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1. INTRODUCTION 

An Instrumentation Amplifier (INA) is a category of 

integrated circuit (IC) which is primarily used for signal 

amplification. Because it increases the difference between 

two inputs, this amplifier belongs to the differential amplifier 

family [1-3]. For amplifying weak signals, an 

instrumentation amplifier is used due to its useful features 

such as high CMRR, high gain, a very high input-resistance, 

and quiet low offset voltage, etc [5-8]. INA is often utilized 

in biomedical signal acquisition systems for monitoring 

various health conditions [1,8,15,19,28,29], industrial test 

[4,11,12,30] and measurement applications [3,4,14,15,31]. 

The output from transducers is often of relatively low 

strength. The existence of the common-mode signal, for 

example the flicker noise of sensor, Offset-voltage, and 

further common-mode conflicts at the output-terminal of 

sensor, makes revealing and amplifications of these low- 

power signal challenging. As a result, the Common-mode- 

rejection-ratio (CMRR)of amplifier would be exceptionally 

high which is unable to avoid common signals interferences 

at sensor and amp. Interface [33,39]. A basic differential 

amplifier can reduce the intensity of common-mode signal 

while increasing the intensity of the required differential 

signal. However, the differential amplifier alone will be 

unable to reduce impact of the common-mode signal on 

biomedical signals or other very weak signals [42]. 

Therefore, an instrumentation amplifier (INA) has a very 

high gain and, more significantly, a very high CMRR, 

making it ideal for the detection of weak signals. There are 

Programmable Gain Amplifiers, or PGA, which have the 

gain options internal and can be digitally controlled. 
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They have similar functionality but can vary vastly in 

characteristics. The programmable instrument amplifier (PG- 

INA) system block diagram is shown in Figure 1. 
 

 

Fig. 1 System Block for Programmable Instrumentation 

Amplifier [8] 

A system block diagram for Programmable instrumentation 

amplifier (PG-INA) is shown in Figure 1, which consists of 

sensor/signal, multiplexer (Mux), INA, LPF, Sample & Hold 

Circuit(S/H) and Analog-to-Digital converter (ADC). The 

sensor detects the signal which is fed to the multiplexer 

which sends it to INA to accomplish high open-loop gain, 

high CMRR and a quiet minimum noise signal. The signal is 

then transformed into a digital signal by passing it through 

LPF, S/H, and ADC. Finally output of ADC is processed in 

PCs or microprocessors [8]. A programmable instrumentation 

amplifier should have the following properties: 
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ABSTRACT 

This paper presents an analysis of the design of a programmable gain amplifier (PGA) based on an 
instrumentation amplifier. The instrumentation amplifier can be implemented in different ways, 
including the Single Op amp IA, 2 Op-amp INA, 3 Op-amp INA, Switched Capacitor Instrumentation 
amplifier (SCIA), Current Feedback Instrumentation amplifier (CFIA), Current Mirror 
Instrumentation amplifier (CMIA), and others. By adding switches or a multiplexer (Mux) to the 
amplifier, a precision programmable gain instrumentation amplifier (PG-IA) can be created. The 
literature suggests various approaches for enhancing the performance parameters of a PGINA, and this 
study aims to bring together and evaluate these approaches on a unified platform. In this research, an 
extensive examination of multiple instrumentational amplifier topologies has been carried out, and 
these topologies have been categorized based on their distinctive characteristics. 
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a) High Precision gain 

b) High Common-mode-Rejection-Ratio 

c) Limited Noise 

d) Simple gain selection 

e) Low non-linearity 

f) Highly matched and high value of input Impedance 

g) Low DC offset voltage & drift 

 

Above parameters are depending on each other and therefore, 

an appropriate high precision INA topology which can obtain a 

high gain, minimized limited noise, high CMRR, as well as 

less power dissipation is not easy task to develop [19],[28]. 

