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1. INTRODUCTION 

The rapid progress of technology has facilitated the 

integration of an entire circuit system onto a single chip. To 

convert the analog signal received from the system-on-chip 

Micro-Electromechanical Systems (MEMS) sensor into the 

digital domain, an analog-to-digital converter (ADC) is 

required that is high-performance, minimally inaccurate, 

more effective, reliable, and resilient. Comparatively, data in 

the digital domain is significantly safer, more transferable, 

and easier to duplicate than in the analog domain. Among 

available ADC options, the Sigma Delta (ΣΔ) ADC stands out 

as the optimal choice due to its ability to achieve high 

precision, along with a good signal- to-noise ratio (SNR). The 

Sigma Delta (ΣΔ) ADC comprises two essential components: 

the digital filter and the sigma delta modulator. The digital 

filter prioritizes time resolution over amplitude, while the 

modulator component combines sampling at a rate equal to or 

higher than the Nyquist rate with negative feedback[1]. 

Furthermore, the sigma delta (ΣΔ) ADC demonstrates a 

remarkable tolerance for imperfections in analog circuits, 

enabling the implementation of high-density and 

sophisticated analog circuits using Sigma Delta (ΣΔ) 

technology. 

Consequently, it becomes a top priority for system-on-chip 

(SoC) implementation. The block diagram for a sigma delta 

modulator is depicted in Figure 1. One crucial component of 

the sigma delta (ΣΔ) ADC modulator is the integrator, which 

has been purposefully designed. In the high-order sigma delta 

(ΣΔ) ADC modulator's forward path, multiple integrators are 

employed, ensuring excellent resolution but also making it 

susceptible to instability [1], [2]. While it is possible to 

cascade a single-order sigma delta (ΣΔ) ADC modulator to 

achieve precise gain, the order of the sigma delta (ΣΔ) ADC 

modulator is influencedby application-specific factors. By 

sampling the input signal at a high frequency, the sigma delta 
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(ΣΔ) ADC modulator converts the analog signal into a 

digital pulse. However, if poor filtering is present, the 

resulting digital pulse becomes contaminated with 

unwanted noise, as evidenced in [3] and [4]. The choice of 

the modulator's sampling ratio and order at the modulator 

stage directly impacts the output's resolution. Since the 

analog input signal can now be directly sampled using an 

oversampling clock [6], [7], the previously contemplated 

need for ananti-aliasing filter is no longer necessary. 
 

Fig. 1 Block diagram of Sigma Delta ADC 

Therefore, in this research, we propose and validate an 

improved and precise ultra-low-power sigma delta (ΣΔ) 

ADC modulator. The remaining sections of the paper 

adhere to the following structure. Section II provides a 

detailed explanation of the suggested circuit configuration, 

accompanied by a comprehensive illustration of each 

individual component. The findings and subsequent 

discussion are the primary focus of Section III, while the 

work is ultimately concluded in Section IV. Figure 1 

showcases the sigma delta (ΣΔ) ADC modulator, 

consisting of various components including a difference 

amplifier, an integrator, a comparator, a D flip flop, and a 

DAC.Prior to being converted into a pulse train at the 
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This paper presents the design and implementation of an ultra-low power CMOS sigma-delta analog- 
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power consumption. The design focuses on minimizing power consumption by employing innovative 
circuit architectures, low-voltage supply, and reduced transistor sizes. This design incorporates the 
utilization of 180nm technology, resulting in an average power consumption of 54 µW when operated 
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output, the input analog signal has gone through numerous 

steps such as oversampling, quantization, and noise 

shaping. Modern technology conserves a critical amount 

of space through both the analogue to digital (ADC) and 

digital to analog (DAC) conversion procedures [8], [9]. 

 

2. PROPOSED CIRCUIT 

CONFIGURATION 

2.1 Operational Amplifier 

An operational amplifier (op-amp) is an electronic amplifier 

extensively utilized in a diverse range of analog circuits. It 

functions as a voltage amplifier with high gain, capable of 

amplifying the discrepancy between two input signals to 

generate an output signal. In order to ensure stability of the 

system, the implementation of the Miller compensation 

technique is incorporated into the op-amp circuit. Op-amps 

are engineered with a multitude of characteristics that 

contribute to their versatility and effectiveness in various 

applications. These characteristics encompass high gain, high 

input impedance, low output impedance, a high common- 

mode rejection ratio (CMRR), and low input offset voltage 

and current[10]. 

