
ISSN: 2584-0495 Vol. 1, Issue 2, pp. 82- 98 
 

 

International Journal of Microsystems and IoT 

 
ISSN: (Online) Journal homepage: https://www.ijmit.org 

 
Design and Analysis of a Low Power Current 
Starved VCO for ISM band Application 

Nikhat Anjum, Vimal Kumar Singh Yadav, Vijay Nath 
 
 

Cite as: Nikhat Anjum, Vimal Kumar Singh Yadav, & Vijay Nath. (2023). Design and Analysis of a 

Low Power Current Starved VCO for ISM band Application. International Journal of Microsystems 

and IoT, 1(2), 82–98. https://doi.org/10.5281/zenodo.8288193 

© 2023 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India 

 Published online: 24 Jul 2023. 

 

 

 Submit your article to this journal:  

 

 

 Article views: 

 

 

View related articles:  

 

 

View Crossmark data: 

 

 

DOI: https://doi.org/10.5281/zenodo.8288193 

 

 

Full Terms & Conditions of access and use can be found at https://ijmit.org/mission.php 

https://www.ijmit.org/
https://doi.org/10.5281/zenodo.8288193
https://doi.org/10.5281/zenodo.8288193
https://ijmit.org/mission.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://ijmit.org/call-for-paper.php
https://www.ijmit.org/archive_papers.php?kjhgfbhhfmkp=29


International Journal of Microsystems and IoT 

Vol. 1, Issue 2, pp.82- 98; DOI: https://doi.org/10.5281/zenodo.8288193 

82 
 

 
Design and Analysis of a Low Power Current Starved VCO for ISM band  

Application 

Nikhat Anjum1, Vimal Kumar Singh Yadav2, Vijay Nath1 

1Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India. 

2Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad, 

Prayagraj, India. 

 
KEYWORDS 

CSVCO; ISM; Low phase noise; Low 

power; PSS; Ring oscillator; VCO 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 

In the past few decades, wireless communication systems 

have rapidly evolved and have become an integral part of 

everyday life. Oscillators play a crucial role as they are the 

source of most of the communication signals at the receiver 

side used for the subsequent processing. Various types of 

oscillators, such as the voltage-controlled oscillator (VCO), 

are commonly employed in the industrial, scientific, and 

medical (ISM) band. The ISM band at 2.4 GHz has gained 

significant importance in wireless communication systems, 

particularly for applications such as Wi-Fi, Bluetooth, and 

Zigbee. Current starved oscillators offer several benefits, 

including low power consumption, high frequency stability, 

and easy integration. While VCOs offer the benefit of low 

cost, one of their primary drawbacks is their power 

consumption due to their high voltage swings. The 

miniaturization of communication devices demands an 

oscillator with low power consumption. To meet this 

requirement, the current starved voltage-controlled oscillator 

(CSVCO) was proposed. A decrease in frequency is seen as 

more delay stages are used, however this is accompanied by 

an increase in generated bias current and power consumption 

[1]-[2]. Scaling CMOS technology at the 45 nm node and 

down to fulfil the demands for power, speed, and packing 

density has continued to be fueled by MOORE'S law [3]. 

 

 
© 2023 The Author(s). Published by Indian Society for VLSI Education, Ranchi, India 

 

 

To produce a sinusoidal output signal, each oscillator is made 

up of an odd number of multi-stage inverters. Only the stages 

of the delay cell and the voltage supply affect the RO's (Ring 

Oscillator) output frequency. MOSFETs that are externally 

biased control the rise and fall times of the cell in the 

CSVCO. Therefore, one can vary the current supplied to the 

delay stage by adjusting the size of the MOSFETs, which 

leads to a decrease in output power and a wider tuning 

frequency range [4]. The sum of each inverter's stage count 

and delay gives rise to the oscillator's period. The current, 

capacitance, and inverter delay can all be controlled. 

Although capacitance can be changed to see frequency 

changes with changing transistor length, the current 

application only supports one stable single channel length, 

thus the inverter current is changed [5]. The normal range of 

a linear designed VCO is in GHz [6]. 