 

𝑉𝐶𝑀 = 
𝑉𝐼𝑁− + 𝑉𝐼𝑁+ 

2 
& 𝑉𝐷 = 𝑉𝐼𝑁+ − 𝑉𝐼𝑁− (1) 

 

This paper is organized as follows: Section 2 contains basic 

insights of the Instrumentation amplifier (INA) & its 

operation. An analysis of basic programmable instrumentation 

amplifier is summarized in section 3. In section 4, a cross 

platform comparative performance is shown. Finally, 

conclusion is given in Section 5. 

 

2. EVOLUTION OF INSTRUMENTATION 

AMPLIFIER 

Previously,   there    has    been    a    misuse    of    the    term 

 

 

 

 

 
 

Fig. 2 A Traditional 3 Op-Amp Instrumentation Amplifier 

(INA) [3] 

 
In term of difference voltage & Common mode, the input 

voltage is calculated as: 

"instrumentation amplifier" (INA), where it was  commonly 𝑉 = 𝑉 𝑉𝐷 + & 𝑉 = 𝑉 − 𝑉 /2 (2) 

used to refer to the application rather than the actual device 

architecture. It is important to note that INAs are closely 

𝐼𝑁+ 𝐶𝑀 2 𝐼𝑁− 𝐶𝑀 𝐷 

connected to operational amplifiers (op amps) as they share the 

same architecture. However, an INA is a specialized version of 

To calculate Current ID, Difference voltage is applied across 

the gain resistor. 

an op amp, designed and utilized for its distinctive capability 

of providing high differential gain. Its purpose is to amplify 
𝐼𝐷 = (𝑉𝐼𝑁− + 𝑉𝐼𝑁+ )/𝑅𝐺 

𝑉𝐷 
= 

𝑅𝐺 
(3) 

sensor signals at the microvolt level while effectively rejecting 𝑉 = 𝑉 𝑉𝐷 − − 𝐼 . 𝑅 & 𝑉 
high-common-mode signals that can be several volts. This 

holds significance because certain sensors generate a 

1  
𝐶𝑀 2 𝐷 𝐹 

= 𝑉 

2 

𝑉𝐷 + + 𝐼 . 𝑅 
 

(4) 
comparatively low alteration in voltage or current, and it is 

crucial to precisely capture and measure this minimal change. 

𝐶𝑀 2 𝐷 𝐹 

Substitute ID value of equation 4 from equation 3 

3. INSTRUMENTATION AMPLIFIER 𝑉 = 𝑉 𝑉𝐷 − ∗ 𝐺 & 𝑉 = 𝑉 𝑉𝐷 + ∗ 𝐺 (5) 

 
In this section, an overview of basic Instrumentation amplifier 

1 𝐶𝑀 2 1 2 𝐶𝑀 2 1 

(INA). The INA is a circuit that amplifies the difference in 

input signal voltages while rejecting signals that are common 

Where Gain, 𝐺1 = 1 + (2 ∗ 
𝑅𝐹) 
𝑅𝐺 

to both inputs. INA consists of a differential amplifier along 

with an input buffer. The main purpose of this amplifier is to 

reduce excess noise generated by the circuit [32],[34-37],[40]. 

The 3-amp instrumentation amplifier is one of the more 

popular ones. The strength of this is essentially that it has high 

input impedance. It takes the difference amplifier and adds two 

The 𝑉𝐷 is intensified by gain and the common-mode voltage 

has been passed through the input stage alongside unity gain. 
The output of the difference amplifier after the second stage is 
represented by, 

 
𝑅2 

buffers on each of the inputs. Those buffers have a resistive 

network around it that allows it to gain up the differential 

voltage. The benefits of a 3-amp instrumentation amplifier are 

𝑉0 = (𝑉2 − 𝑉1) ∗ 𝐺2 𝑤ℎ𝑒𝑟𝑒 𝐺2 = 
𝑅

 (6) 

the high input impedance caused by these buffers, as well as 

the ability to gain it up and the limitation is the restricted 

The transfer function of INA can be calculated using 
equation 5 and 6, 

Common Mode Voltage range [20-24],[41]. 