The open-loop gain of an op-amp, which refers to its gain 

without any feedback, is a crucial characteristic. It is typically 

remarkably high, often reaching tens of thousands or even 

millions. However, the open-loop gain of an op-amp is prone 

to instability and oscillations over a wide range of frequencies 

or temperatures[11]. To overcome this limitation, op-amps 

are commonly employed in a closed-loop configuration, 

wherein the output of the op-amp is fed back to the input 

through a feedback network. This feedback enables control 

over the gain, frequency response, and other properties of the 

circuit. Moreover, it enhances the stability and performance 

of the op-amp, addressing the issues related to its open-loop 

behavior. 
 

 

Fig. 2 Inverting and Non-Inverting Op-Amp 

2.2 Difference amplifier 

In analog-to-digital converters (ADCs), a difference amplifier 

is an operational amplifier (op-amp) circuit frequently utilized 

to amplify the disparity between two input signals. In an ADC, 

a difference amplifier serves as a preamplifier to magnify the 

small analog input signal prior to its processing by the 

remaining ADC circuitry. The difference amplifier 

encompasses two input terminals, a non-inverting input (+) 

and an inverting input (-), as well as two output terminals, an 

output voltage and a reference voltage. The output voltage is 

directly proportional to the discrepancy between the voltages 

applied to the non-inverting and inverting inputs. 

Typically, the reference voltage is set to half of the supply 

voltage to accommodate both positive and negative input 

signals. 

The gain of the difference amplifier is determined by the ratio 

of the feedback resistor to the input resistor. Adjusting the 

values of these resistors allows for gain modification. A higher 

gain results in a greater amplification of the difference 

between the input signals. Subsequently, this amplified signal 

is fed into the remaining ADC circuitry, such as an integrator 

circuit and a comparator circuit, to convert the analog input 

signal into a digital output. The accuracy and linearity of the 

difference amplifier significantly impact the overall 

performance of the ADC. Therefore, the design of the 

difference amplifier must focus on minimizing offset voltage, 

noise, and distortion to ensure precise and reliable conversion 

of the analog input signal[12]. 
 

 

Fig. 3 Difference Amplifier 

2.3 Integrator 

An operational amplifier (op amp)-based integrator is a circuit 

that utilizes an operational amplifier to accomplish the task of 

integrating an input signal. It offers a straightforward and 

efficient method for integrating analog signals within 

electronic circuits. The fundamental setup of an op amp-based 

integrator comprises an op amp, a feedback capacitor, and a 

resistor. The input signal is applied to the non-inverting input 

of the op amp, while the output of the op amp is connected to 

the inverting input through a feedback capacitor. Additionally, 

a resistor is connected between the inverting input and ground. 

Upon the application of an input voltage to the op amp- based 

integrator, the op amp amplifies the voltage and directs it 

through the feedback capacitor to the inverting input. The 

feedback capacitor serves as a storage device, accumulating 

charge over time. As the input voltage varies, the charge on 

the capacitor adjusts correspondingly. Consequently, the 

voltage across the capacitor is directly proportional to the 

integral of the input voltage. 

The op amp-based integrator finds numerous practical 

applications, including audio signal processing, power 

electronics, and control systems. For instance, in audio signal 

processing, it can be utilized to implement a low- pass filter, 

effectively removing high-frequency noise from an audio 

signal. In power electronics, it enables the generation of a 

ramp waveform for pulse-width modulation (PWM) control 

circuits. 
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In control systems, it facilitates the implementation of a 

proportional-integral-derivative (PID) controller, commonly 

employed for regulating system output. 
 

