, and this process is elaborately described in 

section 3. 
 

3. HARDWARE AND SOFTWARE SETUP 

AND RESULTS ANALYSIS 
 

A. Image Dataset 

The PlantVillage dataset, which is accessible online, was 

utilized to construct the dataset for this study. This dataset 

includes one type of plant, two different disease classes with 

varying sizes, shapes, and textures, and a third class of 

healthy plants. Each disease class comprises 1000 

photographs, while the healthy class consists of 152 images. 

Thus, there are a total of 2000 disease-related images and 152 

healthy images. Table I presents a summary of all the data 

instances employed in this investigation, both before and after 

employing data augmentation. We created training, 

validation, and a testing set from this dataset. A train-to-test 

ratio of 80:10:10 was used to split the data, with 10% going 

toward testing, 80% going toward training, and 10% going 

toward validation. 

 

Table I: PRE- AND POST- AUGMENTATION IMAGES 

 

 

After argumentation train, validation, and test set becomes 

88%, 8%, and 4%. 

 

Figures 2 and 3 display the input data histogram versus the 

labels. Your image's labels are in xywh space. 

Dataset Pre-Augmentation Post-Augmentation 

PlantVillage 2152 5238 

 Train Set 80% 4583 

Validation Set 10% 437 

Test Set 10% 218 

https://www.kaggle.com/datasets/emmarex/plantdisease


494  

 

 
Fig. 2 labels 

 

 
Fig. 3 labels_correlogram 

 

Correlation statistics, or Lables_Correlogram, is a collection 

of two-dimensional histograms that show the relationship 

between each axis of your data. The distribution of the 

discriminative components is essentially normal, as can be 

seen in the histograms at the top of the x and y columns. This 

feature gives the detection model more flexibility in 

identifying discriminative portions. Patch (x, y) shows that 

the components that were found cover every aspect of 

detecting potato leaf disease. 

 

It is clear by analyzing patch (x, width) and patch (y, height) 

that the local components are distributed uniformly along 

both axes, despite a small ratio of less than 1.0. Patch (width, 

height) shows that almost every component only covers a 

small portion of the overall image. 
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B. Hardware and Software Setup 

The hardware and software setup is detailed in Table II.  

 

Table.2 Hardware and software setup 

CPU CPU (Intel Core(TM) i5-6200U 

2.30GHz)  

GPU 0 

RAM 24 GB 

OS Windows 11 

SOFTWARE Ultralytics YOLOv8.0.145  Python-3.9.12 

torch-2.0.1  

 

For training the model, the following hyperparameters were 

employed: epochs=5, workers=8, size of batch=16, and size 

of image is 640 x 640 pixels.  

 

C. Results Analysis 

The YOLOv8n network was employed to train plants in 

detecting leaf diseases. The usefulness of the constructed 

method is manifested through  tables and graphs, showcasing 

various metrics that describe the model's performance on both 

the training as well as validation sets. 
 

A performance evaluation of the model is shown in Table III, 

which covers 5 epochs of metrics for both the bounding box 

detection and classification tasks. 

 

Table. 3 The model gains the following matrix after 0 to 4 

epochs: 

epoch 4 

train/box_loss 0.50173 

train/cls_loss 0.46554 

train/dfl_loss 1.1732 

val/box_loss 0.48556 

val/cls_loss 0.3916 

val/dfl_loss 1.2383 

metrics/precision(B) 0.9457 

metrics/recall(B) 0.94164 

metrics/mAP50(B) 0.97297 

metrics/mAP50-95(B) 0.86776 

lr/pg0 0.00058017 

lr/pg1 0.00058017 

lr/pg2 0.00058017 

 

• train and val in terms of box loss: These measures quantify 

the bounding box regression's loss. In the validation and 

training sets, they quantify the difference between the 

predicted bounding boxes and the real ground truth bounding 

boxes, respectively. 

