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1. INTRODUCTION 

 
Space exploration has been an enduring endeavour that 

continues to captivate humanity, fuelling our innate 

curiosity and desire to unveil the mysteries of the cosmos. 

Over the years, spacecraft have emerged as vital tools in 

our quest to delve into the depths of space, enabling us to 

perform crucial tasks such as satellite navigation, robotic 

spacecraft control, autonomous landing, and trajectory 

planning. One fundamental aspect in the successful 

operation of spacecraft is the ability to accurately estimate 

their poses in the six axes of motion, commonly referred to 

as the six Degrees of Freedom (6DOF). The spacecraft's 

pose, which encompasses its position and orientation, plays 

a pivotal role in ensuring the efficiency, safety, and success 

of space missions. Added to this are the catastrophic 

historical results of instances when lapses in calculations 

and measurements in space-objects occur. Examples such 

as the Mars Climate Orbiter (1999), Genesis Sample 

Return Mission (2004) and perhaps most famously the 

Galaxy 4 satellite (1998) which unfortunately was unable 

to maintain its upright orientation. These examples have 

time and again demonstrated to us the unforgiving nature 

of space, and the level of perfection demanded from any 

endeavours related to it. 

 

This paper presents an innovative architecture named 

PaPEGAN (Parallelized Pose Estimation using Generative 

Adversarial Networks), which leverages cutting-edge 

technologies such as Generative Adversarial Networks 

(GANs), process-based parallelism, and Convolutional 
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Neural Networks (CNNs) for spacecraft pose estimation. 

GANs have shown great promise in generating high- 

quality synthetic data, and when combined with CNN- 

based pose estimation, they offer a powerful solution to 

augment the training process using existing datasets. 

 

To address these challenges and advance the field of 

spacecraft pose estimation, novel approaches that leverage 

the power of deep learning and data augmentation are 

necessary. Deep learning techniques have demonstrated 

remarkable success in various image processing 

applications, such as self-driving cars and factory robots, 

but the scarcity of hands-on experimentation in space 

necessitates innovative strategies. Secondly, and perhaps 

more importantly, GANs are changing the face of 

generative models by boasting capabilities like producing 

immaculate unmarked data that is indiscernible by the 

human eye. The resultant data have been potent in the 

creation of art, style transfer, and image-to-image 

translation. A vanilla GAN consists of two adversarial 

machine learning models aptly named the generator and the 

discriminator. Basis a probability distribution as well as the 

existing real data present in a dataset, the generator will, 

depending on the specified learning parameters generate 

synthetic data. Iteratively, this data gets incrementally 

better till it gets to a point where the discriminator also until 

this point has been learning the unseen and latent patterns 

in the data synthesising mathematical features that 

determine the real-ness and the fakeness of any given data. 

In this chapter we aim to provide the level of quality that 
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ABSTRACT 

Space and space-exploration have always provided mankind with a sense of mystery and aura. In the 
pursuit of quelling this curiosity man has invented spacecrafts to look into the depths of the cosmos. In 
this paper the researcher presents a novel architecture that combines the technologies of Generative 
Adversarial Networks (GANs), process-based parallelism and Convolutional Neural Network (CNN) 
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using current datasets. The successful implementation of PaPEGAN will significantly advance the field 
of spacecraft pose estimation, in terms of accuracy and efficiency. The impact of this research extends 
to various space exploration applications, such as satellite navigation, robotic spacecraft control, 
autonomous landing, and trajectory planning, ultimately enhancing the success and effectiveness of 
space missions. Overall, the problem is to develop and demonstrate the effectiveness of PaPEGAN as 
an advanced solution for spacecraft pose estimation, revolutionizing the capabilities and performance 
of navigation and control systems in the realm of space exploration. 
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not only mislead the discriminator but also be able to be a 

learning material that a CNN may work on, as 

demonstrated by [15]. This understandably, is a continuous 

process of learning as, the GAN can be trained until a point 

of mode collapse, as referenced from [14] appending 

enough images to the existing dataset while training the 

CNN on a distributed framework of workers making the 

timely training of the same feasible. 

 

2. RELATED WORKS 

 
For any moving object in space, owing to the decreased 

amount of physical control, the increased entropy as well 

as the long list of consequences in case something goes 

wrong it becomes essential to estimate the pose of objects. 

