
ISSN: 2584-0495 Vol. 1, Issue 3, pp.121- 126

International Journal of Microsystems and IoT

ISSN: (Online) Journal homepage: https://www.ijmit.org

Secure Hash Algorithm SHA-256 Based Hardware
Acceleration Using Spartan-6

Hitesh M A, Mahendra R, Sumanth H S, Subodh Kumar Panda

Cite as: Hitesh M A, Mahendra R, Sumanth H S, & Subodh Kumar Panda. (2023). Secure

Hash Algorithm SHA-256 Based Hardware Acceleration Using Spartan-6. International

Journal of Microsystems and IoT, 1(3), 121–126.

https://doi.org/10.5281/zenodo.8315154

 © 2023 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

 Published online: 21 August 2023.

 Submit your article to this journal:

 Article views:

View related articles:

 View Crossmark data:

DOI: https://doi.org/10.5281/zenodo.8315154

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.8315154
https://doi.org/10.5281/zenodo.8315154
https://ijmit.org/mission.php

International Journal of Microsystems and IoT

Vol. 1, Issue 3, pp.121-126; DOI: https://doi.org/10.5281/zenodo.8315154

121

Secure Hash Algorithm SHA-256 Based Hardware Acceleration Using

Spartan-6

Hitesh M A, Mahendra R, Sumanth H S, Subodh Kumar Panda

B N M Institute of Technology Bengaluru, India

KEYWORDS

Acceleration; Cryptographic;
FPGA; Hash; Secure;

Throughput.

1. INTRODUCTION

Due to the rapid development and huge growth of the

digital world, the advancement of technology and faster

internet, information security has become a necessity.

The idea behind our project is to speed up the hardware

in such a way that has a high collision resistance and

being both incredibly secure and quick. We would also

like to optimize the hardware in a way that consumes less

power and area which can pave paths for different

applications and opportunities. This algorithm is widely

used in different applications, banking, shopping, and

different money related activities [1-4]. It is also used

recently in blockchain technologies and internet of

things applications. Information security has become

essential because of the digital world's quick expansion

and enormous growth as well as the increase in internet

speed [5]. Our project's goal is to accelerate the hardware

in a way that makes it highly secure, quick, and collision

resistant. Additionally, we want to optimize the

hardware so that it uses less space and power [6],

opening doors for new uses and opportunities. This

method is commonly utilized in many applications,

including banking, shopping, and other activities

involving money. Recently, it has also been employed in

applications for block chain technology and the internet

of things. SHA is a cryptographic hash function [7] that

is widely used in various applications to provide secure

authentication, integrity, and confidentiality of digital

data. Some common applications of SHA include Digital

Signature Verification, Password Hashing, SSL

Handshake, Integrity Checks and Blockchain

Technology.

To take advantage of the hardware acceleration, an

FPGA (field-programmable gate array) will be employed

in the implementation. It is suitable for implementing

cryptographic algorithms and performing jobs more

efficiently, allowing design optimization. FPGA

encryption is roughly 20 times faster than dual-core

processor encryption while utilizing 85% less CPU[8-

13]. Furthermore, it gives a quicker design time, greater

flexibility, and reduced expenses.

2. SHA-256 ALGORITHM

2.1. Padding

Adding bits to our original message to make it the same

length as the standard length needed for the hash

function is the first phase of our hashing algorithm. To

do this, we add a few details to the message that we

already have. We compute the number of bits to add so

that, after addition, the message's length should be

exactly 64 bits shorter than a multiple of 512 [14-18].

© 2023 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India

ABSTRACT

Recently, there have been many technological advancements in communication, particularly in online
transactions, increasing the necessity for highly secure networks and transactions. The number of
cryptographic algorithms has expanded. Cryptographic hash functions are used to secure and
authenticate data and transactions. SHA-256 (Secure Hash Algorithm-256) is a one-way hash function
that is both secure and quick, with a high collision resistance. In this work SHA-256 hardware
architecture with minimal power consumption and area based on a sequential calculation of the message
scheduler and working variables. The hardware was designed in HDL and built on a SPARTAN-6
FPGA, which provides exceptional efficiency and performance. Different optimization techniques, such
as gated clock conversion, arithmetic resource sharing, and structural modelling of small building
blocks, were employed to further reduce power and area. The proposed design ran with a maximum
frequency of 83.33 MHz the implementation reports indicated a dynamic power consumption of 14 mW
and area utilization of 505 slices while maintaining a good throughput of 2659.42 G bits/s and a
relatively high efficiency of 5.266 M bits/s per slice.