 

• train and val for the CLS loss: These measurements show 

the amount of loss experienced throughout the classifying 

process. They evaluate the accuracy of the model in 

predicting the right label for a particular image. 

 

• During training and validation for the DFL loss, which 

stands for Distribution Fitting Loss, this method is employed 

to fine-tune boundaries. The objective is to enhance the 

localization of object boundaries, particularly crucial for 

accurately delineating affected areas. 

• metrics/precision(B), metrics/recall(B): In ML, precision 

and recall are essential measures. We can determine what 

percentage of the negative class was correctly identified by 

looking at precision, specificity, or true negative rate. Recall 

is the percentage of all pertinent instances that have been 

successfully redeemed, whereas precision is the percentage of 

pertinent instances among those that have been recovered. 

The percentage of the positive class that was correctly 

classified is indicated by recall, sensitivity, or true positive 

rate. 

Subscripts 'B' may represent particular classes or categories in 

the dataset. 

 

• mean Average Precision (mAP50 and mAP50-95): t is the 

test picture or query, and mAP is the average precision of 

each label. According to Equation 1, T is the number of test 

samples. IOUs (Intersection over Union) are employed for 

this purpose, and mAP50 is the accuracy when IOU=50, 

meaning that if there is more than 50% overlap, the detection 

is successful. mAP50-95, between 0.5 and 0.95, step 0.05, 

across various IOU thresholds (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 

0.8, 0.85, 0.9, 0.95). 

Equation. 1 

 
 

• The model was trained using 640 x 640 photos, a batch size:  

16, and learning rate: 0.00058017 over the course of 5 

epochs. 

 

The outcomes demonstrate the model's performance across 

five epochs in identifying object-over-leaf illnesses. With a 

precision of 94.57% in bounding box detection, the model 

exhibits high accuracy in locating and identifying objects of 

interest. Moreover, achieving a recall of 94.164% in 

bounding box detection indicates the model's strong 

sensitivity in identifying unhealthy areas requiring detection. 

This combination of enhanced recall and precision yields an 

splendid F1 score of 94.367%, underscoring the model's 

remarkable capability in recognizing and delineating illness 

regions in the images.     

                                                                                                                                                  

The accompanying Fig. 4 shows these graphic representations 

of the Precision, Recall, Precision-Recall, and F1-Score 

curve. The average precision (AP) is measured in the region 

below the precision-recall curve (Equation 2). 
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Fig.4 Precision, Recall, Precision-Recall, and F1-Score curve 

 

Fig. 5 and Fig. 6 depict confusion matrix and the normalized 

confusion matrix. The model achieved an overall accuracy of 

roughly 97.025 %. 

 

 
Fig.5 confusion matrix 

 

 

 
Fig.6 normalized confusion matrix 
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Figs. 7 and 8 show the validation results of visualizing leaf 

disease detection and categorization. These pictures clearly 

show how YOLOv8n creates precise bounding boxes and 

classification jobs, making it possible to identify and 

categorize sick leaves with accuracy. 

 

val_batch0 
_labels 

val_batch1 
_labels 

val_batch2 
_labels 

   
Fig. 7 Leaf Disease Detection using YOLOv8n (labels) 

 

val_batch0_pred val_batch1_pred val_batch2_pred 

   

Fig. 8 Leaf Disease Detection using YOLOv8n (predictions) 

 

These striking results support the agility of the YOLOv8n 

object detection model used in this investigation. The higher 

scores showcase how well the YOLOv8n model performs in 

challenging tasks like classifying and detecting leaf diseases. 

This demonstrates how well it manages the trade-offs 

between recall and precision, resulting in exceptional F1 

scores for both categorize prediction and bounding box 

detection. The model is a powerful tool in the field of 

agriculture and plant leaf disease handling because of its 

reliable and accurate performance in these conditions. 

 

We thoroughly assessed our suggested strategy by comparing 

it to the most advanced techniques available in the industry. 