The importance of solving this problem is emphasized by 

the extremely fundamental functions that are achieved by 

spacecrafts be they debris avoidance, docking with other 

spacecraft or simply orienting the spacecraft in a desired 

fashion. Furthermore, the certain satellites are launched 

with chaser satellites such as the ones titled Tango and 

Mango, designed and developed by the Swedish Space 

Corporation (SSC) [1]. This mission titled PRISMA 

(Prototype Research Instruments and Space Mission 

technology Advancement) posed a new problem to future 

space researchers of determining the position and 

orientation of the primary satellite using an image taken 

from the point of view of the secondary chaser satellite. 
 

Fig. 1 Sample images from Speed+ database 

Figure 1 depicts the sample images from Speed+ database. 

The solution to this problem is further complicated by the 

lack of ‘which way is up’ in the oblivion of space, 

furthermore another stark difference to terrestrial 

conditions is the lack of atmospheric obfuscation (a 

common problem faced by low earth orbit satellites) while 

this is an advantage that allows imaging over long distances 

it also massively complicates the target illumination in 

many situations. Secondly one is limited to a handful of 

information mediums in the form of images, radio waves 

etc. When discussing existing methods of Pose Estimation, 

we encounter techniques like Inertial Measurement Units 

(IMU), that use the accelerometers and gyroscopes on 

board to calculate the linear acceleration and angular 

velocity respectively. These however run into eventual 

sensor drift over time making their errors to cascade and 

add up over time. These traditional approaches usually 

involve handcrafted descriptors for various features of 

images. The descriptors are mapped and recognized using 

the various geometrical features of the images. These 

techniques though valid and solid in the face of certain 

problems, the available hardware encompasses monocular 

pose scenarios as well as when there is a large variation 

between the well-lit and poorly lit aspects of the image, 

which as mentioned before is a common occurrence in 

space. 

 

Furthermore, without the presence of an astute verification 

method, it becomes difficult to cross-check the results of 

any given instrument measures. This can lead to a 

phenomenon called as error propagation, as explained in a 

slightly different but relevant concept the authors of [12] 

discuss the implications of, and the reasons for the 

introduction of error propagation in the orbital prediction 

process. 

 

Considering the dire and serious nature of the problem 

there exist dedicated datasets for this purpose, Spacecraft 

PosE Estimation Dataset (SPEED) as well as its far 

expanded counterpart SPEED+. As discussed in [2,3] the 

former dataset consists of around 15,000 synthetic images 

and 300 real images. The newer and improved SPEED+ 

dataset consists of 60,000 synthetic images and an 

additional 9531 Hardware-in-Loop (HIL) test images taken 

with a lightbox and a sunlamp. These images are taken at a 

facility named the SLAB (Space Rendezvous Laboratory) 

at Stanford. 

Initially though the size may seem large, for a deep 

learning task it sadly might not provide the best of results 

considering the criticality of applications and possible 

orientations, one does not have to imagine too much as to 

why an increased number of images with increased 

variations may be provided for the model to learn. 

Additionally, unlike the popular image processing centric 

deep learning applications such as self-driving cars as well 

as factory robots, we do not possess the ability to hands-on 

experiment with our test subject in its environment of 

operation, outer space. The solution to this problem is to 

augment this dataset using a Generative Adversarial 

Network (GAN) Architecture. The constituent parts of the 

GANs as introduced in [4] are generators and 

discriminators that act as counterfeiters generating phony 

images, which due to the machine learning logic of the 

discriminator progressively get better and closer to the real 

thing respectively. The generator gets an input of a noise 

vector from a probabilistic distribution such as a Gaussian 

Distribution, which it uses in tandem with the dataset 

provided to it, in our case the SPEED+ dataset. Using these 

two it picks the essential latent features of the image to vary 

these parameters and create an entirely new image. In our 

case these “phony” generated images mean non-existent 

images that act as newer training scenarios that the pose 

estimating architecture could be exposed to. 
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Additionally, as proposed by the authors of [14], GANs do 

and will hold great roles in the consumer deep learning 

industry, specifically in the role of supporting other critical 

computer vision applications that lack the possibility of 

collecting actual, non-synthetic data. 

 

This further exemplified by the reality of the space industry 

were operating the rig for the purposes, and the scale of 

generating images for deep learning tasks is intractable it 

bodes the requirement of utilising GANs to generate these 

images to, in essence fill the gaps. Secondly, the authors of 

paper [13] also demonstrated the quality of the results 

given by GANs in the field of animated characters, 

inculcating the preliminary and fundamental qualities of 

GANs such as style transfer and creating synthetic data. 