https://doi.org/10.5281/zenodo.8315154

122

Fig.1 Block Diagram of SHA-256

2.2. Message Scheduler

A 32-bit x 16-bit (512-bit) data block serves as the

message input for rounds 1 through 16. It is necessary to

derive W [i] for rounds 17 through 64. It is possible to

determine W[i] + K[i] for each round before the round

iteration itself since the constant K is defined for each

round.

Before the previous round has concluded, the subsequent

one cannot begin. It will be advisable to keep the number

of cycles each round at 1 + 3 if your single instruction

multiple data (SIMD) units have pipelines with 1 and 3

cycles [19]. The prior design utilized a set of instructions

on a 128-bit register [20] set with two operands that, with

careful state variable partitioning, the injection of WK

values, and multiply rounds per instruction. And lacks

efficient schemes for performing these operations.

2.3. Compression Function

The hash computation proceeds as follows:

𝐹o𝑟 i = 1 𝑡o 𝑁

{

The working variables, registers 𝐴, 𝐵, … , 𝐻 are

initialized with the (i − 1)𝑠𝑡 intermediate hash value (the

initial hash value when i = 1). Apply the SHA-256

compression function to update 𝐴, 𝐵, … , 𝐻

For j = 0 to 63

{

Compute Wj, 𝐶ℎ(𝐸, 𝐹, 𝐺), 𝑀𝑎j (𝐴, 𝐵, 𝐶), ∑0(𝐴),

𝑎𝑛𝑑 ∑1(𝐸)

𝑇1 = 𝐾j + Wj + 𝐻 + ∑1(𝐸) + 𝐶ℎ(𝐸, 𝐹, 𝐺)

𝑇2 = 𝑀𝑎j (𝐴, 𝐵, 𝐶) + ∑0(𝐴)

𝐻 = 𝐺

𝐺 = 𝐹

𝐹 = 𝐸

𝐸 = 𝐷 + 𝑇1

𝐷 = 𝐶

𝐶 = 𝐵

𝐵 = 𝐴

𝐴 = 𝑇1 + 𝑇2

}

Compute the i𝑡ℎ intermediate hash value (i) as the sum

of the previous hash and the registers 𝐴, 𝐵, … , 𝐻}. After

the 𝑁 iterations, the hash of the message is (𝑁) =(𝐻(𝑁),

𝐻(𝑁),… , 𝐻(𝑁)).

Where the definitions of the logical functions are:

123

𝜎0(𝑥)= 𝑆 18(𝑥) Ʌ 𝑆7(𝑥) Ʌ 𝑅10(𝑥)

𝜎1(𝑥)= 𝑆 19(𝑥) Ʌ 𝑆17(𝑥) Ʌ 𝑅10(𝑥)

∑0(𝑥) = 𝑆22(𝑥) Ʌ 𝑆13(𝑥) Ʌ 𝑆2(𝑥)

∑1(𝑥) = 𝑆25(𝑥) Ʌ 𝑆11(𝑥) Ʌ 𝑆6(𝑥)

𝐶ℎ(𝑥, 𝑦, 𝑧) = (¬𝑥 & 𝑧) 𝖠 (𝑥 & 𝑦)

𝑀𝑎j(𝑥, 𝑦, 𝑧) = (𝑥 & 𝑦) 𝖠 (𝑦 & 𝑧) 𝖠 (𝑥 & 𝑧)

𝑅𝑛 i𝑠 𝑟i𝑔ℎ𝑡 𝑠ℎif𝑡 𝑏𝑦 𝑛 𝑏i𝑡𝑠

𝑆𝑛 i𝑠 𝑟i𝑔ℎ𝑡 𝑟o𝑡𝑎𝑡io𝑛 𝑏𝑦 𝑛 𝑏i𝑡𝑠

The sequence of constant words 𝐾0,…,63, are the first

thirty-two bits of the fractional parts of the cube roots of

the first sixty-four primes.