The Traditional INA based on 3 Operational Amplifier is 

shown in figure 2[3]. Input polarities with VIN- & VIN+ are 

𝑉0 

𝑉𝐷 
= 𝐺1 ∗ 𝐺2 = 𝐺 

 
𝑇𝑂𝑇𝐴𝐿 (7) 

present at input stage along with differential amplifier (A3) 

present at output stage. Inputs of INA can be described as 

follows: 

INA has a limited CMRR value due to resistor mismatching 

[25]. A unity-gain difference amplifier is used in the output 

stage of a traditional INA, which may limit the input common 

1 
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0 1 2 
range as a result. [3],[26]. A switched-capacitor INA may be 

utilized to increase CMRR, although, it has a low input 

impedance [38]. 

 

4. CIRCUIT OF A BASIC 

PROGRAMMABLE AMPLIFIER(PGA) 

 
The PG-IA's fundamental circuit is shown in figure. 3 [10]. 
For input signal 𝐸1, Operational amplifiers 𝐴1& 𝐴2 form an 

inverter. Summing junction is Node A, input signal 𝐸2 and 

the Feedback. The circuit steady state equations are given as 
follows: 

 

𝑈2 = 𝑒1 = 𝐸1 (8) 
 

𝑈3 = 𝑒4 = 𝐸2 (9) 

𝑈   = 
2𝑁−1 

. 
𝑅0 . (𝐸 − 𝐸 ) (14) 

𝐷 𝑅4 

 
Fig. 3 Basic circuit of PGIA [10] 

𝑈1 ∑ 𝐼𝐴 = 0; 
𝑅

 𝑈3 
+ 𝑅 

𝑈4 𝐷 
+ . 𝑁 

 
= 0 (10) 

Figure 3 is basis for precision PG-IA, but it has demerit of the 

gain proportionality to the ratio of the reference 
3 4 𝑅0  2   − 1 

resistance𝑅0 𝑡𝑜 𝑅4 of DAC. As a result, only if the resistor 

 
𝑈1 

∑ 𝐼𝐵 = 0; 
𝑅

 

 
Where, 

 
𝑈2 

+ 
𝑅1 

 
 

= 0 (11) 

“bridge” with a DAC R-2R ladder, the simple circuit in 

figure. 3 is an unsuitable for the real-world application 

(example, Temperature tracking and adjustment of the 

resistance ratio are also available) [10]. 

 
In industrial signal-acquisition applications, there are two 

𝐺 ∶ 𝐴 𝐺𝑎𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝐷𝐴𝐶 , 
 

𝑅0 ∶ 𝑎𝑛 i/p resistance of the DAC − 
G reference input (𝑈𝑅𝐸𝐹 ) 

 

𝐷 ∶ 𝐴 DAC-G loading (0 < D  2𝑁 − 1), 

 

𝑁 ∶ 𝐴 𝐷𝐴𝐶 − 𝐺 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑏𝑖𝑡𝑠). 
 

After mathematically analysis of (8)-(11) equations give Op- 

Amp output Voltage A4 and Output Voltage of the 

Instrumentation amplifier after inspection of the circuit is 

types of PGAs and IAs currently known. A first category uses 

laser pruning to produce a good noise & D.C accuracy in a 

High Voltage (HV)Bipolar technology. These can handle up 

to 15V in common mode and differential-input voltage, 

which is generally employed in the industrial purposes. 

Because of a usage of bipolar technology and trimming, such 

ICs have lack of diagnostics, restricted programmability and 

an auxiliary capability, even they are rather expensive. 

Several of these IC’s have restricted CMRR which is roughly 

of 80dB at low volume levels [12]. 

 
Analog CMOS technology is used to build a second category 

of PGAs. This eliminates the requirement for trimming by 

allowing the utilization of dynamic Offset Cancellation 

 
𝑈0 = 𝑈4 = 

2𝑁 − 1 
 

 

𝐷 

 
. 𝑅0. ( 

𝑅2 

𝑅1 

𝐸1 
. 
𝑅3 

− 
𝐸2 

𝑅4 

 
) (12) 

methods which increase the D.C accuracy [17], [25-27]. 

Furthermore, CMOS technology enables the inclusion of a 

digital interface, as well as additional functions for example 

Sensor excitation as well as sensor linearization and capacity 

to reveal and report inbuilt / system level fault problems. 
Above equation is resolved into input signal amplified Sum & 
difference components. 