 

Fig. 4 Integrator 

2.4 Comparator 

A comparator is an electronic device designed to compare the 

amplitudes of two input signals and generate an output signal 

indicating which input is larger. Comparators find extensive 

application in electronic circuits for various purposes, 

including level detection, waveform shaping, and signal 

conditioning. The fundamental configuration of a comparator 

comprises two input terminals (positive and negative) and an 

output terminal. The input signals are applied to the respective 

input terminals, while the output terminal produces either a 

high or low voltage level based on the relative amplitudes of 

the input signals. The output of a comparator is binary, 

meaning it can be either high or low. When the voltage at the 

positive input exceeds that at the negative input, the output is 

high; conversely, when the voltage at the positive input is 

lower than that at the negative input, the output is low. This 

characteristic makes comparators valuable for detecting when 

an input signal crosses a specific threshold or for comparing 

two signals to determine their relative magnitudes. 

Comparators are available in different types, including voltage 

comparators, current comparators, and time-domain 

comparators. Voltage comparators, the most commonly used 

type, compare the voltage levels of two input signals. Current 

comparators compare the current levels of two input signals, 

while time-domain comparators compare the time intervals 

between two input signals. Comparators find application in 

various fields, such as audio amplifiers, voltage regulators, 

and digital logic circuits. In audio amplifiers, comparators 

are employed to convert an analog audio signal into a digital 

signal by comparing it to a reference voltage. Voltage 

regulators use comparators to compare the output voltage to a 

reference voltage and adjust the regulator's output 

accordingly. In digital logic circuits, comparators are used to 

compare the voltage levels of two digital signals, generating a 

high or low output based on the relative voltage levels[13]. 

 

 
Fig. 5 Comparator 

 

2.5 D flip flop 

A D-Flipflp is a sequential logic circuit employed in a logical 
circuit employed in digital electronics and computer system to 
synchronize binary data, which can be represented as either a 

0 or a 1. The D flip-flop possesses two stable states, 
determined by its input value, D. The output of the flip-flop, 
Q, mirrors its current state. During a transition of the clock 
input, CLK, from a low to a high level, the D input is sampled, 
causing the output to reflect the new value of D. The flip-flop 
maintains this state until the subsequent clock transition 
occurs. A D flip-flop typically consists of two NAND gates 
or two NOR gates connected in a feedback loop [14],[15]. 

One gate function as the input gate, while the other serves as 
the output gate. The input signal, D, is directed to one input 
gate, and the clock signal, CLK, is applied to the other input 
gate. The output, Q, is obtained from the output gate. 

 

There exist two types of D flip-flops: level-triggered and edge- 

triggered. Level-triggered D flip-flops respond to the logic 

level of the clock input, causing the output to change when the 

clock input is maintained at a specific logic level. In contrast, 

edge-triggered D flip-flops respond to the transition or edge of 

the clock input, resulting in an output change only when the 

clock input transitions from one logic level to another [15]. D 

flip-flops find application in various digital systems like 

microprocessors, memory devices, and communication 

systems. They are utilized for storing data signals, 

synchronizing signals, and performing diverse control 

functions in digital systems. Additionally, D flip-flops can be 

employed to implement various types of sequential logic 

circuits such as shift registers and counters. 

2.6 1 bit DAC 

A Digital-to-Analog Converter (DAC) is an electronic device 

that transforms digital signals into analog signals. It finds 

widespread application in digital audio systems, control 

systems, and instrumentation to convert digital data into 

analog formats, enabling processing and output as voltage or 

current signals. The fundamental purpose of a DAC is to 

convert binary digital signals, such as pulse-code modulation 

(PCM) audio signals, into continuous analog signals[16]. This 

is accomplished by generating an output voltage or current 

that corresponds to the binary value of the input signal. 

Typically, the input signal is sampled at a fixed rate, and the 

output voltage or current is updated at the same rate to produce 

a smooth analog signal. 
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Various types of DACs exist, including resistor ladder, pulse- 

width modulation (PWM), sigma-delta, and current steering 

DACs. Resistor ladder DACs are the simplest and most 

commonly used, employing a network of resistors to generate 

an output voltage proportional to the binary input signal. 

