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1. INTRODUCTION 

Due to the rapid development and huge growth of the 

digital world, the advancement of technology and faster 

internet, information security has become a necessity. 

The idea behind our project is to speed up the hardware 

in such a way that has a high collision resistance and 

being both incredibly secure and quick. We would also 

like to optimize the hardware in a way that consumes less 

power and area which can pave paths for different 

applications and opportunities. This algorithm is widely 

used in different applications, banking, shopping, and 

different money related activities [1-4]. It is also used 

recently in blockchain technologies and internet of 

things applications. Information security has become 

essential because of the digital world's quick expansion 

and enormous growth as well as the increase in internet 

speed [5]. Our project's goal is to accelerate the hardware 

in a way that makes it highly secure, quick, and collision 

resistant. Additionally, we want to optimize the 

hardware so that it uses less space and power [6], 

opening doors for new uses and opportunities. This 

method is commonly utilized in many applications, 

including banking, shopping, and other activities 

involving money. Recently, it has also been employed in 

applications for block chain technology and the internet 

of things. SHA is a cryptographic hash function [7] that 

is widely used in various applications to provide secure 

 

authentication, integrity, and confidentiality of digital 

data. Some common applications of SHA include Digital 

Signature Verification, Password Hashing, SSL 

Handshake, Integrity Checks and Blockchain 

Technology. 

To take advantage of the hardware acceleration, an 

FPGA (field-programmable gate array) will be employed 

in the implementation. It is suitable for implementing 

cryptographic algorithms and performing jobs more 

efficiently, allowing design optimization. FPGA 

encryption is roughly 20 times faster than dual-core 

processor encryption while utilizing 85% less CPU[8- 

13]. Furthermore, it gives a quicker design time, greater 

flexibility, and reduced expenses. 

 

2. SHA-256 ALGORITHM 

2.1. Padding 

Adding bits to our original message to make it the same 

length as the standard length needed for the hash 

function is the first phase of our hashing algorithm. To 

do this, we add a few details to the message that we 

already have. We compute the number of bits to add so 

that, after addition, the message's length should be 

exactly 64 bits shorter than a multiple of 512 [14-18]. 
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Recently, there have been many technological advancements in communication, particularly in online 
transactions, increasing the necessity for highly secure networks and transactions. The number of 
cryptographic algorithms has expanded. Cryptographic hash functions are used to secure and 
authenticate data and transactions. SHA-256 (Secure Hash Algorithm-256) is a one-way hash function 
that is both secure and quick, with a high collision resistance. In this work SHA-256 hardware 
architecture with minimal power consumption and area based on a sequential calculation of the message 
scheduler and working variables. The hardware was designed in HDL and built on a SPARTAN-6 
FPGA, which provides exceptional efficiency and performance. Different optimization techniques, such 
as gated clock conversion, arithmetic resource sharing, and structural modelling of small building 
blocks, were employed to further reduce power and area. The proposed design ran with a maximum 
frequency of 83.33 MHz the implementation reports indicated a dynamic power consumption of 14 mW 
and area utilization of 505 slices while maintaining a good throughput of 2659.42 G bits/s and a 
relatively high efficiency of 5.266 M bits/s per slice. 

https://doi.org/10.5281/zenodo.8315154


122 
 

 
 
 
 

 
 

Fig.1 Block Diagram of SHA-256 

2.2. Message Scheduler 

A 32-bit x 16-bit (512-bit) data block serves as the 

message input for rounds 1 through 16. It is necessary to 

derive W [i] for rounds 17 through 64. It is possible to 

determine W[i] + K[i] for each round before the round 

iteration itself since the constant K is defined for each 

round. 

Before the previous round has concluded, the subsequent 

one cannot begin. It will be advisable to keep the number 

of cycles each round at 1 + 3 if your single instruction 

multiple data (SIMD) units have pipelines with 1 and 3 

cycles [19]. The prior design utilized a set of instructions 

on a 128-bit register [20] set with two operands that, with 

careful state variable partitioning, the injection of WK 

values, and multiply rounds per instruction. And lacks 

efficient schemes for performing these operations. 

2.3. Compression Function 

The hash computation proceeds as follows: 

𝐹o𝑟 i = 1 𝑡o 𝑁 

{ 

The working variables, registers 𝐴, 𝐵, … , 𝐻 are 

initialized with the (i − 1)𝑠𝑡 intermediate hash value (the 

initial hash value when i = 1). Apply the SHA-256 

compression function to update 𝐴, 𝐵, … , 𝐻 

For j = 0 to 63 

{ 

 

 

 

 

 
Compute Wj, 𝐶ℎ(𝐸, 𝐹, 𝐺), 𝑀𝑎j (𝐴, 𝐵, 𝐶), ∑0(𝐴), 

𝑎𝑛𝑑 ∑1(𝐸) 

𝑇1 = 𝐾j + Wj + 𝐻 + ∑1(𝐸) + 𝐶ℎ(𝐸, 𝐹, 𝐺) 

𝑇2 = 𝑀𝑎j (𝐴, 𝐵, 𝐶) + ∑0(𝐴) 

𝐻 = 𝐺 

𝐺 = 𝐹 

𝐹 = 𝐸 

𝐸 = 𝐷 + 𝑇1 

𝐷 = 𝐶 

𝐶 = 𝐵 

𝐵 = 𝐴 

𝐴 = 𝑇1 + 𝑇2 

} 

Compute the i𝑡ℎ intermediate hash value (i) as the sum 

of the previous hash and the registers 𝐴, 𝐵, … , 𝐻}. After 

the 𝑁 iterations, the hash of the message is (𝑁) =(𝐻(𝑁), 

𝐻(𝑁),… , 𝐻(𝑁)). 