Therefore, combining the need, the quality, and the 

feasibility we get the root of innovation present at the crux 

of this chapter. 

Additionally, as proposed by the authors of [14], GANs do 

and will hold great roles in the consumer deep learning 

industry, specifically in the role of supporting other critical 

computer vision applications that lack the possibility of 

collecting actual, non-synthetic data. 

This further exemplified by the reality of the space industry 

were operating the rig for the purposes, and the scale of 

generating images for deep learning tasks is intractable it 

bodes the requirement of utilising GANs to generate these 

images to, in essence fill the gaps. Secondly, the authors of 

paper [13] also demonstrated the quality of the results 

given by GANs in the field of animated characters, 

inculcating the preliminary and fundamental qualities of 

GANs such as style transfer and creating synthetic data. 

Therefore, combining the need, the quality and the 

feasibility we get the root of innovation present at the crux 

of this chapter. 

manner. The examination of the inherent patterns and 

features found in the real data distribution allows 

generalization of these patterns to effectively characterize 

the entire category of data. An analogy would be to 

mathematically construct a generalised genre of data. 

Subsequently, this characterization aids in distinguishing 

the presence or absence of these characteristics even in 

synthetic images. 

 

The second component measures the discriminator's 

capability to detect generated content from the generator. 

It involves evaluating the discriminator's output (using 

parameters T) when identifying the generated content 

(represented by q) produced from synthetic data z sampled 

from a noise distribution p(z) in equation 2. This objective 

function primarily assesses how well the discriminator can 

differentiate real images from fake ones. During 

discriminator training, the focus is on minimizing this loss, 

simultaneously maximizing the probability of correctly 

identifying real images and fake images. 

 

𝐿𝐺: = −𝑀𝑧~𝑝(𝑧)[log (1 − 𝑇(𝑞(𝑧)))] (2) 

 

The GANs training process occurs in a start stop, staggered 

fashion. First the generator is trained on the real data, it is 

then provided a probability distribution to fit with the 

analyzed latent aspects of said data. The training process 

consists of learnable parameters annotated by Q that are 

iteratively refined during the training process. The training 

process of the generator is then momentarily paused before 

the training of the discriminator is resumed. It learns to map 

the data vector z to a high-dimensional generated object, 

like an image. The generator's loss is calculated as the 

negative of the discriminator's output, reflecting the 

probability of the discriminator incorrectly classifying the 

𝐹(𝑄, 𝑇): = 𝑀𝑥~𝑞  
𝑑𝑎𝑡𝑎 (𝑥)[log 𝑇(𝑥)] + 𝑀𝑧~𝑝(𝑧)[log (1 − generated image as real. 

𝑇(𝑞(𝑧)))] (1) 
𝑚𝑖𝑛𝑚𝑎𝑥𝑉(𝑄, 𝑇) (3) 
𝑄 𝑇 

The above Equation 1 formulates the loss function for the 
GANs represented by F. The first term calculates the 
average of the log of the discriminator’s output for data 

sample x, sampled from the real data distribution 𝑞𝑑𝑎𝑡𝑎(𝑥). 

The mean the discriminator’s adeptness to classify a real 
image correctly. The method used to examine the 
difference between phony and real images is to think of the 

discriminator as a binary classifier. It produces a 

probability between 0 and 1 where values closer to 1 

indicating that the input data is authentic while 0 indicates 

fake data. It is first being trained for ‘n’ epochs with a 

stream of real ground truth images from the dataset. Next 

it is fed the generated images from the generator. The 

quickness with which the discriminator, discriminates 

between the two kinds of data (real and phoney) is the 

penalty the generator receives. The reader is advised to 

keep in mind that the quickness does not refer to the time 

rather the difference between the generated data and the 

stream of real data it previously received. The 

discriminator’s learning process occurs in an unsupervised 

The training process then becomes an iterative adversarial 

game, as illustrated in equation 3. The adversaries, namely 

the generator and the discriminator respectively attempt to 

minimize parameters Q and maximize parameters T. This 

encourages the generator to improve its ability to generate 

increasingly realistic images, and the discriminator to 

enhance its ability to distinguish fake and real images. The 

process continues until a point of equilibrium, known as the 

Nash Equilibrium, is reached. At this stage, the 

discriminator makes random guesses when faced with 

generated data so realistic that it cannot differentiate 

between real and fake. While this is the ideal behaviour of 

GANs, practically achieving this point is highly complex 

and challenging. The researchers will delve further into the 

challenges of GANs, including asymptotic convergence 

and the difficulties in reaching this ideal state. 

