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1. INTRODUCTION 

Floods are the most devastating and recurrent natural calamity 

all over the world. Flood creates a negative impact on society 

in terms of loss of life, property, and agriculture damages [1]. 

From the available literature, it is found that the changes in 

land-use land cover pattern with an increased impervious 

surface increase flow velocity [2].  

India is a land with diversified natural features such as 

mountains, oceans, rivers, and valleys which made the 

country among the most disaster-prone countries in the world 

[3]. This research paper mainly focuses on the flood 

susceptibility mapping of the PRB in the Kolhapur district of 

Maharashtra, India using FR and WoE models. The various 

rivers flowing through the Kolhapur district receive a very 

high rainfall in their upper catchment. During the monsoon 

period, the upper catchment of the Panchganga river receives 

very high rainfall from June to September which turns the 

region into floods. In the past, many flood events had 

triggered the region in the years 2005, 2006, 2010, 2019, 

2020, 2021, and 2022. History reveals that tehsils like 

Hathkangale, Shirol, and Karveer are frequently affected by 

floods [4].  

Satellite imagery through remote sensing (RS) with an 

advanced geographic information system (GIS) provides 

spatial information that is used for determining flood hazard 

areas very quickly and efficiently with minimal cost [5, 6, 7]. 
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Various methods have been investigated and applied so far for 

flood susceptibility mapping and risk assessment but FR 

model is the easiest method to implement [8]. The machine 

learning model requires a huge amount of training data for 

higher accuracy as compared to FR and WoE models [9]. FR 

and WoE method provides a better correlation between flood 

conditioning factors and dependent factors. The FR method 

assigns value to every single class of the classified flood factor 

(elevation, slope, land use, etc) and evaluates its impact on 

flood occurrencee [10]. The WoE method derives the 

relationship and the contrast value (C) between the flood 

locations and flood conditioning factors [25]. 

2. MATERIALS AND METHODS 

2.1 Study Location: 

The PRB is located in the upper region of Kolhapur district of 

Maharashtra state, India situated in the south-western part of 

Maharashtra with latitudes of 160 31’N to 160 92’ N and 

longitudes of 730 63’ E to 730 72’ E (Fig. 1).  The study area 

covers 33% (2580.86 km2) of the total area of the Kolhapur 

district. The elevation in the region varies between 526 to 1030 

meters. The hilly area lies towards the west whereas low lying 

area is located in the eastern part of the study region. The study 

area had recently encountered major flood events therefore this 

area has been selected for flood susceptibility mapping (FSM). 
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In the past few decades, the world has experienced some of devastating and frequent. flood events. The 

Panchganga River basin (PRB) of Maharashtra state, India had been selected for flood susceptibility 

mapping using the frequency ratio (FR) model and weight of evidence (WoE) model. In the present 

study, a flood inventory with 224 historic flood locations was prepared. 75% of flood locations were 

randomly selected for training and 25% for testing purposes. The flood susceptibility map prepared 

using FR and WoE model was classified into five zones such as very high, high, moderate, low, and 

safe zone using ArcGIS software. The receiver operating characteristics (ROC) curves were plotted 

with an area under the curve (AUC) values of 88.78% and 89.27% for the FR model and 85.84% and 

87.34% for the WoE model for success rate and prediction rate respectively. The present study will 

help people near the Panchganga River to move to a safer place during flooding. The farmers can 

minimize their losses of different kind due to flood disasters in the PRB. 

https://doi.org/10.5281/zenodo.10212216
https://ijmit.org/call-for-paper.php


314  

 

 

 

 

 

locations. Equation 

 

 

 

Fig. 1 Location of Study Area 

2.2 Data: 

For the present study, several spatial data layers were used as 

flood causative factors like elevation, slope, drainage density, 

topographic wetness index (TWI), land use land cover (LULC), 

 

      2.3 Data Preparation: 

 

The topographic factors derived from the DEM have a direct 

effect on flow size and runoff velocity [11]. In the present study, 

different raster layers like elevation, slope angle, distance to a 

river, and drainage distance were produced in ArcGIS 10.8 

environment using SRTM DEM of 30 m resolution downloaded 

from USGS Earth Explorer [29]. The Using the spatial analyst 

tool of ArcGIS, distance to river map was generated. The 

normalized difference vegetation index (NDVI) layer is derived 

from near-infrared and red band from Sentinel-2. The curvature 

tool from the surface toolset of spatial analyst tool was used to 

generate the profile curvature layer. The topographic wetness 

index (TWI) layer is derived from DEM. The inverse distance 

weighted (IDW) method was used to map the rainfall 

distribution in the study area. The spatial layers thus produced 

are finally converted into five classes to check its impact on 

flooding. 