Where the definitions of the logical functions are: 
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𝜎0(𝑥)= 𝑆 18(𝑥) Ʌ 𝑆7(𝑥) Ʌ 𝑅10(𝑥) 

𝜎1(𝑥)= 𝑆 19(𝑥) Ʌ 𝑆17(𝑥) Ʌ 𝑅10(𝑥) 

∑0(𝑥) = 𝑆22(𝑥) Ʌ 𝑆13(𝑥) Ʌ 𝑆2(𝑥) 

∑1(𝑥) = 𝑆25(𝑥) Ʌ 𝑆11(𝑥) Ʌ 𝑆6(𝑥) 

𝐶ℎ(𝑥, 𝑦, 𝑧) = (¬𝑥 & 𝑧) 𝖠 (𝑥 & 𝑦) 

𝑀𝑎j(𝑥, 𝑦, 𝑧) = (𝑥 & 𝑦) 𝖠 (𝑦 & 𝑧) 𝖠 (𝑥 & 𝑧) 

𝑅𝑛 i𝑠 𝑟i𝑔ℎ𝑡 𝑠ℎif𝑡 𝑏𝑦 𝑛 𝑏i𝑡𝑠 

𝑆𝑛 i𝑠 𝑟i𝑔ℎ𝑡 𝑟o𝑡𝑎𝑡io𝑛 𝑏𝑦 𝑛 𝑏i𝑡𝑠 

The sequence of constant words 𝐾0,…,63, are the first 

thirty-two bits of the fractional parts of the cube roots of 

the first sixty-four primes. 

 

3. IMPLEMENTATION 
3.1. Padding 

In our design, in the padding block, on the rising edge of 

the first clock, the input message is padded and parsed 

into a 512-bit block, it then goes through the bit selection 

block to be sent to the message scheduler during the next 

16 clock cycles in the form of 32-bit words[21]. 

 

3.2. Message Scheduler 

The main role of the message scheduler block is to 

determine Wt to compute the working variables and the 

intermediate hash values. 

In normal designs, the 64 message words are computed, 

then are used to determine the 64 working variables. On 

the contrary, in our proposed design, only one message 

word is computed and used to determine its 

corresponding working variables, all in one cycle. This in 

turn had a huge effect on throughput, area, and power. 

Instead of computing all working variables in 128 clock 

cycles, 64 for message words, and 64 for the actual 

working variables, the whole operation now only takes 70 

cycles, nearly increasing the throughput. It also decreased 

the area used in the Wt register and its switching activity, 

resulting in huge power reduction. 

 
3.3. Compression Function 

The compression block contains combinatorial functions 

used to calculate the variables, and a register memory 

storing the values of K constants, which reduces the access 

time to the Kconst. 

The block receives one Wt per cycle, along with values from 

Kconst, Ch, Maj, sum1 and sum2, then it computes the 32- 

bit temporary variables which in turn update the working 

variables at the rising edge of each clock [21-25]. At the end 

of the 64th clock cycle, the working variables are added to 

the intermediate hash values to output the final hash [26- 

32]. 

 

 
 

Fig.2 Post Implementation Timing Results 

 

4. RESULTS AND DISCUSSIONS 

The SHA-256 design was described using Verilog. The 

design was synthesized and implemented on Spartan-6 FPGA 

(xc6slx4-2tqg144-2), using Xilinx ISE Design Suite 14.7.The 

SHA-256 architecture processes a 512-bit block within 70 

clock cycles. The message padding takes 1 cycle, hash 

computation takes 64 cycles, and outputting the final hash 

takes 2 cycles. The implemented hardware achieved a 

maximum frequency of 83.107 MHz with a dynamic power 

of 14 mW using 505 slices (in comparison with 1373 slices 

there is a 64% reduction), 1397 LUTs, and 931 ffs. A 

throughput of 2659.4 Mbps and an efficiency of 5.266 

Mbps/slice per slice is achieved. 
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Table. 1 Comparison of Results 

Parameter Our work [1] [2] [3] [4] [5] 

Slices 505 755 1373 - - 610 

LUTs 1397 - - 2207 2150 - 

Flip Flops 931 - - - - - 

Maximum frequency (MHz) 83.107 174 133 74 143.164 70.55 

Throughput (G bits/s) 2659.42 1370 1009 291 909.816 1344.98 

Efficiency (M bits/s) 5.266 - - - - - 

Power (mW) 14 - - - - - 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Schematic of SHA-256 



125 
 

 

5. CONCLUSION 
 

The SHA-256 is chosen because of its complex security, high 

collision resistance, acceptable computation time along with 

its utilization in different applications. SHA-256 was used 

based on gated clock conversion, arithmetic resource sharing, 

and structural modelling of small building blocks. The 

proposed design along with the optimization techniques used 

to have resulted in a significant power and area reduction with 

a relatively large efficiency while maintaining a decent 

maximum frequency and throughput in comparison with other 

related work. The SHA-256 architecture processes a 512-bit 

block within 70 clock cycles. The message padding takes 3 

cycle, hash computation takes 64 cycles, and outputting the 

final hash takes 1 cycle. The dynamic power consumption of 

the design is 14 mW. In this design the total area used in terms 

of slices is 505 (in comparison with 1373 slices) there is a 64% 

reduction. A throughput of 2659.4 Mbps is achieved which is 

2.63 times larger than the previous design. 
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