3. IMPLEMENTATION
3.1. Padding

In our design, in the padding block, on the rising edge of

the first clock, the input message is padded and parsed

into a 512-bit block, it then goes through the bit selection

block to be sent to the message scheduler during the next

16 clock cycles in the form of 32-bit words[21].

3.2. Message Scheduler

The main role of the message scheduler block is to

determine Wt to compute the working variables and the

intermediate hash values.

In normal designs, the 64 message words are computed,

then are used to determine the 64 working variables. On

the contrary, in our proposed design, only one message

word is computed and used to determine its

corresponding working variables, all in one cycle. This in

turn had a huge effect on throughput, area, and power.

Instead of computing all working variables in 128 clock

cycles, 64 for message words, and 64 for the actual

working variables, the whole operation now only takes 70

cycles, nearly increasing the throughput. It also decreased

the area used in the Wt register and its switching activity,

resulting in huge power reduction.

3.3. Compression Function

The compression block contains combinatorial functions

used to calculate the variables, and a register memory

storing the values of K constants, which reduces the access

time to the Kconst.

The block receives one Wt per cycle, along with values from

Kconst, Ch, Maj, sum1 and sum2, then it computes the 32-

bit temporary variables which in turn update the working

variables at the rising edge of each clock [21-25]. At the end

of the 64th clock cycle, the working variables are added to

the intermediate hash values to output the final hash [26-

32].

Fig.2 Post Implementation Timing Results

4. RESULTS AND DISCUSSIONS

The SHA-256 design was described using Verilog. The

design was synthesized and implemented on Spartan-6 FPGA

(xc6slx4-2tqg144-2), using Xilinx ISE Design Suite 14.7.The

SHA-256 architecture processes a 512-bit block within 70

clock cycles. The message padding takes 1 cycle, hash

computation takes 64 cycles, and outputting the final hash

takes 2 cycles. The implemented hardware achieved a

maximum frequency of 83.107 MHz with a dynamic power

of 14 mW using 505 slices (in comparison with 1373 slices

there is a 64% reduction), 1397 LUTs, and 931 ffs. A

throughput of 2659.4 Mbps and an efficiency of 5.266

Mbps/slice per slice is achieved.

124

Table. 1 Comparison of Results

Parameter Our work [1] [2] [3] [4] [5]

Slices 505 755 1373 - - 610

LUTs 1397 - - 2207 2150 -

Flip Flops 931 - - - - -

Maximum frequency (MHz) 83.107 174 133 74 143.164 70.55

Throughput (G bits/s) 2659.42 1370 1009 291 909.816 1344.98

Efficiency (M bits/s) 5.266 - - - - -

Power (mW) 14 - - - - -

Fig.3 Schematic of SHA-256

125

5. CONCLUSION

The SHA-256 is chosen because of its complex security, high

collision resistance, acceptable computation time along with

its utilization in different applications. SHA-256 was used

based on gated clock conversion, arithmetic resource sharing,

and structural modelling of small building blocks. The

proposed design along with the optimization techniques used

to have resulted in a significant power and area reduction with

a relatively large efficiency while maintaining a decent

maximum frequency and throughput in comparison with other

related work. The SHA-256 architecture processes a 512-bit

block within 70 clock cycles. The message padding takes 3

cycle, hash computation takes 64 cycles, and outputting the

final hash takes 1 cycle. The dynamic power consumption of

the design is 14 mW. In this design the total area used in terms

of slices is 505 (in comparison with 1373 slices) there is a 64%

reduction. A throughput of 2659.4 Mbps is achieved which is

2.63 times larger than the previous design.

REFERENCES

1. M. Bahnasawi, A., K. Ibrahim, A. Mohamed, M. Khalifa, A.

Moustafa, K. Abelmonim, Y. ismail, and H. Mostafa (2016),

ASIC-Oriented Comparative Review of Hardware Security

Algorithms for the Internet of Things Applications, IEEE

International Conference on Microelectronics (ICM 2016),

Cairo, Egypt, 285- 288.

2. N. Samir, A. S. Hussein, M. Khaled, A. N. ElZeiny, M.

Osama, H. Yassin, A. Abdelbaky, O. Mahmoud, A. Shawky,

and H. Mostafa (2019), ASIC and FPGA Comparative

Study for IoT Lightweight Hardware Security Algorithms,

Journal of Circuits, Systems, and Computers (JCSC), (Vol.