Finally, the HRNet which is a pose estimation architecture 

centred around human pose estimating applications [5], has 

been popularly shown to be especially useful in space- 

object pose estimation scenarios [6] and further enhanced 
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using a technique named Key Point Detection in [7]. The 

deep learning framework proposed by the authors of [7] 

utilizes multiple Neural Network Frameworks to not only 

extract the space object from the background but also 

determine its attitude and translation vector. 

This deep learning task owing to its network complexity 

can be deemed a computationally complex learning task. 

To alleviate this in terms of runtimes, we inculcate the final 

piece of the puzzle Horovod [8]. As described by its 

makers, it is a distributed deep learning training framework 

that functions in conjunction with libraries like 

TensorFlow, Keras and Pytorch to buttress their 

computability by providing the ability to parallelize the 

learning task through data parallelism. 

To understand the functioning of the Horovod technique, 

one must only take a look at the imagery the makers have 

in the form of the logo of the same. It is meant to represent 

a Russian Folk dance of the same name, involving the 

dancers’ holding hands and performing the dance as a 

circle. This is an analogy to the technique of 

communication that TensorFlow process utilise for their 

inter-process communication [16]. In the same blog post 

they also mention why the need for this arose over the 

traditional paradigms arose, for their specific needs at Uber 

for the massive dataset sizes they possess and the deep 

learning decisions to be made forth that data. They built 

this technique based on the now deleted blog post made by 

Chinese giant Baidu, on the ring all reduce to reduce the 

time spent in communicating between the different 

computing Graphical Processing Units (GPUs) 

participating. 

Before discussing the mechanics of the ring all reduce 

algorithm on which our solution’s speed gains rely, we 

must discuss what significant change this brought about in 

the distribution of learning operations to multiple GPUs. 

To understand this let us go over a basic technique called 

the Data Parallel Stochastic Gradient descent (DPSGD). As 

with the vanilla SGD we perform batching to take on 

smaller chunks (or minibatches) of the dataset at hand and 

progress through the entire dataset in this fashion. Now, in 

DPSGD what we do is partition these minibatches across 

multiple GPUs while each GPU is assigned a copy of the 

neural network model being trained. In each iteration, the 

respective GPU’s minibatch is sampled to provide the data 

to it on which the GPU runs a forward propagation of the 

network. The gradient loss is computed by subsequently 

running the error backpropagation. The key 

communication aspect comes in when the results of the 

previous step are to be communicated across the different 

GPUs to compute the average gradients to calculate the 

weights for the following iteration. This is a problem that 

can be understood by a very polite airline crew. Imagine 

the airplane in question is to be filled before it takes to the 

skies and all but two passengers have boarded the plane. In 

this situation none of the timely arrived passengers can take 

advantage of their timeliness and must wait their turn until 

the last passengers arrive. This elegant analogy explains the 

problem known as the ‘communication problem’ where the 

GPUs are configured to compute in lockstep. This is 

logistically clear as well since when the average gradient is 

to be computed it cannot be computed in the absence of the 

various data members. 
 

 

Fig. 2. Data Transfer to single reducer GPU 

 

The above figure, as Gibiansky explains in [17] is the 

simplest possible means of explaining the blaring issue of 

time consumption. Furthermore, this was under the 

assumption that the time required to transmit the data was 

independent of the amount of the data, while in reality it is 

not. From the concept of data transmission in networks we 

are well aware that the higher the number of data packets 

the higher the transmission time. As the number of GPUs 

increases, the chances of early completing GPUs having to 

wait increase, simultaneously so do the data transmission 

costs. As explained in his write up he explains that the 

communication costs add up to each iteration and at even a 

few seconds per GPU, this linear growth in time creates a 

hard ceiling for the number of GPUs that can be employed. 

To understand this problem let us take simple network 

architectures, to understand this problem at a smaller scale 

and compare these to the scale of a Large Language Model 

(LLM) like ChatGPT. 

In a configuration like in Figur 2, let us assume we possess 

a total of N GPUs including the reducer GPU. Let us also 

assume that the results of one iteration of learning are S in 

size. Therefore, stemming from the N-1 GPUs and their 

respective N-1 learning processes, the reducer GPU 

receives 𝐷𝑟 data in equation 4. 