 

2.4 Flood Inventory Mapping: 

 

Accuracy of the past flood events has a very high influence on 

the accuracy of flood susceptibility map [30]. One of the 

important steps in flood susceptibility mapping was to create a 

flood inventory of historic flood locations. Total 224 ground 

truth points were randomly chosen from Google Earth. 75% 

points were selected for training the model and 25% for testing 

purpose. 

 

  

3. FLOOD SUSCEPTIBILITY 

MODELLING 

 

3.1 Frequency Ratio Model (FR) 
 

In this paper, the FR model which is a bivariate statistical 

analysis method based on the spatial distribution of flood 

conditioning factors and the flood locations [21]. FR determines 

correlation between flood conditioning factors and flood 

locations [14]. FR is the ratio of a flooded area to the total area 

or the ratio of the probability of flood occurrence to non-

occurrence of that phenomenon [2]. It is expressed by (1) as: 

 

          𝐹𝑅 =
𝐸/𝐹

𝑀/𝐿
                                                (1) 

 

where, E is total flood pixels in each class; F is total flood pixels 

in study area; M is total pixels in each class of a factor; L is total 

pixels in the study area [5]. The FR value greater than 1 

indicates a strong correlation between the flood location and a 

given factor. The correlation is weak if the ratio is less than 1 

[20]. 
 

3.2 Weight of Evidence Model (WoE): 

 

Another model used here for flood susceptibility mapping was 

the WoE model which is also a bivariate statistical approach 

based on the Bayesian method that uses prior and conditional 

probability [26]. In this method, the historic flood locations 

were overlayed with each of the flood conditioning factors, and 

a statistical relationship is obtained between them to determine 

how effectively the factor is contributing to floods. The 

calculation of weights in the WoE model requires positive (W+) 

and negative (W-) weights based on the contribution of each 

flood factor to flood occurrence [53]. The W+ and W- is 

calculated using (2) and (3) as: 

 

𝑊+= 𝑙𝑛
𝑃 {𝐵|𝐴}

𝑃 {𝐵|�̅�}
                                                (2) 

 

𝑊−= 𝑙𝑛
𝑃 {�̅�|𝐴}

𝑃 {�̅�|�̅�}
                                                 (3) 

 

where, P is the probability; B and �̅� are the presence and 

absence of flood conditioning factors. A and �̅� are the presence 

and absence of flood respectively [26]. The weight of contrast 

(C) is the difference of W+ and W- and gives the spatial 

association between flood factors and flood occurrences. S(C) 

is the standard deviation of W and calculated using (4) as: 
 

S(C) = √𝑆2(𝑊+) + 𝑆2(𝑊−)                             (4) 

 
where,  𝑆2(𝑊+) and 𝑆2(𝑊−) are the variances of W+ and W- 

respectively [27]. The final weight is the measure of confidence 

and is calculated as C/S(C), (Table I). 