28), 1-13.

3. Q. Dang (2015), Changes in Federal Information Processing

Standard (FIPS) 180-4, Secure Hash Standard, 69-73,

https://doi.org/10.1080/01611194.2012.687431

4. M. Thakur (2018), Low Power Implementation of Secure

Hashing Algorithm (SHA-2) using VHDL on FPGA of

SHA-256, International Journal for Research in Applied

Science and Engineering Technology, 2298-2303, (Vol. 6).

5. X. Guo, et al. (2010), On the Impact of Target Technology

in SHA-3 Hardware Benchmark Rankings, IACR

Cryptology ePrint Archive.

6. R. G. Dimond, et al (2006), Combining Instruction Coding

and Scheduling to Optimize Energy in System-on-FPGA,

2006 14th Annual IEEE Symposium on Field

Programmable Custom Computing Machines.

7. M. Thakur (2018), Low Power Implementation of Secure

Hashing Algorithm (SHA-2) using VHDL on FPGA of

SHA-256, International Journal for Research in Applied

Science and Engineering Technology, 2298-2303, (Vol. 6).

8. C. Jeong and Y. Kim (2014), Implementation of efficient SHA-

256 hash algorithm for secure vehicle communication using

FPGA, 2014 International SoC Design Conference (ISOCC).

9. B. S. Kaliski (1991), The MD4 message digest algorithm. In

Advances in Cryptology—EUROCRYPT’90, Ivan Bjerre

Damgård (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 492–492.

10. R. R. and S. Dusse. (1992), The MD5 Message-digest

Algorithm. MIT Laboratory for Computer Science. [3]

Xiaoyun Wang and Hongbo Yu. 2005. How to break MD5 and

other hash functions. In Proc. of the International Conference

on the Theory and Applications of Cryptographic Techniques.

Springer, 19–35.

11. X. Wang, Y. L. Yin, and H. Yu. (2005), Finding collisions in

the full SHA-1. In Proceedings of the International Cryptology

Conference (CRYPTO’05), Springer, 17–36, (Vol. 3621).

12. M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y.

Markov. (2017), The first collision for full SHA-1. In

Proceedings of the International Cryptology Conference

(CRYPTO’17). IACR, Santa-Barbara, United States, 570–

596. DOI: http://dx.doi.org/10.1007/978-3-319-63688-7_19.

13. PUB FIPS. (2012) 180-2: Secure hash standard (SHS). US

Department of Commerce, National Institute of Standards and

Technology (NIST).

14. FIB PUB. (2008). 180-3, Secure hash standard (SHS). Federal

Information Processing Standards Publication.

15. S. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S.

Paul, and L. E. Bassham, (2012), Third-round report of the

SHA-3 cryptographic hash algorithm competition. NIST

Interag. Rep. 7896.

16. Q. Dang. (2013), Changes in federal information processing

standard (FIPS) 180-4, secure hash standard. Cryptologia 37,

69–73.

17. M. J. Dworkin. (2015), SHA-3 Standard: Permutation-based

Hash and Extendable-output Functions.

18. Technical Report. National Institute of Standards and

Technology.

19. D. Thakur, (2018), Low Power Implementation of Secure

Hashing Algorithm (SHA-2) using VHDL on FPGA of

SHA-256.

20. S. B. Suhaili, J. Norhuzaimin, (2022), FPGA-based

Implementation of SHA-256 with Improvement of

Throughput using Unfolding Transformation.

http://dx.doi.org/10.1007/978-3-319-63688-7_19

126

21. Z. A. Al-Odat, M. Ali and A. Abbas and S. U. Khan, (2020),

Secure Hash Algorithms and the Corresponding FPGA

Optimization Techniques.

22. R. García, I Algredo-Badillo, M. Morales-Sandoval and C.

Feregrino, (2013), A Compact FPGA-based processor for

the Secure Hash Algorithm SHA-256.

23. S. Manickam, (2015), A study on performance study of

enhanced SHA-256 algorithm.

24. S. Mishra, R. Jha, (2019), Low Power, and Simple

Implementation of Secure Hashing Algorithm (SHA-2)

Using VHDL implemented on FPGA of SHA-224/256 core.