𝐷𝑟: = (𝑁 − 1) ∗ S (4) 
Now simplistically speaking, this was the receive phase, 

now post the averaging we must also transmit the data 

consisting of the learnings back to the GPUs as well i.e., 

the total data transmitted 𝐷𝑡 becomes as in equation 5. 

𝐷𝑡 ≔ 2 ∗ 𝐷𝑟 (5) 
∶= 2 ∗ (𝑁 − 1) ∗ S (6) 

The above equation 6 is total data transmitted. The last 

variable is that of the bandwidth of the communication 

medium between the various GPU. Let us assume that to 

be B. The time taken to transmit this data 𝑇𝑡 in equation 7 
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is proportional to the factor N and inversely proportional to 

the factor B. The latter will become immensely important 

when considering the numerical example below. 

𝑇𝑡 ≔ 
(2∗(𝑁−1)∗S) 

𝐵 
(7) 

Currently within the field of research, there is probably no 

one who is unaware of ChatGPT. It is one of the most 

powerful LLMs out there with 175 billion trainable 

parameters, with each parameter requiring approximately 4 

bytes. Simple multiplication would say the data to be sent 

from each GPU becomes 700 billion bytes. Let us assume 

the standard of bandwidths, in our network architecture, 

one capable of supporting one gigabyte per second. 

Therefore, for each iteration the time to transmit this data 

becomes 700 billion bytes/1,073,741,824 bytes per second. 

The time taken approximately per send phase becomes 651 

seconds per iteration for a single GPU and single reducer 

GPU communicating. This scale is itself extremely 

staggering and when distributed to even 5 GPUs adds a 

factor of almost 4.7 to each iteration’s waiting time. 

Imagine the amount of compute time wasted if this were 

applied to weeks or months’ worth of learning operations. 

The reader could think of a simpler alternative to this being 

to eliminate the synchronicity as identified in the 

dissertation [18] and a solution for which exists in [19]. But 

as we see, creating the solutions for these is extremely 

complicated in terms of the batching strategy of the data. 

This is not to say the SGD paradigm would break down in 

this scenario, in fact Asynchronous Gradient Descent 

(ASGD) methods do exist. However, doing so has the 

possibility to create new race conditions based on the 

timing of the model parameters being read and updated 

simultaneously. This newly introduced instability would 

also result in a subpar network performance in terms of 

achieving convergence. Therefore now, synchronicity 

must be maintained while reducing the linear dependence 

of time on the number of GPUs. 

Enter the ring all reduce algorithm which is dependent only 

on the slowest GPU-GPU link in the computing network. 

This means this slowest connection is a constant and hence 

the transmission time becomes a constant. That leaves us 

with bandwidth being the control variable that determines 

the transmission time. This gives us a much-required 

amount of determinism in terms of what to improve to 

improve the transmission time. The authors of [20] 

definitively prove ring all reduce to be an optimal 

communication algorithm when bandwidth is considered 

as a metric and a sufficiently large buffer is present. Simply 

put like in Figur 3, we distribute the responsibility of the 

reduction to the logical hexagonal ring of GPUs. At the risk 

of oversimplifying, we basically perform a scatter-reduce 

to ensure every GPU gets a batch or a part of the result. The 

following all gather step transmits these chunks through the 

ring such that all the GPUs end up with the complete result. 

We essentially offload the responsibility of performing the 

compilation-like reduction to the entire ring and replace 

few large data transmissions with multiple smaller data 

transmissions performed an increased number of times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Data Transfer in ring of GPUs 

 

The experimental results found by the Baidu team for a 300 

million parameter language model, spread across 40 GPUs 

synchronously is an excellent sign of performance depicted 

in [17]. In the Figur.3 we see that each GPU communicates 

with only its neighbour peers. Each node possesses a buffer 

to construct the value buffer from the received data from 

the remaining GPUs. 

Now, coming to the pythonic library Horovod. Its research 

impact has been to substantially increase the access and 

ease of utilising technologies like MPI to discover GPU 

workers and integrate the reduce functionality into deep 

learning research without going into the depths of High- 

Performance Computing (HPC). This open-source library 

has been shown to have great success in the field of image 

segmentation as well as image classification in [9-11] 

respectively. The research conclusions of these align with 

our theoretical expectations of Horovod in our use case. 