There are two types of Voltage-Controlled Oscillators 

(VCOs), LC oscillator and ring oscillator. To make sure the 

Barkhausen conditions are met and to make up for the energy 

losses of the passive components at each oscillation cycle, 

LC resonators use a negative resistance component. Low 

phase noise is a characteristic of these oscillators. They cost 

money to embed into the chip and take up a significant 

amount of space. The adjustable ring oscillators make up the 

other class of VCOs. 

 

ABSTRACT 

This research paper explores the applications of current starved oscillators in the Industrial, 
Scientific, and Medical (ISM) band, specifically focusing on the frequency range of 2.4 GHz. 
Additionally, it examines the challenges and potential future developments in this field. The 
construction of a 3-stage, 5 stage and 7 stage current-starved CMOS VCO called the Ring 
oscillator. The size and power requirements of the suggested circuits are extremely low, and they 
work with wireless technology. The very low power supply 0.9 V is applied. As we vary control 
voltage its oscillation frequency is also varied. At 2.4 GHz oscillation frequency performance 
analysis of 3, 5 and 7 stage current starved oscillator is observed. The novelty of proposed work 
is its better tunning range 0.534 GHz to 11.036 GHz, 0.433 GHz to 6.43 GHz and 0.353 GHz 
to 4.59 GHz, low power consumption 0.250 mW, 0.254 mW and 0.256 mW and low voltage 
supply of 0.9 V of 3-stage, 5-stage and 7-stage current starved voltage-controlled oscillator 
respectively. Phase noise of the 3-Stage, 5-Stage, and 7-Stage CSVCOs at 2.419 GHz was 
measured at 1 MHz offset to be -75.91 dBC/Hz, -76.38 dBC/Hz, and -79.934 dBC/Hz 
respectively. PSS analysis found -85.946 dBm, -97.314 dBm and -105.1 dBm of 3, 5 and 7 stage 
CSVCO respectively at 2.4 GHz frequency. The fragrance of this CSVCO is its low power 
supply. 
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Due to the ease with which they may be scaled and 

integrated in comparison to their competitor, their smaller 

footprint is appealing [7].In this paper we have designed 

CMOS ring oscillator, 3-stage, 5-stage, 7-stage current 

starved voltage-controlled oscillator by using cadence 

virtuoso gpdk045nm CMOS technology. 

We give a quick overview of the CMOS ring oscillator 

design in Section 2. Section 3 presents the design concept 

for 3-stage, 5-stage, and 7-stage current starved ring VCOs. 

Section 4 presents the results of simulations, and Section 5 

wraps up this paper's findings. 

 

2. CMOS RING OSCILLATOR 

An oscillator is an amplifier with a signal source of its own. 

An oscillator's principal function is to produce a 

predetermined waveform at a consistent peak amplitude, at 

a predetermined frequency, and to hold it within 

predetermined amplitude and frequency bounds. The 

simplest CMOS ring oscillators use a chain of odd numbers 

of single ended inverters [8]. The output of the Nth stage is 

fed back into the input of the first stage. There are no stable 

operating point exits because of the odd number of 

inversions in the ring oscillator [9]. The oscillation must 

satisfy the barkhausen criterion and each stage must add 

180°/N phase. Figure 1 (a) depicts the block diagram of an 

N-stage (N = odd, >1) ring VCO, Figure 1 (b), shows 

CMOS Inverter based ring oscillator. 

 

 

Fig. 1 (b) CMOS Inverter based Ring oscillator [5] 

The period of the ring oscillator is determined by the 
propagation time (td) of the signal transition over the entire 

chain [11]. Which is given by equation (1) as 

𝑇 = 2 ∗ 𝑁 ∗ 𝑡𝑑 (1) 

N stands for the chain's total number of inverters (delay stages). 

A full cycle necessitates transitions from low to high and from 

high to low, which leads to factor 2. Only for the conditions 

2Ntd >>tf + tr where tr and tf are the rising and fall time periods, 

is equation (1) true. Consequently, the oscillation frequency 

can be written as like equation (2) 

𝑓𝑜 = 
1 

=  1 (2) 
𝑇  2∗𝑁∗𝑡𝑑 

 
 
 
 
 
 

 
Fig. 1 (a) N stage inverter-based Ring oscillator [10, 36]. 

Therefore, by adjusting each stage's time delay, an N-stage ring 

oscillator's oscillation frequency can be adjusted [12-14]. 