 

 

4. FLOOD CAUSATIVE FACTORS 

 
The flood susceptibility modelling using RS and GIS requires 

different spatial layers derived from the DEM. In this paper, we 

used elevation, slope, drainage density, distance to streams, 

TWI, NDVI, soil texture, rainfall, LULC, and curvature as the 

spatial data layers [11]. These layers are considered as the most 

important spatial data for flood related studies [15]. All these 

layers are then converted to a raster grid of 30 x 30 m2 using 

ArcGIS 10.8 as shown in Fig. 2a – 2j.  
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Fig. 2a – 2e Flood conditioning factors for study area 

 

 

 

 

 

 
Fig. 2f – 2j Flood conditioning factors for study area 
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Table. 1 Spatial relationship between flood conditioning factor 

and historic flood locations using FR and WoE models 

 

Factor Factor Class FR W
+

 W
-
 C/S(C) 

Elevation 

(m) 
  

  

  
  

526- 588 2.15 0.71 -3.76 6.29 

589- 655 0.05 -3.09 0.29 -4.75 

656- 746 0.00 0 0.17 0 

747- 862 0.00 0 0.12 0 

863- 1030 0.00 0 0.04 0 

Slope 

(Degree) 

  
  

  

  

0- 3.7 1.93 0.61 -1.86 8.54 

3.8- 8.1 0.24 -1.48 0.21 -4.94 

8.2- 13.7 0.11 -2.22 0.16 -4.10 

13.8- 20.5 0.00 0 0.11 0 

29.5- 59.3 0.15 -1.93 0.04 -1.96 

LULC 

  

  
  

  

Built-Up 1.33 0.23 -0.01 0.52 

Bare Land 0.03 -3.56 0.23 -3.78 

Agriculture land 1.71 0.48 -1.20 7.62 

Trees 0.06 -2.81 0.21 -4.25 

Water 1.03 -0.02 0.00 -0.09 

Distance to 
River (m) 

  

  
  

  

0 - 381 1.46 0.33 -0.25 3.71 

382 - 852 1.25 0.16 -0.11 1.73 

853- 1202 0.31 -1.23 0.17 -4.30 

1203- 1573 0.21 -1.60 0.07 -2.87 

1574- 2555 0.00 0 0.05 0 

TWI 

  
  

  

  

2.93- 6.41 0.16 -1.90 0.39 -6.66 

6.42- 8.33 1.27 0.19 -0.16 2.25 

8.34- 11.02 1.41 0.30 -0.07 1.97 

11.03- 15.11 2.21 0.74 -0.12 4.44 

15.12- 25.12 1.45 0.32 -0.01 0.65 

NDVI 

  

  
  

  

-0.27- 0.18 0.77 -0.32 0.01 -0.81 

0.19- 0.35 2.01 0.65 -0.14 4.33 

0.36- 0.48 2.41 0.83 -0.46 8.35 

0.49- 0.59 0.74 -0.36 0.10 -2.27 

0.6- 0.8 0.09 -2.42 0.48 -6.97 

Drainage 

Density 

  
  

  

  

0 - 52.34 0.06 -2.93 0.39 -5.68 

52.35- 107.86 0.28 -1.33 0.22 -4.98 

107.87- 69.72 0.75 -0.35 0.09 -2.13 

169.73- 42.68 2.37 0.81 -0.26 6.55 

242.7-404.46 5.43 1.64 -0.43 13.10 

Rainfall 
(mm) 

  

  
  

  

628- 1525 2.12 0.69 -0.86 8.93 

1526- 2337 1.42 0.29 -0.09 2.20 

2338- 3256 0.00 0 0.27 0 

3257- 4495 0.00 0 0.23 0 

4496- 6076 0.00 0 0.05 0 

Soil 

Texture 
  

  

  
  

Chromic Vertisols 2.54 0.88 -0.64 9.67 

Distric Nitosols 0.00 0 0.03 0 

Plinthic Acrisols 0.54 -0.67 0.95 -10.24 

Curvature 

  
  

  

  

-9.44- -0.52 0.00 0 0.04 0 

-0.51- -0.14 0.82 -0.25 0.05 -1.42 

-0.13- 0.16 1.36 0.25 -0.52 4.31 

0.17- 0.62 0.43 -0.90 0.14 -3.75 

0.63- 10 0.25 -1.44 0.02 -1.46 

 

 

 

5. RESULTS AND DISCUSSION 
 

For this paper, FR & WoE models were used to determine the 

level of correlation between historic flood locations and flood 

factors for the PRB [16].  

 

      5.1 Results of FR Model  

 
From Table 1 it is found that the region with lower elevation 

gets flooded easily. The subclass with lowest elevation of 526-

588 has highest FR value of 2.15 than the remaining subclasses. 