25. H. Mestiri, F. Kahri, B. Bouallegue and M. Machhout,

(2015), Efficient FPGA Hardware Implementation of

Secure Hash Function SHA-2.

26. V. Venkata, S. Karthik, and T. Venkata Sridhar (2013),

Implementing sha-224/256 algorithm for secure

commitment scheme applications using FPGA.

27. T. S Reddy, K.A. M Junaid, Y. Sukhi and Y. Jeyashree and

P. Kavitha and V. Nath (2023), Analysis and design of wind

energy conversion with storage system. e-Prime - Advances

in Electrical Engineering, Electronics and Energy

100206(Vol. 17).

https://doi.org/10.1016/j.prime.2023.100206

28. D. Sharma, A. Rai, S. Debbarma, O. Prakash, M K Ojha

and V. Nath (2023), Design and Optimization of 4-Bit

Array Multiplier with Adiabatic Logic Using 65 nm CMOS

Technologies, IETE Journal of Research, 1-14.

https://doi.org/10.1080/03772063.2023.2204857

29. J. Tirkey, S. Dwivedi, S. K. Surshetty, T. S. Reddy, M.

Kumar, and V. Nath. (2023), An Ultra Low Power CMOS

Sigma Delta ADC Modulator for System-On-Chip (SoC)

Micro-Electromechanical Systems (MEMS) Sensors for

Aerospace Applications. International Journal of

Microsystems and Iot, 26–34 (Vol.1).

https://doi.org/10.5281/zenodo.8186894

30. D. Sharma, N. Shylashree, R. Prasad, and V. Nath. (2023),

Analysis of Programmable Gain Instrumentation

Amplifier. International Journal of Microsystems and Iot,

41–47(Vol. 1). https://doi.org/10.5281/zenodo.8191366

31. N. Anjum, V. K. Singh Yadav, and V. Nath. (2023). Design

and Analysis of a Low Power Current Starved VCO for

ISM band Application. International Journal of

Microsystems and IoT, 82–98. (Vol. 1)

https://doi.org/10.5281/zenodo.8288193

32. K A Mohamed Junaid, Y Sukhi , N Anjum et.al., (2023).

PV-based DC-DC buck-boost converter for LED driver. e-

Prime - Advances in Electrical Engineering, Electronics

and Energy, 100271. (Vol. 5)

https://doi.org/10.1016/j.prime.2023.100271

AUTHORS

Hitesh M A received his B. Tech degree in

electronics and communication engineering

from B N M Institute of Technology

Bengaluru, India in 2023. His areas of

interest are VLSI Design, artificial

intelligence, machine learning and human

computer interaction.

Corresponding Author E-mail: hitesh.ajoy@gmail.com

Mahendra R received his B. Tech degree in

electronics and communication engineering

from B N M Institute of Technology

Bengaluru, India in 2023. His areas of interest

are VLSI Design, Data analytics, artificial

intelligence, machine learning and robotics.

E-mail: rmahendra384@gmail.com

Sumanth H S received his B. Tech degree in

electronics and communication engineering

from B N M Institute of Technology

Bengaluru, India in 2023. His areas of interest

are VLSI Design, embedded system, machine

learning and embedded system in IOT.

E-mail: sumanthhs15@gmail.com

Subodh Kumar Panda received his

Bachelor of Engineering from Institution of

Engineers (India) in 1996, Master of

Technology from Visvesvaraya

Technological University in 2000 and

Doctor of Philosophy from Visvesvaraya

Technological University in 2018. He is

currently working as Professor in Department of Electronics

and Communication Engineering, BNM Institute of

Technology, Bengaluru. His main research work focuses on the

development of sensors for green chilies. He is also interested

in developing embedded solutions for portable applications and

IoT based solutions. His areas of interest are VLSI and

embedded systems.

E-mail: subodhpanda2013@gmail.com

https://doi.org/10.1016/j.prime.2023.100206
https://doi.org/10.1080/03772063.2023.2204857
https://doi.org/10.5281/zenodo.8186894
https://doi.org/10.5281/zenodo.8191366
https://doi.org/10.5281/zenodo.8288193
https://doi.org/10.1016/j.prime.2023.100271
mailto:hitesh.ajoy@gmail.com
mailto:rmahendra384@gmail.com
mailto:sumanthhs15@gmail.com
mailto:subodhpanda2013@gmail.com