 

3. CURRENT STARVED RING VCO 

The current-starved oscillator is a well-liked oscillator among 

conventional voltage-controlled oscillators (VCOs) in various 

applications [15]. Figure 2 depicts the current-starved 

oscillator. It functions in a manner akin to the ring oscillator. 

While MOSFETs P1 and N1 function as current sources, 

MOSFETs P2 and N0 act as an inverter. The current available 

to the inverter P2 and N0 is constrained by the current sources 

IDP1 and IDN1, which are equal to ID. Because of the input 

control voltage, MOSFETs P0 and N2 have identical drain 

currents. Each inverter current source stage mirrors the currents 

in P0 and N2 [16].Controlling is an important component of 

every system or equipment [19]. Seven inverters, PUN, and 

PDN cascaded together when constructing the CS-VCO 

architecture [20]. The PDN network is created using NMOS 

transistors, while the PUN network is composed of PMOS- 
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connected load [21]-[25]. One switch, VC, has been 

integrated into the NMOS transistor's gate to control the 

frequency. The controlled voltage V fluctuates between 0.3 

and 1.2 V, while the Power Supply voltage is 0.9V. Design 

parameters are given in Table. 1. Figure 2 depicts the 

schematic diagram for the N-Stage CS-VCO. 

 

 

 

 

 

 

 

Fig.2 N- stage CSVCO [11] 

Table. 1 Design Parameters of CSVCO 
   

Parameter Value 

Current source PMOS width 3.96 μm 

Current source NMOS width 1.98 μm 

PMOS width in Inverter 960 nm 

NMOS width in Inverter 460 nm 
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Fig.3 3-stage CSVCO 
 

 

 

Fig.4 5-stage CSVCO 
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Fig.5 7- stage current starved VCO 

 

 

Fig.6 5- Stage CSVCO Symbol Schematic 

 

 

 

 

 

 

The frequency of oscillation for N stage current starved 
voltage-controlled oscillator (CSVCO) is represented [26] 
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as: 
 

𝑓𝑜 = 
1 

= 1 

 

 
(2) 

transistors respectively [37-39]. 

𝑇  2∗𝑁∗𝑡𝑑 

Where fo is the frequency of oscillation of CSVCO. Total 

capacitance of CSVCO can be determined by the [27]-[30] 

following equation (3), equation (4), equation (5) 

𝐶𝑡𝑜𝑡 = 𝐶𝑜𝑢𝑡 + 𝐶𝑖𝑛 (3) 

4. Simulation and Result Discussion 

Cadence Virtuoso gpdk045nm technology has been used to 

build and simulate the proposed ring oscillator, 3-stage, 5- 

stage, and 7-stage CMOS current starved VCO (CSVCO). 

The standard schematic diagram of 3-stage, 5-stage, and 7- 

𝐶𝑡𝑜𝑡 = 𝐶𝑜𝑥(𝐴𝑝 + 𝐴𝑛) 

5 

3 
+  𝐶𝑜𝑥(𝐴𝑝 + 𝐴𝑛) 

2 
(4) 

stage CMOS current starved VCO (CSVCO) is shown in 

Figure 3, Figure 4, and Figure 5, respectively. Figure 5 shows 

the schematic symbol of 5-stage CSVCO. Figure 7 shows the 
𝐶𝑡𝑜𝑡 =  𝐶𝑜𝑥(𝐴𝑝 + 𝐴𝑛) (5) 

2 

Where: 𝐴𝑛 = 𝑊𝑛 ∗ 𝐿𝑛 , 𝐴𝑝 = 𝑊𝑝 ∗ 𝐿𝑝 

Cox= oxide capacitance 

Lp, Ln are channel lengths and Wp, Wn are channel widths and 

Ap, An are cross sectional areas of the PMOS and NMOS 

transient response of the CSVCO at 0.9 V of the CSVCO at 

an offset frequency of 2.419 GHz. Figure 8, Figure 9, Figure 

10, and Figure 11 show the power consumption, phase noise, 

PSS analysis and V-control verses frequency graph of 3-stage, 

5-stage, 7-stage CSVCO respectively. Table. 2 shows the V- 

control verses frequency Table of 3, 5, 7 stages CSVCO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 
 

(c) 
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(d) 

Fig.7 Transient response of (a) 3-stage CSVCO, (b) 5-stage CSVCO, (c) 7-stage CSVCO, (d) Center frequency 