PWM DACs utilize a digital pulse-width modulation 

technique to generate an analog output signal. Sigma-delta 

DACs employ a delta-sigma modulation technique, 

converting the input signal into a high-frequency bit stream 

that is subsequently filtered to produce a continuous analog 

signal. Current steering DACs generate a current output 
 

 
proportional to the binary input signal. 

DACs serve a wide range of applications, such as audio 

systems, control systems, and instrumentation. In audio 

systems, DACs convert digital audio signals into analog 

signals for amplification and sound reproduction. Control 

systems employ DACs to generate analog control signals for 

regulating various systems and devices. In instrumentation, 

DACs are utilized to generate precise analog signals used in 

testing and measurement endeavors[16]. 

3 RESULT AND ANALYSIS 

Cadence was used to simulate both the individual components 

and the overall designed sigma delta modulator. Figure 6 to 16 

illustrates the Schematic Diagram of the operational amplifier, 

differential amplifier, common source amplifier, difference 

amplifier, integrator, comparator, D flip-flop, 1-bit DAC, and 

sigma delta modulator respectively. The output gain of these 

components are shown in figure 17, 18, 19, 20, 21, 22, 23 and 

24. 
 

 

Fig. 6 Schematic Diagram of operational amplifier 

Fig. 7 Schematic Diagram of differential amplifier 

Fig. 8 Schematic Diagram of Common Source 

 

 

Fig.9 Schematic Diagram of difference 

amplifier 

 
 

Fig. 10 Schematic Diagram of Integrator 

 

Fig. 11 Schematic Diagram of Comparator 

 

Fig. 12  Schematic Diagram of D flip flop 
 

 

Fig. 13 Schematic Diagram of CMOS NAND gate 
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Fig. 14 Schematic Diagram of CMOS 

Inverter 
 

Fig. 15 Schematic Diagram of 4bit DAC 
 

 

Fig. 16 Schematic Diagram of Sigma Delta 

Module 

 

Fig. 17 Output gain of operational amplifier 

 
Table. 1 Process simulation parameters of differential 

amplifier 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18 Output gain of 2 stage operational amplifier 

 

Table. 2 Process simulation parameters of 2 stage 

  differential amplifier  
 

Specifications Results 

DC gain(dB) 68.1577 

Power Dissipation 

(mW) 

1.009 

CMRR(dB) 103.1490 

3 

Gain Bandwidth 

(MHz) 

7.053154 

Supply Voltage(V) 1.8 

 

Fig. 19 Output result of difference 

amplifier 

(MHz)  

Supply Voltage(V) 1.8 

 

Specifications Results 

DC gain(dB) 37.74023 

Power Dissipation 

(mW) 

1.009 

CMRR(dB) 86.34234 

Gain Bandwidth 11.49834 
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Fig. 20 Output result of Integrator 
 

 
 

Fig. 21 Output result of clocked 

comparator 
 

 
Fig. 22 Output result of D flip flop 

 

 
Fig. 23 Output result of 1 bit 

 

 
DAC 

Fig. 24 Output result of Sigma Delta 

(ΣΔ) module 

Table. 3 Comparison with Some Other Recent Work 

 

Facto 

r 

[18] [19] [22] [23] This 

Wor 

                                                                                         k  

Process 

Technol 

ogy 

130n 

m 

CMO 

S 

180n 

m 

CMO 

S 

0.18µ 

m 

CMO 

S 

0.35m 

m 

CMO 

S 

180n 

m 

CMO 

S 

Architect 

ure 

Sigm 

a 
                        Delt  

Sigm 
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Delt  

Sigm 
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4 CONCLUSION 

This paper offers a comprehensive overview of a highly 

energy-efficient sigma delta (ΣΔ) ADC modulator, 

specifically designed for aerospace applications in system- 

on-chip (SoC) Micro-Electromechanical Systems (MEMS) 

sensors. The research findings presented in this paper are 

compared in Table 3. Every aspect of the sigma delta (ΣΔ) 

ADC modulator is meticulously examined and modeled 

within this study. The proposed ADC modulator operates 

with remarkable efficiency, utilizing a minimal power 

supply range of +1.3V to -1.3V. Ata sampling frequency of 

50 MHz, it consumes an average power of 54 µW. 
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