Traditional methods for pose estimation often struggle to 

provide accurate and efficient results, limiting the 

effectiveness of spacecraft mission planning, navigation, 

and control systems. To overcome these limitations, the 

researcher proposes the use of PaPEGAN an innovative 

architecture that leverages the power of Generative 

Adversarial Networks (GANs) and parallel processing 

techniques to enhance the accuracy and efficiency of 

spacecraft pose estimation. The objective is to develop an 

approach that can handle the complexities of pose 

estimation in a parallelized manner, enabling real-time or 

near real-time estimation of spacecraft position and 

orientation. The key challenges to address include training 

the GAN model to generate high-quality and diverse pose 

estimations [28] varying parameters of illumination ground 

truth orientation etc. thereby augmenting and appending 

the dataset substantially, improving the HRNet 

performance. 
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3. METHODOLOGY 

In continuation to the problem statement the researcher 

proposes the pipeline in Fig.4. The process flow begins 

with the Generative Adversarial Network [29], in our case 

an architecture based on StyleGAN2. As highlighted in the 

figure it has a sequential set of Fully Connected (FC) 

layers, in essence convolutional layers. The first layer takes 

a noise vector of the size latent size, essentially a 

representation of a random latent tensor. Using this noise 

vector, the Generator represented in green, generates a 

phony image. In the initial epochs this generated image is 

a series of splotches of black and white on a background as 

the generator progressively learns the difference between 

what a space object is, then what its complex and simple 

backgrounds are then on varying it from a dark to an 

illuminated image not necessarily in that order. Owing to 

this unsupervised nature of the architecture we are only 

able to control so much using the parameters hence we give 

it ample learning time to create a capable Discriminator 

Generator pair. This is a balancing act between the 

compute time as well as the quality of results as for instance 

the training of 21 epochs takes in excess of 19 hours while 

producing better results than obviously one trained for 10 

epochs over a period of 6 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Architecture Diagram of Pipeline 

 

Following this we append and combine the results with the 

SPEED+ dataset. Now, before we are able to, we focus on 

the conversion of the image to a suitable form to be usable 

to the HRNet architecture. This process also known as 

preprocessing involves going over image by image the 

union of datasets we have created and respectively, 

cropping, resizing, and centring of images to provide the 

best possible compatibility to the HRNet architecture. As 

highlighted by the representative green image, we centre 

the image such that the space object is in the centre of the 

frame reducing the presence of the background [21-27]. 

The reader at this point would pose the question, what was 

the point of generating the synthetic images if we are going 

to trim the backgrounds from the images? Secondly why 

are we performing this lengthy process after spending 

precious compute time generating the complex planetary 

backgrounds? The answers to these questions are 

respectively, this step is done to improve the ability of the 

landmarking process. To determine the key points on the 

space object we need to refocus the image to the points on 

the cuboidal surface that make the most significance. The 

answer to the second question lies in the first one, to 

improve the ability to centre the image we must supply the 

HRNet with an increased number of images. 

 

Finally, the Horovod comes into the picture. We use it to 

distribute the deep learning Residual neural Network 

(ResNet) and the Convolutional Neural Network (CNN) 

across 3 separate computing units over the internet. These 

possess synthetic NVIDIA Pascal GPUs to partition our 

learning task we partition the newly pre-processed dataset 

into three parts and provide this to the HRNet. This will 

allow us to simultaneously train these networks on the 

partitioned datasets, in essence drastically reducing the 

time per epoch drastically across the three workers, in our 

case the three GPU virtual computers. The Horovod 

approach as referenced in the literature has immense 

success in the image segmentation domain, this will allow 

us to, successively improve the training results over time. 

The result of this is below in Figure.5, given the grainy 

results the computed orientation is remarkably precise. 

 
Fig.5 Final Pose Estimate of two space objects with 

(a)complex and (b)simple backgrounds 

 

4. RESULTS 

The first graph in Figure4, emphasizes the need we have 

for Horovod when distributed across 3 workers. We see the 

runtimes per epoch of the parallelized workers in the 

training process are not just approximately 3 times faster 

but also averaging the runtimes consistently perform better 

so. These results are tabulated in Table 1. 