Thus, lower elevation regions are highly prone to flood (Fig. 

2a). The result reveals that around 46% flood occurred in low 

laying area [17]. The slope map was classified into 5 sub-classes 

as shown in Table I. The lowest slope with slope angle between 

00 to 3.70 has highest FR value of 1.93 and this region is very 

much prone to flood as shown in Fig. 2b [9]. The western part 

of the study area with steep slopes is very less prone to flood. 

Figure 2c shows distance from river map which is classified to 

5-subclasses. The regions nearby stream within 0–381m with 

FR of 1.46 are highly susceptible to flooding [18]. Figure 2d 

shows a drainage density map with subclass of 242.69 – 404.46 

having highest FR of 5.43 which reveals the accumulation of a 

large quantity of water [11]. So, these regions are highly prone 

to flooding due to reduced infiltration [8].  

 

The LULC map is classified as built-up, barren land, 

agriculture, trees, and water body as shown in Fig. 2e. The result 

showed that built-up and agriculture land are more responsible 

for flooding [19]. Increase in built-up area generates surface 

runoff due to increase in impervious surface and hence the flood 

intensity [8]. 

 

The rainfall data layer is shown in Fig. 2f which was divided 

into 5 classes. FR for the class 628-1525 mm and 1526-2337 

mm which is on the eastern side of PRB, is 2.12 and 1.42 

respectively, and is less than 1 for the remaining classes on the 

west. The western part of the PRB is least vulnerable to flood 

(Fig. 3) in spite of highest rainfall as all the water flows down 

the east due to hilly area. The eastern part in contrast is highly 

flood-prone due to the flat surface in spite of minimum rainfall. 

Figure 2g shows the curvature layer with 5 subclasses in the 

range -9.44 to -0.52, -0.51 to -0.14, -0.13 to 0.16, 0.17 to 0.62, 

and 0.63 to 10.0. The highest FR value of 1.36 is found for the 

range of -0.13 to 0.16 which governs the flat portion of the study 

area and is more prone to flooding. Hillsides (FR<1) towards 

the west is less prone to flood as it promotes water flow to lower 

and flat regions towards east, leading to flooding [9]. A 

curvature map was prepared using SRTM-DEM [23]. The soil 

map of the Panchganga River basin mainly consist of Distric 

Nitosols found to the west, Plinthic Acrisols in the middle, and 

Chromic Vertisols to the east (Fig. 2h). FR value for Chromic 

Vertisols with high water holding capacity of found highest 

among all and thus reveals the area to be more prone to floods 

[12].  

 

TWI spatial layer is derived from the DEM of the catchment 

using ArcGIS. Figure 2i shows the TWI layer with 5 classes that 

can be used to predict a region with potential flood hazard [13]. 

The highest values of FR for TWI classes were found for the 

eastern region of the study area with range of 11.03 – 15.11 (FR 

= 2,21) and 15.12 - 25.12 (FR = 1.45). It therefore confirms that 

TWI had a strong correlation with chances of flooding [6]. 
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From the literature, the lower values of NDVI influenced 

flooding as the land is forbidden of vegetation. The NDVI map 

was classified into 5-classes as shown in Fig 2j. The class with 

NDVI higher than 0.48 is located towards the western side of 

the study area that is full of hills with minimal flooding whereas 

the eastern region with NDVI less than 0.48 corresponding to 

built-up, barren land, cropland is found more prone to flooding 

[9]. The flood susceptibility map using FR model is shown in 

Figure 3. 

 

 
Fig. 3 Flood Susceptibility map using FR model 

       

      5.2 Results of WoE Model 
 
For the present paper, all the WoE parameters were calculated 

as shown in Table 1 for each of the flood factors. The final 

weight calculated as C/S(C) decides the dependence of flood 

occurrence on a particular factor class.  