 
There has been a  lot of  interest in PGAs with this extra 

capability since it can make the whole readout system 
2𝑁 − 1 𝑅0     1 𝑅2𝑅4 considerably more error resistant. However, the 

𝑈0 = . 𝐷 𝑅 [   (1 + ) (𝐸1−𝐸2) 𝑅 𝑅 comparatively low-supply voltages, CMOS PGA’s have 
4     2 1   3 

 
 
 

An ideal instrumentation amplifier is created by balanced 

condition 𝑅1. 𝑅3 = 𝑅2. 𝑅4 of the resistor “bridge 𝑅1 𝑣𝑖𝑎 𝑅4: 

traditionally been inappropriate for several applications of 

industry requiring a 15 V input range. 

 
A 3 op-amp amplifier topology is used in most 

instrumentation amplifier circuits. Maintaining a precise ratio 

between the resistor with gain controlling and another resistor 

within that circuit which is essential for accurate gain 

switching. For significant gain fluctuations, in a hybrid 

resistor network is difficult to obtain (typically 1: 1000 in 

data acquisition systems) [6],[10]. Switches can be used in 

+    ( − 1) (𝐸1 + 𝐸2)] 
1   𝑅2𝑅4 

2   𝑅1𝑅3 
(13) 

. 

2 
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series along with resistor which has gain setting to provide 

multiple selectable gains necessitates trade off amongst 

switching area & gain sensitivity of a power supply voltage, 

process variables and signals level [4]. 

 

4.1 Programmable Gain: 
 

Any system's dynamic range may be increased by using 

programmable gain. The practical range of a fixed gain 

instrumentation amplifier would be around 60dB [9,10,16]. To 

permit signal levels amplification in broad range then both 

high resolution (approx. about 0.4%) as well as wide-gain 

range (of about minimum 100 -1000) is required for 

programmable gain [4]. In data acquisition space, PG-IA are 

most crucial component which enables better signal to noise 

ratio performance as well as varied sensor sensitivities. 

Compact IC designing approaches may also be used to 

decrease parasitic and offer great matching, leading in better ac 

performance. Due to these benefits, if an integrated PGIA 

matches the design criteria, it is always suggested to employ it 

[7]. 

 

5. DIFFERENT TYPE OF TECHNIQUE 

USED BY PROGRAMMABLE 

INSTRUMENTATION AMPLIFIER(PG- 

INA) 

 
Many researchers have utilised various technique to employ 

instrumentation amplifier based on programmable gain [9-16]. 

In this article, V to I and I to V converters [12], Current 

Division Network technique [13] and Supply Current sensing 

technique [14] is briefly discussed. 

 
5.1 V to I & I to V Converters 

 
In this paper [12], a high voltage programmable gain 

precision instrumentation amplifier with high CMRR approx. 

more than 120dB at all gain settings as well as sub-20µV 

offset has been proposed for the first-time signals acquisition 

in the industrial sector. Restricted programmability, a scarcity 

of diagnostics & auxiliary features, & a comparatively 

expensive because of the utilization of bipolar technology 

and pruning are all disadvantages of conventional ICs. In this 

work, total of four op amps and four OTAs are used, which 

need dynamic offset correction. The output amplifier stage 

converts an input voltage to a current, which is then reflected 

by precise current mirrors before being converted back to a 

voltage. To remove chopping glitches, notch filter for 

chopper stabilisation is used in all the opamp in the PGA, 

resulting in low offset & drift as well as no 1/f noise. Low 

offset is ensured by the chopped high gain path with 𝑔𝑚𝑖𝑛 & 

𝑔𝑚2, while broad bandwidth is ensured by a parallel feed- 
forward stage gmff. To decrease the requirement for device 
calibration   and   to   maintain   precision   over   time   and 

temperature, offset drift, gain drift, and non-linearity must be 

reduced, while noise must be removed. 