 

Table. 1 Epochs of single core and multi core time of 3 

 workers  
 

Epochs Single Core 

Time 

Multi Core Time 

(3 workers) 

1 1211.2000 399.6612 

2 1242.6998 403.5486 

3 1295.5000 413.6831 

4 1254.6998 436.3776 

5 1258.2007 564.3470 

6 1297.6004 269.1826 
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Secondly other than the initial spike of the Generator we 

see a consistent rise after epoch 6 in Fake scores as well. 

Figure.6 represents a positive trend as well, a decreasing 

discriminator loss starting epoch 2 which again 

demonstrates its improving capability to determine real 

examples from incorrect ones. 

 

Table 2 gives the epochs between real scores and fake 

scores. 

 

  Table. 2 epochs between real scores and fake scores.  
 

Epochs Real Scores Fake Scores 

1 0.8263 0.2548 

2 0.7175 0.2701 

3 0.7483 0.1527 

4 0.8068 0.1455 

5 0.6547 0.071 

6 0.5877 0.0136 

7 0.6952 0.033 

8 0.9228 0.085 

9 0.988 0.1046 

10 0.991 0.038 

11 0.9508 0.0593 

12 0.9276 0.0048 

13 0.9276 0.1095 

14 0.95 0.1955 

15 0.6859 0.0171 

16 0.8061 0.0359 

17 0.9725 0.2269 

18 0.9618 0.0445 

19 0.9543 0.0991 

20 0.9724 0.0646 

21 0.8402 0.0771 

 

In Figure. 5, we see, the higher real scores and lower fake 

scores indicate improved discrimination between real and 

fake samples, the consistently high real scores represent its 

ability to identify real examples. This is a good sign as the 

discriminator has and maintains its ability to correctly 

identify real images as real and phony images as phony. 

Fig.6 Generator and Discriminator Loss of GAN 

Table 3 gives the details about generator and discriminator 

Loss of GAN. 

 Table. 3 Generator and Discriminator Loss of GAN  
 

 Epochs  Generator Loss  Discriminator Loss  

1 2.4771 0.5069 

2 1.6762 0.71 

3 2.8544 0.4779 

4 2.5777 0.4021 

5 1.4855 0.5436 

6 0.7361 0.6304 

7 0.8619 0.4315 

8 4.3599 0.1878 

9 4.959 0.127 

10 3.0053 0.0486 

11 4.6555 0.1173 

12 5.9277 0.0826 

13 3.7191 0.2123 

14 4.1788 0.3012 

15 1.2851 0.463 

16 2.983 0.2947 

17 5.8916 0.3077 

18 5.0542 0.0889 

19 5.2179 0.1625 

20 5.5496 0.1005 
   21  3.9941  0.3141  

 

Finally, the last image is 4 new generated images, these 

images are to be refocused, illuminated, and zoomed to be 

then passed onto the Horovod architecture. In these we 

clearly see Fig7 has a dark background but is more 

complex. These space objects being complex shapes is a 

good sign in terms of realism. Fig 7 is the final output. 

7 1276.8996 617.7330 

8 1305.7993 111.9592 

9 1292.3001 685.0201 

10 1288.5985 179.9809 

11 1256.3001 484.9999 

12 1261.3996 189.7941 

13 1298.5985 557.1765 

14 1315.1022 544.5404 

15 1274.2007 957.9896 

16 1271.3978 485.9975 

17 1245.4015 605.2488 

18 1275.7993 855.9455 

19 1277.0000 191.5956 

20 1271.4015 330.2006 
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Fig.7 Sample Generated Images from GAN 

 

5. CONCLUSION AND FUTURE SCOPE 

After the completion of this comprehensive research, we 

see the final results to be comprehensive and extremely 

encouraging. As with all research we can expect improved 

results with increased compute time and number of 

workers beyond the already available consumer servers 

online. Additionally, another avenue to be explored is that 

of video clips of space objects. In our example we have 

considered a singular approach across the domain of 

satellite like objects, asteroid like objects, space junks etc. 

This may not be the best approach as there are other 

approaches like Star Trackers and Sun Sensors which can 

be used in combination with this vision-based approach. To 

elaborate the previous point, we need to also consider 

situation where the image clarity may not be up to par and 

may need to upscale the image while maintaining its 

integrity in the space background scenario. Finally, we 

encourage future researchers to explore different 

combinations of data points given initially, as in our case 

we are considering visible light, while in other scenarios 

we may possess other forms of electromagnetic radiation 

as shadow images of the space objects. These situations 

may involve alternate forms of data and signal processing 

however the data generation using GAN may remain 

largely similar to our current approach. 
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