 

The elevation subclass of 526 - 588 m had the highest C/S(C) of 

6.29. So, this region is highly susceptible to flood. Similarly, it 

is found that for slope, the C/S(C) value of 8.54 is the highest 

for a subclass of 00 to 3.70. Among different LULC classes, 

agricultural land is highly prone to flooding. The distance from 

the river in the range of 0 – 381 m had the highest C/S(C) of 3.7 

with the highest flood susceptibility. The TWI in the range of 

11.03- 15.11 is highly prone to flood with C/S(C) of 4.43. The 

NDVI in the range of 0.36- 0.48 is highly prone to flood with 

C/S(C) of 8.35. The drainage density subclass with range 

242.69-404.46 had the highest C/S(C) value of 13.09 which is 

highly prone to flooding.  

 

The eastern region of the study area with minimum rainfall in 

the range of 628- 1525 mm had the highest flood susceptibility 

as all the water flows down to this region from hilly area on the 

west. The C/S(C) value of 9.66 for Chromic Vertisols (Vc) as 

soil subclass towards the east is the highest among other 

subclasses. This showed positive influence on flooding. Lastly, 

the curvature profile in the range of -0.13- 0.16 showed highest 

C/S(C) value of 4.31 with positive influence. The flood 

susceptibility map using WoE model is shown in Figure 4. 

 

 

 
Fig. 4 Flood Susceptibility map using WoE model 

 
Table 1 shows all the results using FR model that indicates a 

correlation between different flood conditioning factors and 

flood occurrence in the study area. The FR >1 indicates a high 

correlation and FR <1 shows a lower correlation between the 

flood location and flood factors [20]. Also, the results for WoE 

model are summarized in Table 1. The flood conditioning 

factors used to derive WoE parameters are shown in Fig. 2a-2j. 
 

   6. RESULTS AND DISCUSSION 
 

The accuracy of the results obtained in Table I for flood 

susceptibility mapping using FR and WoE models need to be 

validated by some means. In this paper, we used the receiver 

operating characteristics (ROC) method to evaluate the 

performance of the model in terms of its accuracy and reliability 

[10, 22]. The ROC method was used to evaluate the success and 

prediction rate of the flood susceptibility model [6] as shown in 

Fig.5. The success rate was plotted using training and prediction 

rate using the testing dataset. The AUC values of 88.78% and 

89.27% were found for the FR model and 85.84% and 87.34% 

for the WoE model for success and prediction rate respectively. 

Thus, both the models were proved to be quite accurate and 

suitable to predict the flood-prone areas in the PRB [24]. Table 

2 shows the comparison of AUC values from the literature with 

present study. 
 

 
Fig. 5 ROC Curves for FR and WoE model for PRB 
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Table. 2 Comparison of AUC for different papers 

 

AUC (Success) AUC(Prediction) 
Ref No. 

FR WoE FR WoE 

62.17% 88.73% 60.05% 88.07% [9] 

-- -- 76.47% 74.74% [8] 

82.04 -- 84.74% -- [2] 

84.80% -- 81.20% -- [28] 

88.78% 85.84% 89.27% 87.34% Present paper 

 

       7.   CONCLUSION 
 

This research paper has used the FR and WoE models to prepare 

the flood susceptibility map of Panchganga River basin, 

Kolhapur, Maharashtra. The floodplain of Panchganga River 

basin has been classified into 5 classes as very high, high, 

moderate, low and no flood risk zones which is not been done 

previouslyfor the same syudy area. Also, the accuracy 

assessment of flood risk in PRB has been carried out using 

statistical approach and AUC values for both success and 

prediction rate were enhanced as compared to previous studies 

using Ranking, Rating and AHP models [31]. Different flood 

conditioning factors were taken into consideration to map the 

correlation with historic flood locations. The elevation had 

maximum influence to flooding phenomena followed by soil 

texture, slope, and drainage density. The rainfall, curvature, 

distance to a river, LULC have a medium impact on flood 

occurrence whereas the TWI and NDVI have the least influence 

on flooding (Table 1). Approximately, 40% of the total area in 

PRB was found in high to very high-risk flood zone, 12.3% is 

in a medium, 13.3% is in low and 33.7% is in safe or no flood 

zone. The present study will help people, town planners, farmers 

minimize their losses of different kind due to flood disasters in 

the PRB. 
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