 

Furthermore, this PGA architecture increment input of 

common mode range & offers level conversion amongst the 

low-voltage (LV) output supply and high-voltage (HV) input 

supply domain. It has achieved an unclipped CMRR ratio 

over 120dB at all gain settings. This network provides 

numerous system-level diagnostic features may also be used 

as a two-channel multiplexer. The IA chip is executed with a 

36 V extension in a 0.35m CMOS technology. 

 

Fig. 4 Block diagram of Programmable gain INA with signal 

path [12]. 

 
5.2 Current division Network (CDN) 

 
In this proposed work [13], Digitally Programmable Op-amp 

Transconductance Amplifier (DPOTA) is connected in series 

with the digital controlled gyrator in a proposed IA. For a 4- 

bit code word, the DPOTA's digital control circuit uses a 

current-division-network (CDN). This PG-INA is proposed 

for Biomedical application such as EEG signal detector. As 

shown in Fig. 5, this OTA is made up of 4 transistors cell 

(M1 to M4), Voltage biased circuit & Current -sensing- 

circuits (M5 to M10), 2 levels shifter (M11 to M20) ,2 

Current Subtractors (M21 to M28), & Common mode 

feedback circuits (CMFC)(Mcm1 to Mcm10. It produces 

very little noise and consumes very little electricity. The 

digital control is configured to a 4-bit code word via CDN. A 

designed cascaded INA operated with the smallest power 

source, absolute least Power dissipation (PD), highest gain, & 

highest CMRR. The designed cascaded IA with the smallest 

power supply, lowest power dissipation, greatest gain, and 

highest CMRR was created. 
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Fig. 5 The designed OTA circuit with CMFB is realised in 

CMOS transconductor [13]. 

The performance comparisons between the various INA 

topologies are shown in Table 1. 

 
Table. 1 Cross platform comparative performance 

 

5.3 Supply Current Sensing Approach (SCS)    

 
In this proposed work [14], A supply current sensing 

approach is used to design the low-voltage (LV), low-power 

(LP) Instrumentation amplifier (INA). 3 Voltage Buffers 

(VBs), two resistors, and current mirror are comprised in this 

proposed circuit as shown in Figure 6. Instead of using an 

Op-amp in a unity-gain configuration but a Voltage Buffer 

(VB) is utilised in the proposed circuit, and it is demonstrated 

that a high CMRR can be reached with just a better match 

between the input-buffer gain. Advantage of INA: it’s CMRR 

is unaffected by mismatching of Resistor, eliminating the 

need for costly resistor laser trimming. INA schematic based 

on supply Current Sensing (SCS) Technique is shown in 

Figure 6. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Fig. 6 INA schematic based on supply Current Sensing 

(SCS) Technique [14]. 

6. CONCLUSION 
A comparative study of programmable instrumentation 

amplifier using different technology is presented in this 

article, in which V-to-I & I-to-V converters, current division 

network (CDN) and supply current sensing approach (SCS) 

are used. The study shows that supply current sensing 

approach gives high gain bandwidth compared to other 

technology. In this technology CMRR is unaffected by 

resistor mismatch as well as expensive resistor laser 

trimming need is eliminated. 

 

Parameter 

[12] [13] [14] [FUTURE 

WORK] 

Technology 0.35m 0.25m 0.18m 180nm 

Supply 

voltage (V) 

36  0.8 1.8 3.3 

Gain(dB) -18/42 13.81/6 

0.15 

0/18 1 to 1000 

CMRR (dB) 120 113.4 71 >90dB 

Gain Band 

width (Hz) 

2M 270k 83M 1MHz 

Input Referred 

Noise(V/Hz) 
3.8 2.62 -- Low 

 

Power 

Dissipation(W 
) 

 

-- 

 

27.4 

 

0.77m 

 

Low 
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Future scope: using SCL 180nm CMOS technology, create a 

high-precision INA with adjustable gain for aerospace 

applications. A high gain that can be programmed in 

software. A CMOS multiplexer and an appropriate network 

of resistors can be used to build INA. To accomplish the 

digitally adjustable gain, internal precision resistor arrays are 

employed. On-chip trimming of these resistor arrays can 

increase gain, CMRR, and offsets, resulting in higher overall 

dc efficiency. 
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