The comparison's results are furnished in Table IV, where 

key performance metrics and metrics that our YOLOv8n 

model for plant disease spotting and classification achieved 

are highlighted. This thorough research provides priceless 

insights into the development and effectiveness of the 

YOLOv8n model from start to finish. 

 

Table 4. Analyzation 
Author  Model  Diseases  Results % 

[23] Improved 

YOLOv5 

1. Tea cell eater 

2. Leaf blight 

Detection 

Accuracy: 

91 
Precision: 87.80 

Recall: 85.27 

[24] YOLOv7 1. Red Spider 
2. Tea mosquito 

3. Black rot 

4. Brown blight 
5. Leaf rust 

Detection 
Accuracy: 

97.3 

Precision: 96.70 
Recall: 96.40 

mAP: 98.2 

F1-score: 96.5 
[25] YOLOv8n 1. maize Blight 

2. Sugarcane 

Mosaic virus  

Prediction: 99.04 

Recall: 87.66 

mAP: 99..0 

3. Leaf Spot  

Present 

Study 
YOLOv8n 1. Potato Early 

Blight 

2. Potato Late 

Blight 

Detection 
Accuracy: 

97.025  

For Box: 

Precision (P): 

94.57 

Recall (R): 
94.164 

F1 score: 94.367 

mAP50: 97.297 
mAP50-95: 

86.776 

 

4. CONCLUSION 
 

The application of deep learning technology has 

revolutionized the identification of leaf diseases and given 

farmers the ability to proactively protect their crops from any 

hazards. In this study, YOLOv8n is implemented for potato 

leaf detection and classification. Furthermore, we have 

located   diseases in leaf for helping farmers to drip chemical 

in order to reduce disease in particular location of the leaf. 

Model’s performance is evaluated based on the metrics such 

confusion matrix, precision, recall, F-1 score, and mean 

Average Precision (mAP). Augmentation strategies are used 

to alleviate overfitting-related issues. The illness 

identification process uses the end-to-end YOLOv8n model, 

which achieves an outstanding overall detection accuracy of 

about 97.025%.  Therefore, this model can effectively be 

used for weed detection, finding road condition, traffic 

control and more.  

 

The novelty of this study lies in proposing a deep learning-

based method for timely potato leaf disease detection using 

the Ultralytics YOLOv8n model. This approach, evaluated 

with high-performance metrics, enables detection using 

handheld devices like mobile phones or IoT devices, with 

broader implications for precision farming and crop 

management. Overall, this research contributes to advancing 

agricultural productivity and economic sustainability through 

efficient disease management strategies. 

 

The YOLOv8n model's potency and effectiveness in handling 

complicated tasks like leaf disease detection and 

classification are vividly illustrated by the elevated 

performance scores in bounding box detection and 

classification metrics. The model is a powerful tool for plant 

disease management and precision agriculture because of its 

accurate and reliable performance in a variety of settings. As 

with any model, it is imperative to evaluate its performance in 

real-world scenarios and adjust it in light of fresh and 

incoming data, even with these encouraging results. 

 

While algorithms in YOLO family have remarkable 

achievements for detection and classification and localization 

problems, they have some limitations such they may struggle 

with accurately detecting small objects in images due to their 

single-shot detection approach and the limitations of the 

anchor boxes used in their architecture. Small objects may 

not be adequately represented by the default anchor boxes, 

leading to lower detection accuracy. Another limitation is that 

they may not capture as much fine-grained detail as some 
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other object detection architectures, which can affect their 

ability to detect intricate objects or subtle features, especially 

in cluttered or complex scenes. 

In our upcoming research endeavors, we aim to develop a 

tool capable of identifying various types of leaf diseases 

while integrating additional algorithms to enhance the 

model's performance. This advancement will empower 

farmers in the agricultural sector to promptly recognize 

specific diseases, enabling them to take timely and 

appropriate actions. 
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