 

(a) 
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(b) 
 

(c) 

Fig.8 Power Consumption (a) 3-stage CSVCO, (b) 5-stage, (c) 7-stage CSVCO 
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(a) 
 

(b) 



92 
 

 

 

(c) 

Fig.9 Phase noise (a) 3-stage CSVCO, (b) 5-stage CSVCO, (c) 7-stage CSVCO 

 

(a) 
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(b) 

 

 

 

(c) 

Fig.10 Periodic steady state analysis (a) 3-stage CSVCO, (b) 5-stage CSVCO, (c) 7-stage CSVCO 
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Fig.11 V-control verses Frequency Graph of 3-stage, 5-stage, 7- 

stage CSVCO 

 

 

 

Table. 3 Comparative performance of CSVCO 
 

 

 

Parameter 

 

Technology 

(nm) 

 

Voltage 

Supply (V) 

 

Centre 

Frequency 

(GHz) 

 

Power 

Consumption 

(mW) 

 

Tuning Range 

(GHz) 

 

 

Stages 

[2] 90 1.1 2.0 0.765 "-" 13 

[ 7] 28 1.0 2.0 0.370 0.025 to 0.200 5 

[15] 500 5.0 0.025 0.817 0.001 to 0.026 9 

[26] 90 1.0 6.22 0.368 4.22 to 6.22 3 

[17] 90 1.8 0.015 2.150 0.007 to 0.016 7 

[18] 180 1.8 2.138 3.140 0.109 to 2.148 5 

[23] 45 1.0 3.22 0.100 1.5 to 3.22 5 

 
45 0.9 2.4 0.250 0.534 to 11.036 3 

This work 45 0.9 2.4 0.254 0.433 to 6.43 5 

 
45 0.9 2.4 0.256 0.353 to 4.59 7 

Vcontrol 

(V) 

3-Stage 

CSVCO 

5-Stage 

CSVCO 

7-Stage 

CSVCO 

0.4 0.53 0.43 0.35 

 

0.55 

 

2.68 

 

1.64 

 

1.02 

 

0.65 

 

7.37 

 

3.98 

 

3.01 

 

0.76 

 

9.86 

 

5.5 

 

4.09 

 

0.98 

 

10.6 

 

6.26 

 

4.41 

 
1.2 

 
11.03 

 
6.43 

 
4.59 
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5. CONCLUSION 

A low Power current starved ring VCO is developed using 

Cadence virtuoso gpdk045nm CMOS technology to serve 

broad band applications such as ISM, GSM, 900MHz cellular, 

RFID, SCADA, wireless security cameras, wireless video 

transmitters, wireless security systems, PCS, and Bluetooth. 

The current starved inverter delay cell structure and current 

mirror are optimized for the VCO's frequency tuning range, 

which is increased while keeping a low amount of phase noise 

[40]. The frequency tuning ranges of the proposed 3-stage, 5- 

stage, and 7-stage CSVCOs are 534.25 MHz to 11.036 GHz, 

433.52 MHz to 6.43 GHz, and 353.18 MHz to 4.59 GHz, 

respectively. Phase noise of the 3-stage, 5-stage, and 7-stage 

CSVCOs at 2.419 GHz was measured at 1 MHz offset to be - 
75.91 dBC/Hz,  -76.38  dBC/Hz,  and  -79.934  dBC/Hz, 

respectively. At a 0.9 V supply, it was discovered that the 

power consumption of a 3-stage, 5-stage, and 7-stage CSVCO 

was 250.512 µW, 254.642 µW, and 255.977 µW, respectively. 

In comparison to most designs performed using various 

CMOS technologies, the suggested VCO achieves wide tuning 

range and low power consumption, as demonstrated in Table 

3. This study investigates the performance of multiple CS- 

VCO inverter stages of various sorts. According to the 

investigation, a 3-stage VCO uses less power than a 5- or 7- 

stage VCO and has poor phase noise performance than a 7- 

stage current-starved VCO. This performance analysis 

suggests using a 3-stage CS-VCO when power dissipation is 

the primary issue, but a 7-stage current starved VCO is used 

when better phase noise performance is required. VCO's 

higher oscillation frequency range makes it suitable for usage 

in ISM, Bluetooth, and GSM applications [41-45]. 
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